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Abstract 
Cerebrovascular reactivity (CVR), the ability of cerebral blood vessels to dilate or constrict in order 

to regulate blood flow, is a clinically useful measure of cerebrovascular health. CVR is often 

measured using a breath-hold task to modulate blood CO2 levels during an fMRI scan. Measuring 

end-tidal CO2 (PETCO2) with a nasal cannula during the task allows CVR amplitude to be 

calculated in standard units (vascular response per unit change in CO2, or %BOLD/mmHg) and 

CVR delay to be calculated in seconds. The use of standard units allows for normative CVR 

ranges to be established and for CVR comparisons to be made across subjects and scan 

sessions. Although breath-holding can be successfully performed by diverse patient populations, 

obtaining accurate PETCO2 measurements requires additional task compliance; specifically, 

participants must breathe exclusively through their nose and exhale immediately before and after 

each breath hold. Meeting these requirements is challenging, even in healthy participants, and 

this has limited the translational potential of breath-hold fMRI for CVR mapping. Previous work 

has focused on using alternative regressors such as respiration volume per time (RVT), derived 

from respiratory belt measurements, to map CVR. Because measuring RVT does not require 

additional task compliance from participants, it is a more feasible measure than PETCO2. However, 

using RVT does not produce CVR in standard units. In this work, we explored how to achieve 

CVR maps, in standard units, when breath-hold task PETCO2 data quality is low. First, we 

evaluated whether RVT could be scaled to units of mmHg using a subset of PETCO2 data of 

sufficiently high quality. Second, we explored whether a PETCO2 timeseries predicted from RVT 

using deep learning allows for more accurate CVR measurements. Using a dense-mapping 

breath-hold fMRI dataset, we showed that both rescaled RVT and rescaled, predicted PETCO2 

can be used to produce maps of CVR amplitude and delay in standard units with strong absolute 

agreement to ground-truth maps. However, the rescaled, predicted PETCO2 regressor resulted in 

superior accuracy for both CVR amplitude and delay. In an individual with regions of increased 

CVR delay due to Moyamoya disease, the predicted PETCO2 regressor also provided greater 

sensitivity to pathology than RVT. Ultimately, this work will increase the clinical applicability of 

CVR in populations exhibiting decreased task compliance. 
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1. Introduction  
Maintaining appropriate cerebral blood flow is critical for supplying a sufficient stream of 

oxygen and nutrients to the brain. Cerebrovascular reactivity (CVR) reflects the ability of blood 

vessels in the brain to dilate or constrict in order to regulate blood flow. CVR is typically 

measured using the dynamic response to a vasodilatory challenge and is complementary to 

steady-state measures like cerebral blood flow and cerebral blood volume (Liu et al., 2019). 

CVR has demonstrated clinical utility for a range of conditions including stroke (Papassin et 

al., 2021), carotid stenosis (Sobczyk et al., 2020), traumatic brain injury (Mathieu et al., 2020), 

Alzheimer’s disease (Yezhuvath et al., 2012), and multiple sclerosis (Chiarelli et al., 2022). 

CVR is also sensitive to healthy aging (Peng et al., 2018), cognitive function (D. Kim et al., 

2021), and exercise (Murrell et al., 2013). In addition to being an important measure of 

vascular function, CVR has demonstrated potential for calibrating functional magnetic 

resonance imaging (fMRI) data in order to more confidently assess changes in neural activity 

(Davis et al., 1998; Liu et al., 2013). 

To map CVR in the brain, an fMRI scan is often used; this scan utilizes the blood-

oxygenation level-dependent (BOLD) signal to detect changes in cerebral blood flow. 

Typically, during the scan, arterial CO2 levels are deliberately increased to induce systemic 

vasodilation and thus increase blood flow. End-tidal CO2 (PETCO2) values, which act as a 

surrogate for arterial CO2, are then used to compute CVR in standard units (%BOLD/mmHg). 

One common approach for increasing arterial CO2 involves intermittently inhaling air with a 

fixed concentration of CO2 (Lu et al., 2014). Computerized approaches have also been 

developed to dynamically change the inspired gas partial pressures to allow for precise 

targeting of PETCO2 (Slessarev et al., 2007; Wise et al., 2007). While these gas delivery 

approaches allow for robust, reliable CVR characterization (Leung et al., 2016; Sobczyk et al., 

2021), they require equipment that is often expensive, time-consuming to set up, and 

uncomfortable for participants. One highly feasible alternative involves using resting-state 

fMRI to map CVR by exploiting natural variations in arterial CO2 due to changes in breathing 

rate and depth (Golestani et al., 2016; Liu et al., 2017). However, a limitation of this approach 

is that spontaneous breathing changes may not cause sufficient BOLD signal variation to 

reliably assess CVR (Pinto et al., 2021). This is supported by De Vis et al. (2018), who found 

that a hypercapnia stimulus of at least 2 mmHg above baseline PETCO2 is necessary to 

effectively evaluate hemodynamic impairment in a group of participants with internal carotid 

artery occlusive disease.  
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Completing breath holds during the fMRI scan is a promising method for robustly mapping 

CVR by invoking large changes in arterial CO2 levels without external gas delivery (Bright & 

Murphy, 2013; Kastrup et al., 2001). In addition to requiring less equipment than gas delivery 

methods, breath holds can also increase participant comfort since they do not require the 

participant to wear a face mask within the head coil and can be stopped by the participant at 

any time (Bright & Murphy, 2013). Rather than a face mask, participants typically wear a nasal 

cannula during the scan so that PETCO2 can be measured to approximate arterial CO2 and 

calculate CVR. Compared to the face mask, participants often report the nasal cannula to be 

more comfortable due to its minimal contact with the face, breathability, and smaller size, 

allowing for a better fit within the head coil.  

When measuring CVR, and particularly when characterizing a transient or dynamic 

response such as the response to a breath hold, it is important to consider both the amplitude 

and timing of the blood flow response. Variations in CVR timing can arise from regional 

heterogeneities in arterial transit times and variations in local vasodilatory response dynamics 

(Stickland et al., 2021). One approach for modeling CVR that accounts for both the amplitude 

and delay of the response at each voxel is a lagged general linear model framework (Moia et 

al., 2020a; Stickland et al., 2021). In this framework, multiple shifted variants of the PETCO2 

regressor are used to model the BOLD response to the PETCO2 regressor at each voxel. The 

shift that maximizes the full model R2 is used to calculate the CVR amplitude and is considered 

the hemodynamic delay. Accounting for hemodynamic delays not only improves the accuracy 

of CVR amplitude estimates, but also provides a complementary measure of cerebrovascular 

health (Donahue et al., 2015; Stickland et al., 2021). Additionally, since this approach utilizes 

a PETCO2 regressor recorded during the scan, CVR amplitude and delay can be calculated in 

standard units (%BOLD/mmHg and seconds, respectively).  

The use of standard units allows normative CVR ranges to be established and CVR 

comparisons to be made across subjects and scan sessions. However, one challenge with 

this approach is obtaining accurate PETCO2 measurements, particularly during breath-hold 

protocols. There are two main requirements that participants must meet for the recorded 

PETCO2 values to accurately approximate arterial CO2 changes associated with the breath-

hold task. First, participants must exhale immediately before and after each breath hold (Bright 

& Murphy, 2013; Murphy et al., 2011). This is necessary because true end-tidal gas values 

are only achieved at the end of expirations. However, exhaling before a breath hold may make 

the breath hold more challenging (although the duration of the breath hold can be shortened 

accordingly) and exhaling at the end of a breath hold must override and slightly delay the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.624159doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624159
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

instinctive urge to take recovery breaths. Second, because PETCO2 is typically measured 

using a nasal cannula, participants must breathe through their nose for the entire experiment. 

If the participant fails to meet these two requirements, the PETCO2 regressor will have missing 

data and will otherwise be an inaccurate approximation of arterial CO2, which will likely result 

in an inaccurate CVR estimate. Collectively these requirements raise concerns about breath-

hold CVR accuracy in pediatric populations and clinical populations such as those with 

dementia, in which fMRI task compliance is often lower. In fact, a recent study which used a 

breathing task to map CVR in a pediatric cohort observed age-related differences in task 

compliance within the cohort, with younger participants having less reliable PETCO2 values 

(Stickland et al., 2021). 

Respiration volume per time (RVT) is an alternative metric to PETCO2, which captures 

changes in breathing rate and depth that likely drive the majority of changes in arterial CO2 

during voluntary breathing modulations (Birn et al., 2006). During task-free resting-state 

breathing, temporal fluctuations in RVT have been found to be highly correlated with PETCO2 

and to explain similar spatial and temporal BOLD signal variance (Chang & Glover, 2009). 

RVT can be measured by recording changes in respiration effort using a pneumatic belt worn 

around the chest or abdomen. Because RVT does not require the participant to exhale before 

and after each breath hold nor to breathe through their nose, it is often easier to obtain a high-

quality and complete RVT trace than a PETCO2 trace.  Additionally, since respiration belts are 

commonly included with many scanner set-ups (Zvolanek et al., 2023) and relatively 

comfortable to wear, recording RVT is immediately feasible for most settings and participants, 

including pediatric and clinical populations. 

Previously, Zvolanek et al. (2023) found that when PETCO2 data quality is sufficient, RVT 

can produce CVR amplitude and delay maps that are comparable to those from PETCO2. The 

authors defined “sufficient” data as having greater than 50% power in the dominant frequency 

range of the breath-hold task.  Furthermore, they found that when sufficient PETCO2 recordings 

are not available, RVT can recover CVR amplitude and delay maps, as long as the participant 

attempted the breath-hold task (Zvolanek et al., 2023). However, because RVT is measured 

in arbitrary units, they noted that one limitation of this approach is that the CVR amplitude 

maps generated using RVT are not in the standard CVR units of %BOLD/mmHg. This means 

that the CVR amplitude maps can only be used to make relative comparisons between brain 

regions of a single subject from a single scan and cannot be appropriately compared across 

subjects or scan sessions. 
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An alternative approach is using respiration-belt recordings to predict PETCO2 and then 

mapping CVR using the predicted PETCO2 timeseries. This approach may better model the 

BOLD response to changes in arterial CO2 compared to using RVT alone. Agrawal et al. 

(2023) demonstrated the feasibility of predicting the complete CO2 pressure timeseries from 

respiration-belt recordings in resting-state data using deep learning. Their predicted CO2 

pressure timeseries achieved a Pearson correlation of 0.946 ± 0.056 with the ground truth 

CO2; they also derived PETCO2 from the predicted CO2 timeseries and achieved a correlation 

of 0.512 ± 0.269 with the ground truth. The authors noted that they tried to predict PETCO2 

directly from RVT, but their model performed poorly. Similar to Zvolanek et al. (2023), the 

authors noted that since RVT is recorded in arbitrary units, they could only predict z-

normalized PETCO2 (0 mean and a standard deviation of 1). Furthermore, the authors 

exclusively trained and validated their model using resting-state data, and did not extend to 

breath-hold data. 

The goal of the current study is to develop a strategy for mapping CVR amplitude in 

standard units (%BOLD/mmHg) and CVR delay, in breath-hold BOLD fMRI data, when 

PETCO2 quality is low. In many cases, the participant performs all or most of the breath-hold 

trials in a session, but the PETCO2 timeseries only shows an end-tidal CO2 increase for a 

subset of the trials. This often occurs when a participant does not successfully exhale after 

the breath-hold period or breathes through their mouth in certain trials. In these cases, we 

expect the RVT timeseries to show large decreases corresponding to all or most of the breath-

holds and the BOLD data to show signal increases, particularly in gray matter, during those 

same breath-holds. Here, we propose to make RVT have units of mmHg by rescaling it have 

the same minimum and maximum as a reliable portion of high-quality measured PETCO2 (i.e., 

one successfully completed breath-hold trial). Rescaling RVT to mmHg will allow CVR to be 

calculated in units of %BOLD/mmHg.  

Next, we will investigate whether using a PETCO2 regressor predicted from RVT using 

deep learning produces more accurate maps of CVR amplitude and delay than the rescaled 

RVT regressor. As mentioned, Agrawal et al. (2023) previously used deep learning to predict 

PETCO2 from RVT in resting-state data but found that their model performed poorly; we 

hypothesize that since breath holds evoke larger fluctuations in PETCO2 than resting-state, 

breath-hold data will allow for more robust predictions of PETCO2 than in their original work. 

Since the magnitude of arterial CO2 varies significantly both within and between healthy 

participants and depends on a variety of factors such as the time of day, metabolism, sleep, 

and diet (Crosby & Robbins, 2004), and RVT is recorded in arbitrary units and varies with 
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changes in belt position and tightness, we will not use RVT to infer the magnitude of arterial 

CO2. Instead, we will rescale the predicted PETCO2 regressor to mmHg using the same 

methods used to rescale RVT. We hypothesize that the rescaled, predicted PETCO2 regressor 

will allow for more accurate maps of CVR amplitude (%BOLD/mmHg) and delay than the 

rescaled RVT regressor.   

Ultimately, we will evaluate the use of rescaled RVT and rescaled, predicted PETCO2 

regressors for mapping CVR in a subset of the publicly available EuskalIBUR dataset (Moia 

et al., 2020b), which provides breath-hold fMRI data for a group of densely-sampled 

participants. This dataset will allow us to comprehensively evaluate these strategies, 

ultimately providing guidance on the most robust method for mapping CVR in diverse clinical 

populations.   

 

2. Methods 
2.1. Data 

2.1.1. In-house training dataset 
To train a model to predict PETCO2 and determine model hyperparameters, we 

compiled a large dataset of physiological recordings during various breath-holding 

protocols. This dataset is available on OSF at https://doi.org/10.17605/OSF.IO/Y5CK4 

(Clements et al., 2024) and consists of 245 total datasets collected from 56 individuals (26 

± 4 years, 35 M) at Northwestern University under studies approved by the Northwestern 

University Institutional Review Board; all participants provided written, informed consent. 

Each dataset consisted of expired CO2 pressure (mmHg) and respiration effort (arbitrary 

units) simultaneously recorded during a breath-hold task, described below. CO2 pressure 

and respiration effort were recorded using a nasal cannula connected to an ADInstruments 

gas analyzer and a BIOPAC respiratory belt, respectively. Signals from the gas analyzer 

and respiratory belt were fed through PowerLab and recorded with LabChart 

(ADInstruments). All signals were acquired at 100 Hz.  

This training dataset was collected using 4 different breath-hold tasks. All tasks had 

multiple breath-hold trials, each of which consisted of a breath hold, an exhalation, and a 

recovery period (all of varied lengths across tasks), and a period of paced breathing 

(always 3 seconds in, 3 seconds out). Some tasks also incorporated a period of rest before 

or after. The timings of each task and the number of datasets collected using each task 

are summarized in Table 1. Tasks 1 and 2 were acquired in the MRI scan environment 

and compiled from previous studies in our lab. Tasks 3 and 4 were acquired outside the 
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MRI environment specifically for this project. To ensure consistency across data collection 

environments, all participants were in the supine position and viewed the task stimuli on a 

monitor using a mirror. Stimuli were presented using PsychoPy (Peirce, 2007). Tasks 3 

and 4 were designed to improve the generalizability of our modeling to any breath-hold 

task by incorporating randomized task timings. For each breath hold in Task 4, there was 

a 10% chance that the hold was skipped and replaced with a rest period, mimicking 

participants who fail to perform the trial (e.g., when falling asleep in the scanner).   

 

Table 1. Task timings and number of datasets collected using each task 

 
2.1.2. EuskalIBUR testing dataset 

Task 
Number 

1 2 3 4 

Number of 
datasets 

112 58 20 55 

Initial rest 
period 
duration 
(s) 

20 15 0 0 

Number of 
trials 

7 5 6 10 

Paced 
breathing 
duration 
(s)  

24 24 24 [24, 30, 36] 
randomized 
with 
replacement 

Breath 
hold 
duration 
(s)  

18 18 [10, 12, 14, 
16, 18, 20] 
randomized 
without 
replacement, 
10% chance 
that each 
breath hold is 
skipped and 
replaced with 
a rest period 

[10, 11, 12, 13, 
14, 15, 16, 17, 
18, 19, 20] 
randomized 
with 
replacement 

Exhalation 
duration 
(s)  

2 3 2 2 

Recovery 
duration 
(s)  

6 6 6 [6, 7, 8, 9, 10, 
11, 12] 
randomized 
with 
replacement 

End rest 
period 
duration 
(s) 

30 15 0 0 
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To evaluate our PETCO2 prediction accuracy, as well as evaluate the performance of 

both rescaled RVT regressors and rescaled, predicted PETCO2 regressors for mapping 

CVR in breath-hold fMRI data, we used the publicly available EuskalIBUR dataset that 

was acquired by researchers at a different institution. This breath-hold dataset consists of 

both physiological and MRI data. 10 participants (32 ± 6 years, 5M) completed 10 weekly 

MRI scan sessions each; every session included a breath-hold task during an fMRI scan. 

Data for 7 of the 10 participants can be found on OpenNeuro at 

doi:10.18112/openneuro.ds003192.v1.0.1 (Moia et al., 2020b). The total dataset size was 

99 sessions due to a software malfunction during physiological data collection for subject 

10, session 1. For details about the breath-hold task and multi-echo fMRI data acquisition, 

as well as the acquisition of single-band reference (SBRef) images, a T1-weighted 

MP2RAGE, and a T2-weighted Turbo Spin Echo image, readers are referred to Moia et 

al. (2021). During each fMRI scan, exhaled CO2 was measured using a nasal cannula 

connected to an ADInstruments gas analyzer and transferred to a BIOPAC MP150 

physiological monitoring system. Respiration effort was also measured; for the first 6-7 

sessions (varied between subjects), a BIOPAC respiratory effort transducer connected to 

a BIOPAC respiration amplifier was used, and for the remaining sessions a BIOPAC 

pressure pad and transducer amplifier were used. All signals were acquired at 10 kHz and 

down sampled to 100 Hz before any additional processing was performed.  

 
2.1.3. Physiological data processing and evaluation 

All CO2 and respiratory belt data in both the training and testing dataset were 

processed using in-house MATLAB code (MathWorks, Natick, MA, R2022b). For the CO2 

data, a peak-detection algorithm identified end-tidal peaks. The results of the algorithm 

were manually verified, and the peaks were linearly interpolated to create PETCO2 

timeseries with the same frequency as the original CO2 data. PETCO2 timeseries were 

rescaled from units of Volts to mmHg using instructions from the manufacturer of the gas 

analyzer. For the respiratory belt data, alternating minima and maxima were identified 

using a peak-detection algorithm, manually verified, and used to calculate respiration 

volume per time (RVT) based on the method described by Birn et al. (2006). The RVT 

estimations were linearly interpolated to create RVT timeseries with the same frequency 

as the original respiratory belt data. Since this method requires alternating minima and 

maxima, we accounted for having two consecutive minima due to exhales before and after 

the breath hold by only included minima before the hold (Zvolanek et al., 2023).   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.624159doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.18.624159
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

Next, we assessed PETCO2 data quality to ensure that only high-quality breath holds 

were used to train the model and evaluate model predictions. To assess PETCO2 quality, 

the PETCO2 change induced by each breath hold was calculated; a large PETCO2 change 

indicates a high-quality measurement since breath-holding causes CO2 to accumulate in 

the blood (Tancredi & Hoge, 2013). A custom script was developed that identified the 

peaks in the raw CO2 timeseries that were immediately before and after each breath hold. 

Then, the change in CO2 induced by each breath hold was calculated as the difference in 

amplitude between the peaks in each pair. Among breath-holds causing positive CO2 

changes, the mean and standard deviation CO2 increase was calculated. Breath holds 

that caused a CO2 increase greater than the mean minus 1 standard deviation were 

classified as “high-quality.” This threshold was chosen with the aim of classifying the 

majority of breath-holds that caused any CO2 increase as high-quality, while still excluding 

breath-holds that caused CO2 increases substantially lower than average. These low CO2 

increases were likely due to participants breathing through their mouth or not fully exhaling 

after the breath-hold. After quality assessment, PETCO2 and RVT timeseries were 

downsampled to 10 Hz. 

Next, we needed to account for delays between PETCO2 and RVT, related to 

measurement delays caused by factors such as sample line lengths, as well as 

physiological delays between changes in respiratory volume and subsequent changes in 

arterial CO2. Therefore, each PETCO2 dataset was shifted to maximize its negative cross-

correlation with each RVT dataset. A negative correlation between PETCO2 and RVT is 

expected because breath holds cause simultaneous increases in arterial CO2 and 

decreases in respiratory volume. Because we expected the measurement delay to be 

greater for PETCO2 than RVT, we only allowed for negative shifts, meaning that PETCO2 

could only be shifted earlier in time. For all PETCO2 recordings, the maximum allowable 

shift was 30 seconds. This maximum shift was identified through trial and error to ensure 

that all of the calculated shifts were not consistently at the maximum value. After each 

PETCO2 timeseries was shifted, data were trimmed from the end of the corresponding RVT 

signal to ensure that it was the same length as the shifted PETCO2 timeseries. 

Lastly, all PETCO2 and RVT recordings were z-normalized (i.e., zero mean and unit 

standard deviation). The RVT timeseries were z-normalized to avoid biasing the model, 

since RVT is derived from respiration effort data that are recorded in arbitrary units. 

PETCO2 timeseries were also z-normalized because, as previously explained, the 
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magnitude of arterial CO2 cannot be inferred from RVT alone, and the scaling between 

these data types will likely vary between individuals. 

We chose not to convolve RVT or PETCO2 with response functions, despite the fact 

that this is required for CVR calculation. PETCO2 is often convolved with the canonical 

hemodynamic response function (HRF) consisting of the sum of two gamma functions 

(Friston et al., 1998); however, this may not be a universally optimal approach as the 

shape of the HRF is known to vary across subjects and brain regions (Handwerker et al., 

2004). Additionally, the canonical HRF was designed to model the BOLD response to 

neural activity, not a CO2 change, and these responses have been shown to exhibit 

different shapes (Golestani et al., 2015). Similarly, RVT is often convolved with the 

respiration response function (RRF) (Birn et al., 2008), which was designed to model the 

average respiration-induced response function across the brain and does not account for 

variations in the shape of the response across subjects or brain regions.  Developing a 

model that could predict PETCO2 before convolution provides the flexibility to choose any 

response function before calculating CVR.  
 

2.1.4. MRI pre-processing 
MRI data were pre-processed for each scan session in which the associated PETCO2 

trace had all high-quality breath holds and for 2 additional scan sessions in which the 

majority of breath holds were low-quality. Pre-processing was performed using custom 

scripts which follow the same key steps described in Zvolanek et al. (2023). Scripts are 

available at https://github.com/BrightLab-ANVIL/PreProc_BRAIN and utilize both FSL 

(Cox, 1996; Jenkinson et al., 2012) and AFNI (Cox, 1996) commands. In summary, 

motion realignment, brain extraction, optimal combination of the echoes using tedana 

(DuPre et al., 2021; Kundu et al., 2012, 2013), and distortion correction were performed 

on the fMRI data. The MP2RAGE was brain extracted and used to generate a gray matter 

mask which was transformed into functional space.  
 

2.2. Experiments 
2.2.1. Prediction of PETCO2 from RVT 

To model PETCO2 from RVT, we used a 1D fully convolutional network (FCN), which 

is a type of convolutional neural network that does not have any fully connected layers.  

 
2.2.1.1. Implementation details 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.18.624159doi: bioRxiv preprint 

https://github.com/BrightLab-ANVIL/PreProc_BRAIN
https://doi.org/10.1101/2024.11.18.624159
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

We segmented our delay-corrected, z-normalized training datasets into smaller 

data segments containing only high-quality breath holds so that we could make use of 

CO2 recordings containing poorly performed breath-hold trials and maximize the size 

of our overall training dataset. Additionally, this method ensured that our model was 

generalizable to breath-hold tasks of varying lengths. High quality breath-holds were 

identified using the methods outlined in Section 2.1.3; the skipped breath holds from 

Task 4 were also classified as high-quality so that they could be included in the training 

dataset.  

Next, PETCO2 data were separated into blocks, each containing one breath hold. 

To ensure we captured the CO2 build-up and recovery effectively, we included data 

from before and after the apneic period. To identify the data that could be included in 

each segment, we calculated the halfway point between the end of each breath hold 

and the start of the next breath hold. Each block contained data from one halfway point 

to the next. We also manually estimated the start and end period of each skipped 

breath hold from Task 4 to create skipped breath-hold blocks that were still included 

in the training dataset. For blocks containing the first or the last trial in a dataset, we 

included all remaining data at the start or end of the trace, respectively. Using these 

breath-hold blocks, each PETCO2 dataset was randomly segmented into 1–4 different 

data segments of varying lengths; each segment contained 2 or more consecutive, 

high-quality breath-hold blocks.  

 
2.2.1.2. Model optimization  

The input to the FCN is an N x 2 array and the output predicted PETCO2 is an N x 

1 array. The first column of the input is the z-normalized, N-long RVT trace, and the 

second column is the subject ID encoded using one-hot encoding (Paszke et al., 2019) 

and padded with zeroes to be N samples long. Subject ID was inputted to the model 

to account for the fact that most participants contributed multiple datasets and to 

encourage the model to learn subject-specific differences between physiological 

timeseries. Upon being inputted to the model, the z-normalized RVT trace was further 

normalized using the tanh operator to ensure that all values were between -1 and 1 

(Agrawal et al., 2023).  

Several FCNs with varying numbers of hidden layers were initially investigated. 

Using methods described by Agrawal et al., who examined a similar relationship 

between physiological recordings in free (resting-state) breathing, we created FCNs 
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with 1, 2, 4, and 6 convolutional layers; this code is available at 

https://github.com/vismayagrawal/RESPCO. However, because overfitting was not 

initially observed with the 6 convolutional layer model, we also created FCNs with 8, 

10, 12, and 14 layers. For all models, half the layers were convolutional, and the other 

half were transposed convolutional. Both convolution and transposed convolution 

were performed using a stride of 2.  

Each FCN used an adaptive learning rate that was implemented using Pytorch’s 

ReduceLROnPlateau command; the initial learning rate was 0.01, and this learning 

rate was reduced by a factor of 0.1 if improvements were not seen for 4 consecutive 

epochs (Paszke et al., 2019). Additionally, each FCN had a batch size of 1 and used 

the Adam optimization algorithm during training (Kingma & Lei Ba, 2015). 

In addition to investigating different numbers of layers, we also investigated using 

5, 10, 15, 20, and 25 epochs. For the loss function, we used mean squared error (MSE) 

between the measured and predicted PETCO2 timeseries but, similarly to Agrawal et 

al. (2023), observed that when using MSE as the loss function, the FCN consistently 

underestimated the peaks in the data. In PETCO2 timeseries, the values at the peaks 

are important since they indicate the extent of hypercapnia induced by each breath 

hold. Therefore, in addition to testing standard MSE, we tested four additional loss 

functions. These loss functions simply add the MSE at the peaks in the measured 

PETCO2 trace, multiplied by a factor of either 0.5, 1, 1.5, or 2, to the standard MSE 

calculated using the entire PETCO2 trace. Peaks were automatically identified using 

the Peakutils Python package. 5-fold cross validation was used to ensure a robust 

estimation of model performance for each possible hyperparameter combination, with 

80% and 20% of the data segments assigned to the training and test sets, respectively, 

at each fold. 

For each possible model, we compared the ground truth and predicted PETCO2 

traces by calculating the average and standard deviation of the Pearson correlations 

transformed to Fisher’s Z across the 5 folds. We also calculated the average and 

standard deviation mean absolute error (MAE), MSE, and MSE at each of the peaks 

across the five folds. As described above, the height of the PETCO2 peaks provides 

valuable information about the extent of hypercapnia during the breath hold, which is 

critical for accurately modeling CVR. Therefore, the hyperparameter combination that 

resulted in the lowest average MSE at the peaks was considered optimal. 
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2.2.1.3. Generation of predicted PETCO2 timeseries 
Using the optimal hyperparameters, we trained the FCN using the entire training 

dataset. After training was completed, the RVT timeseries and subject IDs for each 

subject in the testing dataset were inputted to the model to produce predicted PETCO2 

timeseries for each subject and session. A summary of the methods for implementing 

and optimizing the FCN and generating predicted PETCO2 timeseries is provided in 

Figure 1.  

 
Figure 1. Overview of the methods for training and evaluating a 1D FCN to predict 

PETCO2 from RVT. Training datasets were randomly separated into 1-4 smaller data 

segments, excluding any low-quality breath holds. Optimal hyperparameters were 

identified by using 5-fold cross-validation to estimate model performance for each 

possible combination, and the model was trained using the optimal hyperparameter 

Training: in-house dataset

Testing: publicly available 
EuskalIBUR dataset 

1. Segment datasets, excluding any low-quality breath-holds

2. Determine 1D FCN hyperparameters

1, 2, 4, 6, 8, 10, 12, 14Number of Layers 

5, 10, 15, 20, 25Number of Epochs
x = 0, 0.5, 1, 1.5, 2Loss Function = 

MSE(true, predicted) + x*MSE(truepeaks, 
predictedpeaks)

3. Train 1D FCN using all segmented training datasets 

Testing 
Dataset

RVT
1D FCN

• Use 5-fold cross validation to estimate model performance 
for each possible combination

• Optimal combination = lowest average MSE at the peaks

Predicted 
PETCO2
(a.u.)

Segment measured PETCO2
Segment corresponding 

RVT points

Low-qualityHigh-quality

High-quality

Contains RVT and PETCO2 timeseries 

Contains RVT and PETCO2 timeseries and fMRI data 
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combination. Next, the RVT timeseries in the test dataset, along with subject ID (not 

shown in the figure), were inputted to the model to generate PETCO2 predictions in 

arbitrary units (a.u.). 

 

2.2.2. Rescaling of RVT and predicted PETCO2 timeseries in the test set 
Here, we investigated whether measured PETCO2 data for one or more high-quality 

breath holds could be used to rescale RVT and predicted PETCO2 to units of mmHg. 

Individual breath-hold blocks (see Section 2.2.1.1), which included measured PETCO2 data 

before, during, and after each high-quality breath hold, were used for rescaling. Both 

predicted PETCO2 and RVT were rescaled to have the same minimum and maximum as 

the first (high-quality) breath-hold block in the measured PETCO2 timeseries. To better 

understand whether using more breath-hold blocks increased the rescaling accuracy, we 

also rescaled PETCO2 and RVT to have the same minimum and maximum as the first 2 

sequential high-quality breath-hold blocks and the first 3 sequential high-quality breath-

hold blocks. The result was three different sets of rescaled, predicted PETCO2 and rescaled 

RVT regressors that were rescaled using high-quality measured PETCO2 data from 1, 2, 

or 3 sequential breath-hold trials.  

 

2.2.3. Evaluation of rescaled RVT and rescaled, predicted PETCO2 timeseries 
Next, we assessed the error of rescaled RVT and rescaled, predicted PETCO2 relative 

to measured PETCO2. In these calculations, we only included datasets in which all of the 

breath holds in the measured PETCO2 timeseries were classified as high-quality, meaning 

that these measured PETCO2 timeseries could be used as ground truths. One caveat is 

that RVT is expected to be negatively correlated with measured PETCO2, while predicted 

PETCO2 is expected to be positively correlated with measured PETCO2. To allow for fair 

comparisons and consistency with how these timeseries are typically processed in fMRI 

research, each measured and rescaled, predicted PETCO2 timeseries was convolved with 

the canonical HRF (Friston et al., 1998) and each rescaled RVT timeseries was convolved 

with the RRF (Birn et al., 2008). This made all of the timeseries positively correlated with 

each other, but the RRF and HRF have different latencies. Therefore, to evaluate rescaled 

RVT relative to measured PETCO2, rescaled RVT timeseries convolved with the RRF were 

also shifted later in time (maximum shift = 30 seconds) to maximize their positive 

correlation with measured PETCO2. To ensure that all signals being compared were the 

same length, measured and rescaled, predicted PETCO2 timeseries, both convolved with 
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the HRF, were trimmed to match the length of the shifted RVT timeseries convolved with 

the RRF.  

To compare the strength of the relationships between RVT and measured PETCO2, 

as well as between predicted PETCO2 and measured PETCO2, we calculated the mean and 

standard deviation Pearson’s correlation transformed to Fisher’s Z. Additionally, to 

evaluate the magnitude of differences between these metrics, we computed the average 

and standard deviation of the mean absolute error (MAE), mean squared error (MSE), and 

MSE at the peaks of RVT and predicted PETCO2 relative to measured PETCO2 for each 

rescaling method.  

Next, we conducted a 2-sided paired t-test (significance threshold p<0.05) to assess 

whether the correlations of RVT and predicted PETCO2 to measured PETCO2 were 

significantly different; only 1 t-test was needed since correlation is not affected by rescaling. 

For each error term (MAE, MSE, and MSE at the peaks), a 2-sided paired t-test was 

conducted to compare the errors for RVT and predicted PETCO2 for each rescaling method, 

resulting in 3 tests for each error term. To understand if using more than 1 breath hold for 

rescaling was beneficial, 4 additional 2-sided paired t-tests were conducted for each error 

term to compare the errors of RVT rescaled using 1 and 2 breath holds, RVT rescaled 

using 2 and 3 breath holds, predicted PETCO2 rescaled using 1 and 2 breath holds, and 

predicted PETCO2 rescaled using 2 and 3 breath holds. For these tests, we used a 

significance threshold of p<0.05, with Bonferroni correction to account for doing 7 total 

tests for each error term. 

Lastly, to better understand our model’s PETCO2 prediction performance, we also 

calculated the normalized correlation, MAE, MSE, and MSE at the peaks of measured and 

predicted PETCO2 before either signal was convolved with the HRF, since convolution with 

the HRF can improve relationships between signals.  

 

2.2.4. Estimation of CVR amplitude and delay 
For each pre-processed scan session, 7 different regressors were used for 7 

separate CVR calculations. These regressors were measured PETCO2, predicted PETCO2 

rescaled using 1 breath hold, predicted PETCO2 rescaled using 2 breath holds, predicted 

PETCO2 rescaled using 3 breath holds, RVT rescaled using 1 breath hold, RVT rescaled 

using 2 breath holds, and RVT rescaled using 3 breath holds. Measured and predicted 

PETCO2 regressors were convolved with the canonical HRF (Friston et al., 1998) and RVT 

regressors were convolved with the RRF (Birn et al., 2008). A summary of the methods 
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used to generate these CVR regressors is shown in Figure 2. Voxelwise maps of CVR 

amplitude and delay were generated for each regressor with phys2cvr (Moia et al., 2024) 

using a temporal lag range of ±9 seconds in 0.3 second shift increments. For details about 

the lagged general linear model approach used by phys2cvr, readers are referred to Moia 

et al. (2020). In addition to modeling shifted variants of the PETCO2 trace in our GLMs, we 

also modeled Legendre polynomials up to 4th order and 6 demeaned motion parameters 

with each of their associated temporal derivatives. The delay maps were normalized by 

being recentered on the median delay in gray matter, and then the amplitude and 

normalized delay maps were thresholded to remove voxels with delay values at the 

boundary conditions (-9, -8.7, 8.7, or 9 s) since they were considered not optimized (Moia 

et al., 2020a). Lastly, amplitude and delay maps were registered to MNI space using the 

FSL 1mm MNI template resampled to 2.5mm resolution (FLIRT and FNIRT, FSL).  

 
Figure 2. Overview of the methods pipeline for generating regressors to map CVR. Measured 

PETCO2 was convolved with the canonical hemodynamic response function (HRF) and used to 

map CVR amplitude and delay. In datasets with PETCO2 timeseries containing only high-quality 

breath-holds, these maps served as ground truths. RVT was used as an input to a 1D FCN to 

generate predicted PETCO2 timeseries in arbitrary units (a.u.). Both RVT and predicted PETCO2 

were rescaled to mmHg using 1, 2, and 3 breath-holds in the measured PETCO2 timeseries. 

Rescaled RVT and rescaled, predicted PETCO2 were convolved with the respiration and 

hemodynamic response functions, respectively, and used to map CVR. Note that CVR delay is 

not sensitive to rescaling, so only 1 delay map each was generated for RVT and predicted PETCO2.  
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2.2.5. Analysis of CVR amplitude and delay maps for datasets with all high-quality 
breath holds  
Datasets with measured PETCO2 timeseries containing only high-quality breath holds 

provided CVR amplitude and delay maps that served as ground truths. Among these 

datasets, we calculated 6 group-level MAE maps to show CVR amplitude errors due to 

the choice of regressor (predicted PETCO2 or RVT) and the choice of rescaling method (1, 

2, or 3 breath holds) relative to the ground truth maps. As CVR delay maps are not 

sensitive to the rescaling method, we also generated 2 MAE maps to show differences 

between delay maps generated using predicted PETCO2 or RVT and ground truth delay 

maps. For each MAE map, the median MAE in gray matter was calculated. 

To better understand errors in scan-level CVR amplitude estimations related to the 

choice of regressor and the rescaling method, we also calculated the median absolute 

error in gray matter for each individual CVR amplitude map relative to the ground-truth 

map. The distribution of errors was plotted for each regressor and rescaling method, and 

significant differences between distributions were evaluated using Wilcoxon signed-rank 

tests. 7 total tests were conducted to compare the amplitude values for predicted PETCO2 

and RVT for each rescaling method and assess changes in error associated with rescaling 

using 2 breath holds instead of 1 and 3 breath holds instead of 2 for both predicted PETCO2 

and RVT (significance level p<0.05, Bonferroni corrected). 

Lastly, we assessed how well the predicted PETCO2 and RVT regressors maintain 

the ranking of CVR amplitude values across subjects and scan sessions. Specifically, we 

wanted to confirm that if a subject exhibited a particularly high or low CVR value for a 

particular scan compared to other scans, this subject would also show a relatively high or 

low CVR value in maps generated using the rescaled, predicted PETCO2 and rescaled RVT 

regressors. To assess this, the Spearman Rank Correlation was calculated to compare 

the rankings of median CVR amplitudes in gray matter for measured PETCO2 (ground truth) 

and RVT amplitude maps, as well as measured PETCO2 and predicted PETCO2 amplitude 

maps. This analysis was performed for RVT and predicted PETCO2 regressors rescaled 

using 1, 2, and 3 breath holds.  

 
2.2.6. Analysis of CVR amplitude and delay maps in datasets with mostly low-

quality breath holds 
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We also evaluated the effectiveness of using a rescaled RVT and rescaled, predicted 

PETCO2 regressor in 2 example datasets in which the RVT timeseries indicated that the 

participant attempted every breath hold in the task, but the PETCO2 timeseries contained 

mostly low-quality breath holds (likely due to the participant not exhaling immediately after 

each breath hold).  For each CVR amplitude and delay map generated using RVT and 

predicted PETCO2, we calculated the spatial correlation in gray matter (3ddot, AFNI) 

relative to the ground truth maps. For each scan, the ground truth maps were from a 

different session for the same subject that had a measured PETCO2 trace containing only 

high-quality breath holds.  

 
2.2.7. Case study in a participant with Moyamoya disease 

To evaluate the clinical utility of using rescaled RVT and rescaled, predicted PETCO2 

regressors to map CVR, we also scanned a 31-year-old male with unilateral Moyamoya 

disease causing an occluded right middle cerebral artery. This participant completed a 

breath-hold task during a functional T2*-weighted scan which used a multi-echo, gradient-

echo EPI sequence (CMRR, Minnesota) on a 3T Siemens Prisma. The functional scan 

parameters and breath-hold task were similar to those in the EuskalIBUR dataset (Moia 

et al., 2020b, 2021). A whole brain T1-weighted EPI-navigated multi-echo MPRAGE scan, 

based on Tisdall et al. (2016), was also acquired with scan parameters previously 

described by Stickland et al. (2021). 

Exhaled CO2 and respiration effort timeseries were recorded and processed (see 

Sections 2.1.1 and 2.1.3, respectively, for methods), and predicted PETCO2 timeseries 

were generated (Section 2.2.1.3). Predicted PETCO2 and RVT were rescaled using 

measured PETCO2 data for 1 high-quality breath hold (Section 2.2.2). fMRI data were pre-

processed using similar methods as those described in Section 2.1.4. CVR amplitude and 

delay maps were calculated for the measured PETCO2, rescaled, predicted PETCO2, and 

rescaled RVT regressors using the methods described in Section 2.2.4, with two 

exceptions to account for the expected increase in CVR delays due to Moyamoya 

pathology: a maximum lag value of ±15 seconds was used, and maps were not 

thresholded to remove voxels with delay values at the boundaries (-15, -14.7, 14.7, 15). 

For both CVR amplitude and delay, within a gray matter mask, we evaluated the 

spatial correlation of the maps generated using rescaled, predicted PETCO2 and rescaled 

RVT relative to the ground truth amplitude and delay maps generated using measured 

PETCO2. Because we expected longer CVR delays in the right MCA territory in this 
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participant (Stickland et al., 2021), we also specifically assessed whether the RVT and 

predicted PETCO2 methods could be used to effectively identify brain areas with extreme 

delays. To identify these areas, we thresholded the delay maps to only contain voxels with 

delay values greater than or equal to 10 seconds, and then made a binarized map of 

clusters with at least 15 voxels (3dClusterize, AFNI). Then, we calculated the Dice 

similarity coefficient between the clusters in the rescaled RVT delay map or the rescaled, 

predicted PETCO2 delay map and the clusters in the measured PETCO2 map (the ground 

truth).  

 

3. Results 
3.1. Physiological data processing and evaluation 

In the in-house training dataset, the average CO2 change across all breath holds was 9.85 

± 4 mmHg. Any breath hold that resulted in a CO2 increase greater than 6.33 mmHg (the mean 

CO2 increase minus 1 standard deviation) was considered high-quality. In the EuskalIBUR 

test dataset, the average CO2 increase induced by a breath hold was 6.73 ± 3 mmHg and 

high-quality breath-hold trials needed to cause a CO2 increase greater than 3.60 mmHg. 

We observed similar task compliance trends in the training and test datasets. In the 

training dataset, 53% of the 245 total CO2 recordings contained all high-quality breath holds, 

and 4.5% of the CO2 recordings contained no high-quality breath holds (Figure 3A). In the test 

dataset, 57% of the 99 total recordings contained entirely high-quality breath-hold trials, while 

7% contained no high-quality breath-hold trials (Figure 3B).  

Each PETCO2 timeseries was shifted to account for delays between PETCO2 and RVT. In 

the training and test datasets, PETCO2 was shifted an average of 16.0 ± 4 and 23.4 ± 5 seconds 

earlier, respectively, to maximize its negative cross-correlation with RVT. Using the temporal 

location of each high-quality breath hold in each PETCO2 timeseries in the training dataset 

(after accounting for the applied temporal shift), delay-corrected PETCO2 and RVT timeseries 

in the training dataset were randomly segmented into 1-4 data segments consisting of 

consecutive, high-quality breath holds. After segmentation, the final size of the training dataset 

was 340 sets of PETCO2 and RVT segments. 
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Figure 3. Distributions of the percentage of high-quality breath-hold trials out of the total 

number of trials in the in-house training dataset (A) and the EuskalIBUR testing dataset (B). 

For the training and EuskalIBUR datasets, high-quality breath holds are defined as trials 

resulting in CO2 increases greater than 6.33 and 3.60 mmHg, respectively. Each bar includes 

the lower value and excludes the upper value of the interval. For example, the first bar of each 

histogram represents [0,10). The green bar indicates the percentage of CO2 recordings 

containing only high-quality trials. 

 

3.2. Model optimization 
The model which resulted in the lowest MSE at the peaks, and consequently was 

considered the optimal model, used 12 layers, 20 epochs, and a loss function which summed 

the standard MSE (calculated using all datapoints) with the MSE at the peaks scaled by 0.5. 

Averaged across all 5 folds, this model resulted in a mean Fisher’s Z of 1.34 ± 0.241, an MAE 

of 0.431 ± 0.114 (a.u.), an MSE of 0.352 ± 0.160 (a.u.), and an MSE at the peaks of 0.508 ± 

0.999 (a.u.).  

 

3.3. Evaluation of rescaled RVT and rescaled, predicted PETCO2 timeseries 
The EuskalIBUR testing dataset (unused during optimization and training of the PETCO2 

prediction model) was used to evaluate the rescaled RVT and rescaled, predicted PETCO2 

timeseries relative to measured PETCO2. Figure 4 shows example measured PETCO2 

timeseries plotted against predicted PETCO2 and RVT timeseries, both of which were rescaled 

using 1 breath hold. Examples are provided for both measured PETCO2 timeseries with only 

B)A)
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high-quality breath holds (Figure 4A) and measured PETCO2 timeseries with mostly low-quality 

breath holds (Figure 4B).  

 

 
Figure 4. Example rescaled, predicted PETCO2 and rescaled RVT timeseries (rescaled using 

1 breath hold) plotted against measured PETCO2 timeseries. Results are shown for 3 datasets 

in which the measured PETCO2 had all high-quality breath holds (A) and 3 datasets with 

multiple low-quality breath holds (B).  
 

Only datasets with measured PETCO2 timeseries containing all high-quality breath holds 

were considered to be reasonable ground truths and were included in the following analysis 

(N=56). We compared rescaled RVT and rescaled, predicted PETCO2 timeseries to measured 

PETCO2 using a Pearson correlation normalized to Fisher’s Z, MAE, MSE, and MSE at the 

peaks (Figure 5). Predicted PETCO2 had a significantly higher correlation with measured 

PETCO2 than RVT (p<0.05).  Across the 3 rescaling methods, RVT had a significantly higher 

MAE and MSE than predicted PETCO2 (p<0.05, Bonferroni corrected); the MSE at the peaks 

for predicted PETCO2 was not significantly different than for RVT for any of the rescaling 

methods. For rescaling predicted PETCO2, using 2 breath holds compared to 1 breath hold 

A)

B)
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significantly decreased the MAE (p<0.05, Bonferroni corrected) but not the MSE or MSE at 

the peaks; using 3 breath holds compared to 2 did not significantly impact any measures of 

error. For RVT, rescaling using 2 breath holds compared to 1 breath hold and 3 breath holds 

compared to 2 breath holds did not significantly change any measures of error.  

 
Figure 5. Overview of metrics comparing rescaled, predicted PETCO2 and rescaled RVT to 

measured PETCO2 in datasets in which all breath holds in the measured PETCO2 timeseries 

were classified as high-quality. Both Fisher’s Z values (A), which are not affected by rescaling, 

and error terms for each rescaling method (B) are shown.  Asterisks indicate significant 

differences. 

 

To gain a better understanding of our model’s performance, we also assessed the 

correlation and error of predicted PETCO2 relative to measured PETCO2 before either signal 

was convolved with the HRF (Supplementary Figure S1). As expected, the mean normalized 

correlation of the unconvolved timeseries was slightly lower than that of the convolved 

timeseries (1.14 ± 0.3 compared to 1.24 ± 0.4); however, a normalized correlation of 1.14 still 

indicates strong PETCO2 prediction performance. The error terms before and after convolution 

were relatively similar. These results demonstrate that our PETCO2 prediction method is not 

restricted to the canonical HRF and that any appropriate response function can be effectively 

utilized with this approach. 

 

3.4. CVR amplitude and delay maps for scans with all high-quality breath holds  
For scan sessions with PETCO2 timeseries containing all high-quality breath holds, CVR 

amplitude maps (in %BOLD/mmHg) generated using RVT and predicted PETCO2 regressors, 

rescaled using 1 breath hold, appear similar (i.e., show similar amplitude patterns across the 

brain and have similar amplitude magnitudes) to the ground-truth maps generated using the 

measured PETCO2 regressors (Figure 6). Similarly, the associated rescaled RVT and rescaled, 

predicted PETCO2 CVR delay maps (in seconds, normalized to median gray matter delay) 
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appear similar to the ground-truth measured PETCO2 CVR delay maps (Figure 7). The delay 

maps generated using rescaled, predicted PETCO2 seem to better estimate extreme negative 

or positive delay values (voxels that are yellow or dark purple) in the ground truth delay map 

than the rescaled RVT maps. This is particularly evident in the delay maps for subject 10 

session 4. Additionally, the delay maps generated using RVT appear to introduce extreme 

delay values that are not present in the ground truth maps, as seen in the left posterior portion 

of the delay map for subject 3 session 2.  

 

Figure 6. Example CVR amplitude maps for 8 subjects for sessions with measured PETCO2 

timeseries containing all high-quality breath holds (BHs). The top row shows ground truth 

amplitude maps, generated using the measured PETCO2 regressor, while the middle and 

bottom rows show maps generated using rescaled RVT and rescaled, predicted PETCO2 

regressors, respectively.  
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Figure 7. Example CVR delay maps for 8 subjects for sessions with measured PETCO2 

timeseries containing all high-quality breath holds (BHs). Ground truth delay maps, generated 

using the measured PETCO2 regressor, are shown in the top row, while delay maps generated 

using rescaled RVT and rescaled, predicted PETCO2 regressors are shown in the middle and 

bottom rows, respectively. Delay maps are normalized to the gray matter median. Negative 

delays reflect earlier responses, while positive delays reflect later responses. 

 

Next, to better understand the impact of the rescaling method on CVR accuracy, group-

level MAE maps were computed to assess the errors in CVR amplitude maps generated using 

RVT and predicted PETCO2 regressors, rescaled using 1, 2, and 3 breath holds, relative to the 

ground truth maps generated using measured PETCO2 (Figure 8). Across the 3 rescaling 

methods, the median MAE in gray matter is consistently lower for rescaled, predicted PETCO2 

than for RVT. In each map, the magnitude of the error appears consistent throughout gray 

matter, suggesting that the CVR amplitude bias introduced by the RVT and predicted PETCO2 

regressors is not specific to any part of the cortex. Increasing the number of breath holds used 

to rescale RVT slightly decreased the median MAE in gray matter. Rescaling predicted 

PETCO2 using 2 breath holds compared to 1 but not 3 breath holds compared to 2 slightly 

decreased the median MAE in gray matter.  
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Figure 8. MAE maps comparing amplitude values generated using rescaled RVT and 

rescaled, predicted PETCO2 to the ground truth amplitude values generated using measured 

PETCO2. Maps are shown for each of the 3 different rescaling methods. The median MAE in 

gray matter (%BOLD/mmHg) is shown above each map.  

 

In terms of CVR delay, which is not sensitive to rescaling, the predicted PETCO2 method 

outperformed the RVT method, with a median absolute difference in gray matter of 0.97 

seconds compared to 1.51 seconds (Figure 9). Again, the errors for both maps appear 

relatively consistent throughout gray matter.  
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Figure 9. MAE maps comparing delay values generated using rescaled RVT and rescaled, 

predicted PETCO2 to the ground truth delay values generated using measured PETCO2. The 

median absolute difference in gray matter (%BOLD/mmHg) is shown above each map. 

 

At the scan level, we also evaluated the distribution of the median absolute errors of CVR 

amplitude in gray matter relative to the ground truth amplitude maps for each regressor and 

rescaling method (Figure 10). When rescaling was performed using 1 or 2 breath holds, the 

amplitude errors for predicted PETCO2 were significantly lower than the errors for RVT. When 

rescaling was performed using 3 breath holds, the amplitude errors for predicted PETCO2 were 

not significantly different than the errors for RVT. For rescaling RVT, using 2 breath hold 

compared to 1 resulted in significantly decreased errors (p<0.05, Bonferroni corrected), but 3 

breath holds compared to 2 did not significantly change the errors. On the other hand, for 

rescaling predicted PETCO2, using 2 breath holds compared to 1 did not significantly change 

the distribution of errors, but using 3 breath holds compared to 2 significantly increased errors 

(p<0.05, Bonferroni corrected). 

 

 
Figure 10. Distributions of the median absolute errors of CVR amplitude in gray matter (GM) 

across scans. Results are shown for CVR amplitude values generated using RVT and 
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predicted PETCO2 regressors rescaled using 1, 2, and 3 breath holds (BHs). For each 

distribution, the kernel density estimate is overlaid to aid in visualization.  

 

Lastly, we calculated Spearman rank correlations to evaluate whether the RVT and 

predicted PETCO2 regressors preserve the ranking of median CVR amplitude values in gray 

matter across scans (Table 2). All 3 rescaling methods resulted in a significant correlation 

between the rankings of CVR amplitude values derived from both regressors and the ground 

truth amplitude rankings. For both predicted PETCO2 and RVT, using more breath holds for 

rescaling increased the Spearman rank correlation with the ground truth amplitude values. 

However, across the 3 rescaling methods, the amplitude rankings from rescaled, predicted 

PETCO2 showed a higher Spearman correlation with the ground truth amplitude rankings than 

those from rescaled RVT.  

 

Table 2. Spearman’s rank correlations comparing the median CVR amplitudes in gray matter 

generated using measured PETCO2 to those generated using RVT and predicted PETCO2 for 

each of the 3 rescaling methods. Asterisks indicate significant correlations (p<0.05).  

       
 

3.5. CVR amplitude and delay maps for scans with low-quality breath holds  
Next, we evaluated the utility of using a rescaled RVT or rescaled, predicted PETCO2 

regressor to map CVR in 2 scans with measured PETCO2 regressors containing mostly low-

quality breath holds (Figure 11). As anticipated, the amplitude maps generated using 

measured PETCO2 timeseries lack the expected contrast between gray and white matter. They 

also do not appear spatially similar to a reference CVR map for the same subject from a 

different session with superior PETCO2 quality. In comparison, the maps generated using 

rescaled RVT and rescaled, predicted PETCO2 regressors appear more spatially similar to the 

reference maps, which is supported by their higher spatial correlations in gray matter to the 
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reference maps. This suggests that rescaled RVT and rescaled, predicted PETCO2 regressors 

can be used to recover reasonable maps of CVR amplitude and delay. However, while the 

CVR amplitude maps generated using rescaled RVT and predicted PETCO2 appear relatively 

similar, the delay maps generated using predicted PETCO2 consistently have a higher spatial 

correlation to the reference map than the delay maps generated using RVT.  

 

 
Figure 11. CVR amplitude and delay maps for 2 scan sessions with measured PETCO2 

timeseries containing mostly low-quality breath holds. Reference CVR amplitude and delay 

maps, generated using high-quality data from the same subject for a different session, are 

provided to assess the accuracy of maps generated using the measured PETCO2 regressor, 

rescaled RVT regressor, and rescaled, predicted PETCO2 regressor. Spatial correlations in 

gray matter to the reference map (r) are provided. 
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3.6. Case study in a participant with Moyamoya disease 
Lastly, we assessed the clinical utility of rescaled RVT and rescaled, predicted PETCO2 

regressors for mapping CVR amplitude and delay in a participant with unilateral Moyamoya 

disease affecting the right MCA territory. For this participant, each breath hold caused clear 

CO2 changes (average change = 6.47 mmHg) and thus we could use the CVR amplitude and 

delay maps generated using the measured PETCO2 trace as a reasonable ground truth. The 

first breath hold caused a CO2 increase of 6.37 mmHg and was used for rescaling the RVT 

and predicted PETCO2 regressors. As shown in Figure 12, the ground truth CVR amplitude 

map does not appear to be significantly impacted by pathology. Compared to the ground truth 

map, the CVR amplitude map generated using rescaled RVT shows more negative CVR 

values in the right hemisphere, particularly in the right MCA territory. In contrast, the amplitude 

map generated using rescaled, predicted PETCO2 appears more similar to the ground truth 

map, which is supported by its higher spatial correlation in gray matter. The ground truth delay 

map shows that many voxels in the right hemisphere responded significantly later than voxels 

in the left hemisphere. Again, the delay map generated using rescaled, predicted PETCO2 has 

a higher spatial correlation to the ground truth delay map than the rescaled RVT delay map. 

Our finding that CVR delay, but not amplitude, is primarily impacted by Moyamoya pathology 

in the ground truth maps agrees with previously reported results from a different scan of the 

same participant (Stickland et al., 2021). 

To better understand whether RVT and predicted PETCO2 regressors can be used to 

identify regions of extreme delay values, we thresholded the delay maps to isolate binary 

clusters with delay values greater than 10 seconds. The Dice similarity coefficient of clusters 

in the RVT and measured PETCO2 delay maps was 0.16, while it was 0.66 for the clusters in 

predicted and measured PETCO2 delay maps. This indicates that the CVR delay map 

generated using predicted PETCO2 is more successful than RVT at characterizing this regional 

pathology.   
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Figure 12. Maps of CVR amplitude, CVR delay, and extreme delay values for a participant 

with unilateral Moyamoya disease affecting the right middle cerebral artery. Maps were 

generated using 3 different regressors (from top to bottom): measured PETCO2, rescaled RVT, 

and rescaled, predicted PETCO2.  For the amplitude and delay maps, spatial correlations (r) to 

the measured PETCO2 (ground truth) map in gray matter are provided. For each mask of 

extreme delay values, the Dice similarity coefficient (DSC) to the mask generated from the 

measured PETCO2 delay map is provided. 

 
4. Discussion  

Obtaining accurate PETCO2 data is challenging, particularly in clinical populations, which 

limits our ability to accurately map CVR. In this work, we explored computational methods for 

improving PETCO2 data quality while maintaining units of mmHg to allow for CVR to be mapped 

in standard units (%BOLD/mmHg). Since we observed that most participants can complete at 

least 1 high-quality breath-hold trial, our approach focused on leveraging high-quality 

measured PETCO2 data from one or more trials to rescale two alternative regressors that 

reflect relative changes in PETCO2 to mmHg. First, we investigated mapping CVR using a 

rescaled RVT regressor, which reflects changes in breathing rate and depth that cause 
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changes in arterial CO2. RVT is a more feasible measure than PETCO2 since it does not require 

additional task compliance from participants, but it is non-quantitative (i.e., recorded in 

arbitrary units). To try to better model the shape of the BOLD response to a change in arterial 

CO2 and more accurately map CVR, we also investigated whether we could predict z-

normalized PETCO2 from RVT using deep learning and rescale the predicted PETCO2 

timeseries to mmHg. Our results suggest that both rescaled RVT and rescaled, predicted 

PETCO2 can be used to recover reasonable maps of CVR amplitude and delay. However, the 

rescaled, predicted PETCO2 regressor is more accurate and may be more appropriate for 

mapping CVR in clinical populations. 

 

4.1. Task compliance trends  
To train and validate our PETCO2 prediction model, we used a dataset consisting of 245 

exhaled CO2 and respiration effort timeseries simultaneously recorded during a breath-hold 

task. To evaluate RVT and predicted PETCO2 for mapping CVR, we used the publicly available 

EuskalIBUR dataset, consisting of fMRI data, exhaled CO2 timeseries, and respiration effort 

timeseries simultaneously recorded during a breath-hold task for 99 total scans across 10 

participants. Leveraging the large sizes of these datasets, we explored general trends in 

breath-hold task compliance in healthy participants. In both datasets, we found that nearly 

half of the CO2 recordings contained at least 1 low-quality breath-hold trial (Figure 3), 

indicating that CVR accuracy could be compromised in at least half of the cases. In 

participants with neurological diseases and in children, even lower task compliance is 

expected (Schlund et al., 2011; Spano et al., 2013). These results underscore the importance 

of developing alternative methods for mapping CVR in standard units when PETCO2 quality is 

low in order to allow for CVR comparisons across subjects and scan sessions. Additionally, 

we found that only 4.5% and 7% of CO2 recordings in the training and EuskalIBUR datasets, 

respectively, did not contain any high-quality breath-hold trials (Figure 3). This finding 

demonstrates the overall feasibility of breath-hold tasks; while imperfect task compliance is 

common, only a small percentage of recordings were completely unusable. Importantly, this 

finding also suggests that rescaling using 1 high-quality breath hold is feasible in the vast 

majority of CO2 recordings; with coaching and real time feedback, we expect that even more 

recordings could contain at least 1 high-quality breath hold.  

 

4.2. Accuracy of PETCO2 prediction 
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We trained a 1D FCN to predict PETCO2 from RVT and, prior to convolution with the HRF, 

achieved a mean Fisher’s z-transformed correlation of 1.14 ± 0.3 with measured PETCO2 on 

our held-out test set. Previously described results in the literature focused on predicting CO2 

from respiration recordings in resting-state data and deriving PETCO2 from the predicted CO2 

timeseries (Agrawal et al., 2023); the authors achieved a mean Pearson correlation of 0.512 

± 0.3 to measured PETCO2. For comparison to these results and to assess the benefits of 

using breath-hold instead of resting-state data, we calculated the mean Pearson correlation 

(not normalized to Fisher’s z) of measured and predicted PETCO2 in the EuskalIBUR dataset 

and found that our model achieved a value of 0.787 ± 0.1. Ultimately, this high correlation 

supports our hypothesis that since breath holds cause large fluctuations in CO2, using breath-

hold data may allow for more robust prediction of PETCO2 than can be achieved with resting-

state data. 

Additionally, when we evaluated our regressors using the EuskalIBUR dataset, we found 

that regardless of the rescaling method used, the predicted PETCO2 timeseries had higher 

normalized correlations and lower MAEs and MSEs to measured PETCO2 than RVT (Figure 

5). This suggests that the FCN model effectively identified patterns between RVT and PETCO2 

changes, and that the predicted PETCO2 regressor provides additional information about 

relative PETCO2 changes beyond what RVT alone can provide.  

 
4.3. Observations and suggestions related to rescaling PETCO2 and RVT to mmHg 

To better understand how many high-quality breath holds are required for accurate 

rescaling to units of mmHg, we assessed the error of predicted PETCO2 and RVT regressors 

rescaled using 1, 2, and 3 breath holds relative to measured PETCO2 (Figure 5). Rescaling 

using more breath holds did not significantly change any measures of error for both predicted 

PETCO2 and RVT, except that rescaling predicted PETCO2 using 2 breath holds compared to 

1 breath hold significantly decreased the MAE.  

In addition to investigating whether using more breath holds for rescaling impacted the 

accuracy of the regressor, we also investigated how using more breath holds for rescaling 

impacted the actual CVR amplitude estimates (note that CVR delay is not sensitive to 

rescaling). By assessing the distribution of the median absolute error in gray matter for CVR 

amplitude values calculated using RVT (Figure 10), we found that using 2 breath holds for 

rescaling may be optimal (i.e., result in lower errors of CVR amplitude in gray matter) for RVT. 

For rescaling predicted PETCO2, using more breath holds did not significantly decrease the 

median absolute error in gray matter. We also assessed how well the rescaled, predicted 
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PETCO2 and rescaled RVT regressors preserved the relative rankings of CVR amplitudes in 

gray matter across subjects, and found that using more breath holds for rescaling made the 

relative CVR rankings more correlated with the ground truth rankings (Table 2). 

We suggest that while using more breath holds for rescaling RVT or predicted PETCO2 

may improve CVR accuracy, rescaling using 1 breath hold is sufficient. To support this, we 

showed that CVR amplitude and delay maps generated using RVT or predicted PETCO2 

rescaled using 1 breath hold appear highly similar to ground truth maps (Figures 6 and 7). We 

also provided examples from 2 scans with low-quality measured PETCO2 timeseries that 

showed that reasonable maps of CVR amplitude and delay can be recovered using RVT or 

predicted PETCO2 when only 1 breath hold is used for rescaling (Figure 11). Additionally, in 

our case study on a participant with Moyamoya disease, we showed that when 1 breath hold 

is used for rescaling, predicted PETCO2 produces CVR amplitude and delay maps that are 

highly similar to the ground truth maps and sensitive to cerebrovascular pathology (Figure 12).  

Another important consideration when rescaling predicted PETCO2 or RVT regressors is 

defining a threshold for a high-quality breath hold. We defined this threshold by calculating 

the average breath hold increase minus 1 standard deviation across all of the breath holds in 

the dataset that caused a positive CO2 change. For the EuskalIBUR dataset, the mean CO2 

increase across all breath holds causing a CO2 increase was 6.73 mmHg (mean increase – 1 

standard deviation = 3.60 mmHg), and for the training dataset collected in our lab environment, 

the mean CO2 increase was 9.85 mmHg (mean increase – 1 standard deviation = 6.33 mmHg). 

It is surprising that the average CO2 increase in the training dataset was so much larger. 

Previously, average CO2 increases of approximately 9 mmHg (Tancredi & Hoge, 2013) and 

13.4 mmHg (Murphy et al., 2011) in response to 20 second breath holds have been reported 

in healthy participants. This discrepancy could be related to sampling line lengths and vacuum 

settings resulting in dispersion of the exhaled gases and more mixing with room air, reducing 

the perceived CO2 changes. At minimum, a threshold of 3.60 mmHg should be used for a 20 

second breath hold to be considered high-quality; however, using a more stringent threshold 

may result in more accurate rescaling of predicted PETCO2 or RVT regressors. Future work 

should focus on establishing guidelines for classifying breath holds as high-quality that are 

unique to the length of the breath hold, patient population, and perhaps even the individual 

participant.  

To ensure that at least one high-quality breath hold is collected, we recommend that 

researchers monitor the change in exhaled CO2 levels induced by each breath-hold during 

the scan. Developing a real-time feedback tool that could automatically output whether a 
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recently completed breath hold was high-quality would be particularly beneficial for this 

monitoring. If the participant does not achieve any high-quality breath holds during the task 

and scan time allows, researchers could ask the participants to perform additional trials.  

 

4.4. Which is better: rescaled RVT or rescaled, predicted PETCO2? 
Our findings suggest that the rescaled, predicted PETCO2 regressor produces more 

accurate maps of CVR amplitude and delay than rescaled RVT. Group-level MAE maps for 

CVR amplitude estimations showed that, across the 3 rescaling methods, predicted PETCO2 

consistently had a lower median MAE in gray matter compared to RVT (Figure 8). Additionally, 

group-level MAE maps for CVR delay showed that the predicted PETCO2 regressor 

outperformed the RVT regressor, with a median MAE of 0.97 compared to 1.51 seconds 

(Figure 9). When we looked at the distribution of median absolute errors in gray matter for 

CVR amplitude across scans (Figure 10), we found that when rescaling was performed using 

1 or 2 breath-holds, predicted PETCO2 had significantly lower median absolute errors in gray 

matter compared to RVT. Additionally, we found that across all 3 rescaling methods, predicted 

PETCO2 better preserves the rankings of median CVR amplitudes in gray matter across scans 

than RVT (Table 2).  

Our case study on a participant with unilateral Moyamoya disease (Figure 12) highlights 

the superior performance of rescaled, predicted PETCO2 for estimating CVR amplitude and 

delay and suggests that the predicted PETCO2 regressor may provide the necessary sensitivity 

to detect impairments in CVR delay. Increased blood flow delays have been commonly 

reported in Moyamoya disease, which causes narrowing of cerebral blood vessels (Donahue 

et al., 2015; S. K. Kim et al., 2003; Stickland et al., 2021). In line with previous findings 

(Stickland et al., 2021), we found that the ground truth CVR amplitude map was relatively 

unaffected by Moyamoya disease, while the ground truth delay map showed increased delays 

in the right hemisphere, particularly in the vascular territory of the right middle cerebral artery, 

which is affected by Moyamoya disease. The amplitude and delay maps generated using 

rescaled, predicted PETCO2 had higher spatial correlations to the ground truth maps than the 

maps generated using rescaled RVT. In particular, the delay map generated using predicted 

PETCO2 was better able to identify the region of extreme delay values compared to the RVT 

map.  

More extensive research is needed to determine whether the level of accuracy associated 

with the rescaled, predicted PETCO2 regressor is sufficient to identify meaningful differences 

in CVR amplitude across various populations. When 1 breath-hold was used for rescaling, 
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predicted PETCO2 produced a median MAE in gray matter of 0.037 %BOLD/mmHg (Figure 8). 

This error is smaller than some previously reported CVR differences across populations; for 

example, gray matter CVR amplitude differences of 0.07 %BOLD/mmHg between young and 

elderly subjects have been reported (Bhogal et al., 2016). In participants with small vessel 

disease and traumatic brain injury, CVR amplitude differences relative to controls of 0.062-

0.079 %BOLD/mmHg and 0.042 %BOLD/mmHg, respectively, have been reported 

(Thrippleton et al., 2018; Bhogal et al., 2016).  

 

4.5. Generalizability of PETCO2 prediction model 
To predict PETCO2 from RVT, we trained and validated our model using a dataset collected 

in our lab environment, and then tested the model using the publicly available EuskalIBUR 

dataset. One benefit of this approach is that it shows our model is generalizable to data 

collected in other research environments; however, additional work could be done to further 

increase the generalizability of our model. For example, to mimic participants failing to perform 

the trial, we collected 55 datasets in which, for each of the 10 breath holds, there was a 10% 

chance that the breath hold would be skipped and replaced with a period of rest. However, 

these 55 datasets are only a small portion of our training dataset, and our model could be 

improved by adding more skipped breath holds to the training dataset. With more datasets 

containing skipped breath holds, we could also specifically evaluate how the model predicts 

PETCO2 when a breath hold is skipped. Additionally, our in-house training dataset and the 

EuskalIBUR testing dataset consisted of mostly participants in their 20s and 30s; future work 

could focus on collecting data in a wider age range of participants to make the model more 

generalizable to the broader population.  Additionally, conditions such as chronic obstructive 

pulmonary disease and pulmonary hypertension may cause atypical relationships between 

ventilation (and RVT) and arterial CO2 and should be specifically incorporated into future 

model improvements (Reybrouck et al., 1998; Teopompi et al., 2013).  

 

4.6. Suggestions for implementing breath-hold fMRI for CVR mapping 
To increase the likelihood that participants will successfully complete the breath-hold task, 

we strongly recommend allotting time before the scan for participants to practice the task. In 

particular, we recommend having the participant wear the nasal cannula and practice exhaling 

after each breath hold so that the researcher can check that the expected increase in CO2 is 

being measured and provide feedback if needed. Additionally, real-time monitoring of exhaled 

CO2 or the respiratory belt during the scan is critical for assessing whether participants are 
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even attempting the breath-hold task, distinct from whether the end-tidal information is 

successfully captured. An important caveat of using alternative regressors like RVT or 

predicted PETCO2 to map CVR is that they require the participant to have attempted the breath-

hold task; this means that even if the participant didn’t exhale immediately after the breath 

hold or accidentally breathed through their mouth, they still held their breath for most of the 

breath-hold periods in the task. If the participant does not seem to be attempting the breath 

holds at all, the researcher should stop the task and check on the participant, and, time 

permitting, ask the participant to redo the task.  

Another important consideration is that, while respiratory belt measurements do not 

necessitate additional task compliance for accuracy—making them more feasible than 

PETCO2 measurements—careful setup is required to properly measure respiration and ensure 

accurate RVT measurements. In particular, it is critical to ensure that the belt is not too loose 

or too tight to avoid signal saturation, which is more common in particularly large or small 

participants. Before the scan starts, we recommend instructing participants to take a deep 

breath in and out while monitoring the resulting signals. If the signals appear saturated, it is 

an indication that the tightness of the respiratory belt should be adjusted.  

Our lab is currently adapting existing real-time analysis tools, originally used to give visual 

feedback for force targeting during motor-task fMRI (Reddy et al., 2024) to provide 

researchers with ongoing insight into breath-hold trial performance and signal quality during 

scanning. We anticipate that this approach will ensure that CVR is successfully mapped in the 

majority of clinical research subjects, using an efficient protocol that focuses on sufficient data 

quality for each individual instead of a one-size-fits-all acquisition approach. 

 

4.7. Future work 
In this study, we used a 1D FCN to predict PETCO2 from RVT, which is a relatively simple, 

computationally efficient approach. Due to our limited training dataset size, our FCN used a 

discrete stopping criterion based on a fixed number of epochs. Future work will focus on 

integrating early stopping techniques to enhance model reliability and robustness and mitigate 

overfitting. In the future, other types of models could also be investigated for predicting PETCO2 

when measured PETCO2 quality is low. One alternative approach is using a time series 

forecasting model to predict low-quality segments of a PETCO2 timeseries from high-quality 

segments earlier in the timeseries. In this approach, the RVT timeseries could be included as 

a covariate. By focusing on forecasting a part of the PETCO2 timeseries rather than predicting 

the entire time series, this approach may allow the PETCO2 predictions to be in mmHg, 
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eliminating the need for an additional rescaling step.  Another alternative model is a U-Net, 

which incorporates skip connections to prevent the vanishing gradients problem and has been 

used to successfully predict respiratory volume fluctuations from fMRI data (Bayrak et al., 

2020).  

Additionally, while we showed that the predicted PETCO2 method can be used to identify 

brain regions of extreme CVR delays in a single case study of an individual with unilateral 

Moyamoya disease, more extensive validation is needed to establish the sensitivity of the 

CVR amplitude and delay maps generated using rescaled, predicted PETCO2 and rescaled 

RVT regressors to cerebrovascular pathology. Specifically, investigation in participants with 

CVR amplitude maps affected by cerebrovascular pathology is required, since CVR delay, 

rather than amplitude, was primarily affected in the participant with Moyamoya disease. Our 

ongoing research efforts include applying our methodology in participants with sub-acute and 

chronic stroke, to evaluate if RVT or predicted PETCO2 remains suitable for delineating the 

pathological hemodynamics expected in this cohort (Krainik et al., 2005; Siegel et al., 2016). 
 

5. Conclusions 
We demonstrated that either an RVT or PETCO2 regressor predicted from RVT can be 

rescaled using high-quality PETCO2 data for at least one breath hold and used to model both 

the amplitude and delay of the CVR response to a breath-hold task. The predicted PETCO2 

regressor produces more accurate CVR amplitude and delay maps and may provide greater 

sensitivity to cerebrovascular pathologies. Importantly, our method (using either model) allows 

for CVR amplitude to be modeled in standard units (%BOLD/mmHg), facilitating CVR 

comparisons across subjects and scan sessions and the establishment of normative ranges 

of healthy CVR values. Ultimately, this work will increase the feasibility of CVR mapping in 

clinical settings where breath-hold task compliance may be variable.  

 

Data and Code Availability  
Physiological data used for model training is available on OSF at 

https://doi.org/10.17605/OSF.IO/Y5CK4 (Clements et al., 2024). The EuskalIBUR dataset is 

available on OpenNeuro at doi:10.18112/openneuro.ds003192.v1.0.1 (Moia, Uruñuela, Ferrer, & 

Caballero-Gaudes, 2020). MRI pre-processing code is available at https://github.com/BrightLab-

ANVIL/PreProc_BRAIN. Phys2cvr (Moia, Vigotsky, & Zvolanek, 2022), a publicly available Python 

tool, was used for computing CVR amplitude and delay maps. Additional analysis code is 

available at https://github.com/BrightLab-ANVIL/Clements_BHCVR-PredictedCO2. 

https://openneuro.org/datasets/ds003192/versions/1.0.1
https://github.com/BrightLab-ANVIL/PreProc_BRAIN
https://github.com/BrightLab-ANVIL/PreProc_BRAIN
https://github.com/BrightLab-ANVIL/Clements_BHCVR-PredictedCO2
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