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Targeting SARS-CoV-2 RBD Interface: a Supervised
Computational Data-Driven Approach to Identify Potential
Modulators
Maria Rita Gulotta+,*[a, b] Jessica Lombino+,[a, b] Ugo Perricone,*[a] Giada De Simone,[a]

Nedra Mekni,[a] Maria De Rosa,[a] Patrizia Diana,[b] and Alessandro Padova[a]

Coronavirus disease 2019 (COVID-19) has spread out as a
pandemic threat affecting over 2 million people. The infectious
process initiates via binding of SARS-CoV-2 Spike (S) glycopro-
tein to host angiotensin-converting enzyme 2 (ACE2). The
interaction is mediated by the receptor-binding domain (RBD)
of S glycoprotein, promoting host receptor recognition and
binding to ACE2 peptidase domain (PD), thus representing a
promising target for therapeutic intervention. Herein, we
present a computational study aimed at identifying small
molecules potentially able to target RBD. Although targeting

PPI remains a challenge in drug discovery, our investigation
highlights that interaction between SARS-CoV-2 RBD and ACE2
PD might be prone to small molecule modulation, due to the
hydrophilic nature of the bi-molecular recognition process and
the presence of druggable hot spots. The fundamental
objective is to identify, and provide to the international
scientific community, hit molecules potentially suitable to enter
the drug discovery process, preclinical validation and develop-
ment.

Introduction

The end of the year 2019 has been marked as a critical period
for the humankind history, due to the epidemic spreading of
virus-transmitted flu. In December 2019, first cases of severe
acute respiratory syndrome caused by the novel coronavirus,
SARS-CoV-2, were detected and the related infection rapidly
spread out all over the world.[1] Due to a very high rate of
virulence associated to morbidity and mortality (330 infected
people and 22.9 deaths per million inhabitants)[2] affecting the
global population in 210 countries, in March 2020 the World
Health Organization (WHO) stated COronaVIrus Disease 2019
(COVID-19) as a pandemic, representing a health emergency of
international concern.[3,4] Since the beginning of 21st century,
coronaviruses caused disease outbreaks: SARS-CoV emerged in
Guangdong (China) in 2002,[5,6] while during the 2012 MERS-
CoV (Middle East respiratory syndrome coronavirus) affected
the Arabian Peninsula.[7,8] These viruses initially were of a
zoonotic nature but over the years they crossed the species

barrier through bats, in the case of SARS-CoV and SARS-CoV-2,
and dromedary camels for MERS.[9–11] Coronaviruses are classi-
fied in four genera, with both SARS-CoV and SARS-CoV-2
belonging to β-CoV genus.[12] On the basis of sequence align-
ments, SARS-CoV and SARS-CoV-2 seemed strongly correlated,
sharing about 76% of sequence identity. These are positive-
strand RNA viruses containing a membrane covered from Spike
(S) glycoprotein that provides their characteristic crown
aspect.[13] The interaction with the host cell is promoted by the
S glycoprotein, that mediates receptor recognition and mem-
brane fusion.[14,15] S protein is composed of two functional
subunits S1 and S2, which remain non-covalently bound in the
pre-fusion state. S1 contains the receptor-binding domain (RBD)
also referred as domain B, involved in the binding with the host
cell receptor; while S2 contains the fusion machinery and is
responsible for membrane fusion. During the viral infection,
when S1 binds the host cell receptor, the S protein is cleaved at
the boundary site, between S1 and S2 subunits (S1-S2 cleavage
site), converting to the post-fusion conformation. This first
event promotes a second cleavage by the host protease at a
different cleavage site, leading conformational changes in S2

and enabling membrane fusion.[16–18] The receptor-binding and
proteolytic events act in synergy to induce the conformational
changes and thus helping the coronavirus to enter the host
cell.[19] In humans, the first entry step for both SARS-CoV-2 and
SARS-CoV life cycles is mediated by the interaction with
Angiotensin-converting enzyme 2 (ACE2). ACE2 is a protein
mainly expressed in type II alveolar lung cells, oesophagus,
heart and kidney.[20,21] Structurally, it comprises a N-terminal
peptidase domain (PD) able to bind the virion S glycoprotein,
and a C-terminal Collectrin-like domain (CLD).[22,23] The S protein
of SARS-CoV-2 interacts with ACE2 at the surface of type II
pneumocytes with similar affinity to SARS-CoV S
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glycoprotein.[24,25] The crystal structures of coronaviruses com-
ponents showed the presence of N-linked glycans overlay on
the surface of S, and it has been proposed as a mechanism for
the virus to elude the immune system.[26,27] In detail, in a first
stage, the host immune system fails to recognize the
coronaviruses as pathogens due to the presence of S
glycoproteins bearing numerous sugar entities over the mem-
brane. In fact, the immune system confuses the virus with
normal sugar-coated host cells and does not react to them. In
this way, viral S glycoproteins bind allowing the virus to enter
into the host cells.[28] The glycosylation region is found mainly
on S1 subunit, and it includes the RBD.[29]

Starting from these evidences, several research efforts have
been done to tackle SARS-CoV-2 infection spreading trying to
identify potential therapeutics.[30–40] Indeed, several neutralizing
antibodies recognize S glycoprotein as main antigen, suggest-
ing that it could be a potential target for rational design of
vaccines and therapeutics.[19,41–45] The RBD could be a valid
region to explore for the design of novel drugs.[46] In the past
outbreaks, SARS-CoV S glycoprotein was confirmed as the site
of action of neutralizing antibodies, such as S230 antibody,
isolated from human survivors.[47–49] In 2019, Walls et al. showed
that S230 blocked the virus-host receptor binding and induced
a conformational change in the fusion machinery with a
ratcheting mechanism. S glycoprotein in complex with S230
was characterized in a closed and open state (PDB IDs: 6NB6
and 6NB7, respectively). The analysis of SARS-CoV - antibody
complex revealed that the S230 epitope is located near Leu443
residue, and Tyr442 and Tyr475 are residues involved in the
interaction. These residues are normally involved in the binding
with ACE2 strengthening the hypothesis that S230 acts as a
competitive inhibitor of coronavirus-host receptor
interaction.[50]

In this work, we describe a computational analysis of the
interaction between S protein and ACE2 peptidase domain,
with the aim of 1) identifying a putative druggable area on the
RBD interface; 2) targeting this site with an in silico high-
throughput screening campaign. The main goal is to identify
small molecules as potential modulators of the entry step of the
viral life cycle, thus providing the scientific community with a
suitable starting point for drug discovery efforts on S target.
Indeed, a potential drug able to modulate this protein-protein
interaction (PPI) could work as a fusion inhibitor, representing
an interesting strategy already investigated for emerging
viruses outbreaks.[51] Inhibitors of viral entry are likely to block
the viral spreading and reduce the viral load at the very
beginning of the infection.

It is important to underline that the molecular contacts
between S glycoprotein and ACE2 are widespread within the
interaction interface and therefore it may be challenging to
design small molecule modulators capable of inhibiting the
RBD domain. However, the S glycoprotein RBD-ACE2 recogni-
tion process is mainly mediated by hydrophilic interactions
contrary to the most common PPI hydrophobic nature.[52,53]

Considering that the strategy of targeting the virus-human
interface with monoclonal antibodies and vaccines has been
thoroughly explored with a robust preclinical and clinical

pipeline,[54,55] we decided to follow a different avenue. There-
fore, we focused our attention on a computational approach
assessing the binding contribution of each amino acid
interactions, to identify suitable druggable hot spots or binding
pockets. In the context of the current health emergency, the
resulting hypothesis and the potential hit compounds identified
may be useful tools for other research groups and for the entire
scientific community to initiate drug discovery programmes
and identify novel small molecules against COVID-19.

Results and Discussion

Overlap of PDB structures highlighting open and closed
states of S glycoprotein

The currently available X-ray crystal structures show that SARS-
CoV-2 S glycoprotein forms a long trimer with a triangular
cross-section, containing the receptor-binding motif (RBM),
responsible for the recognition process of ACE2.[56] The RBD is
composed by a core and an extensive loop, RBM,[57] and shows
two different conformations: the “up state” (PDB ID: 6VYB)
(Figure S1, on the left) and the “down state” (PDB ID: 6VXX)
(Figure S1, on the right).

In the first X-ray crystal structure, two S chains are in down-
state and the third one is in up-state, whereas the other trimeric
structure presents all S chains in down state.[58] When the S
glycoprotein is in up conformation, an extended loop of the
RBD surrounds the ACE2 interface, while in down conformation
is buried into the interface between S1/S2 subunits. The
structure alignment of SARS-CoV-2 S trimers in open and closed
states highlights the exposition of RBD loop on the virion
surface, enabling the interaction with the host receptor. As
previous works revealed for SARS-CoV and MERS-CoV, the open
conformation is required to allow the binding between S
protein and ACE2, triggering the infection mechanism, and thus
leading to conformational changes and membrane fusion.[58,59]

In fact, in the open state, the S1 loop exposes residues of the
receptor-binding motif, known to be involved in the binding
with ACE2, otherwise hidden in the closed state (Figure 1),
suggesting that the opening process of this loop is necessary to
establish the interaction with ACE2 PD.

Furthermore, the superimposition of SARS-CoV and SARS-
CoV-2 X-ray crystal structures in open conformation reveals a
similar dynamic behaviour for both B domains (Figure S2),
exposing the loop with the key residues for the interaction with
ACE2.

The high rate of RBD flexibility highlighted from the above
structural comparative analysis was extensively demonstrated
by Molecular dynamics (MD) simulations performed by D. E.
Shaw research group.[60] In this work, two MD simulations of 10
microseconds each were run on PDB 6VXX to explore the closed
conformation, and PDB 6VYB to investigate the open state,
respectively. The trajectories were collected and made available
for the scientific community on the website. In the first MD
simulation, during the whole experiment, the trimer in closed
conformation kept RBD interface in a buried state against S2
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subunit. In the second MD simulation, RBD initially exhibited a
partially open conformation (Figure S3, on the left), experienc-
ing a relevant displacement after about 2 microseconds, and
finally drifting apart from S2 subunit (Figure S3, on the right).
Importantly, these evidences are of a crucial importance to
deeply understand the molecular events during the first step of
the interaction with host ACE2.

Similarity analysis of SARS-CoV and SARS-CoV-2 S proteins

SARS-CoV and SARS-CoV-2 S glycoproteins share 76% amino
acidic sequence identity and 50% identity within the RBM, in B
domain.[25]

The structure alignment of SARS-CoV and SARS-CoV-2 RBDs
both in complex with ACE2 showed that the interface between
the two S glycoproteins and ACE2 is similar.

A total of 18 residues of RBD in SARS-CoV-2 are involved in
the interaction with ACE2. Among them, nine are equivalent in
SARS-CoV and SARS-CoV-2, and include Tyr436-Tyr449, Tyr440-
Tyr453, Asn473-Asn487, Tyr475-Tyr489, Gly482-Gly496, Thr486-
Thr500, Gly488-Gly502, Tyr491-Tyr505, respectively. Five amino
acids have side chains with similar biochemical or physical
properties, such as Leu443-Phe456, Leu472-Phe486, Asn479-
Gln493, Thr487-Asn501 and Tyr442-Leu455 (Table S1).

Although the RBMs are very similar, a few changes involving
the residue positions can affect the binding affinity between S
glycoprotein and ACE2. The main mutation seems to involve
Val404 residue in SARS-CoV, replaced by Lys417 in SARS-CoV-2,
in the middle region of RBD. The side chain of Lys417 forms a
salt-bridge with the acid group of Asp30 of ACE2, probably
strengthening the bimolecular interaction between SARS-CoV-2
RBD and ACE2, while Val404 residue does not seem to be
involved in any interaction. At the same time, the replacement
of Arg426 in SARS-CoV with Asn439 amino acid in SARS-CoV-2
takes away two prominent salt-bridge contacts with ACE2
Asn329 residue, weakening the PPI.[59,61] However, the conserva-
tion of several contact residues could explain the overall similar
binding affinity, reported in literature with KD values of 1.2 nM
for SARS-CoV-2 and 5 nM for SARS-CoV,[58] respectively. This
comparison can provide crucial information about the putative
key residues for the interaction between RBD and ACE2
proteins.

Computational alanine scanning on SARS-CoV-2 – ACE2
interaction interface

As discussed above, the analysis of the interactions between
ACE2 and SARS-CoV-2 S glycoprotein highlighted some chal-
lenges from a drug discovery perspective, in the attempt of
modulating this PPI with small molecules. It is noteworthy that
this bi-molecular interaction is not a traditional example of PPI,
in which the interaction interfaces are often shallow with lack of
deep pockets and it does not bear a canonical active site to
target with a synthetic ligand. In general, in PPI, both protein
partners establish high affinity contacts through the so-called
hot spot amino acids.[62] These residues are mainly hydrophobic
and usually widely dislocated along the whole protein surfaces,
and thus sequentially not connected among them within the
same protein, creating a discontinuous epitope.[63–65] Notably,
from the currently available PDB structures of ACE2-S protein
interaction (PDB IDs: 6M17 and 6M0J), the complex shows a
one to one interaction pattern, where the contacts between the
two proteins are mediated mainly by hydrogen bonds, some
salt bridges and few Van der Waals forces. Due to the width of
this protein-protein interface, it was possible to identify three
regions of interaction, such as N-terminal, central and C-
terminal regions (Figure 2).

Both PDB structures show mostly the same key interactions
between S protein and ACE2 PD. More in detail, at the N-
terminus, the main interactions between SARS-CoV-2 RBD and
ACE2 PD involve the following residues: Thr500 and Tyr41
hydroxyl groups establish a hydrogen bond; Gly502 backbone
NH interacts with the backbone carbonyl of Lys353; Gly446
carbonyl makes contact with Gln42 side chain; Tyr449 hydroxyl
side chain connects to Asp38 and Gln42 side chains; Tyr505
hydroxyl group shows an interaction with Glu37 side chain; and
Gly496 backbone carbonyl group interacts with Lys353 side
chain. In the middle region of the interaction interface, it is
reported a hydrogen bond interaction of the aromatic hydroxyl
side chain of Tyr453 with the side chain of His34, while Lys417

Figure 1. SARS-CoV-2 PDB structures superposition unveiling RBD dynamic
behaviour. On the left, overlap of SARS-CoV-2 S trimers in closed (PDB 6VXX)
and open state (PDB 6VYB); on the right, a close-up: the light blue structure
shows PDB 6VXX S protein, while the blue chain exhibits the open state of
PDB 6VYB S protein. PDB 6VXX: green, violet and light blue chains in closed
conformations; PDB 6VYB: yellow, pink and blue chains in open conforma-
tions.
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establishes a salt bridge and hydrogen bond with Asp30 of
ACE2 peptidase domain. Finally, at the C-terminus, Asn487 side
chain of S protein forms H-bond interaction with ACE2 Gln24
and Tyr83 side chains.[61]

In order to quantitatively explore the relevance of specific
interacting residues at the ACE2-S glycoprotein interaction
interface, a computational alanine scanning was performed on
both PDB structures. Although this technique may be inaccu-
rate, it offers a rapid insight about protein-protein hot spots
affinity relevance.[66] Thus, the complexes were optimized at
pH 7.4 and the resulted structures were used to perform the
alanine scanning calculation, one per each protein-protein
complex. The computational alanine scanning calculated value
changes in free energy of binding affinity (ΔΔGaffinity) between
protein partners, after applying mutations to alanine for those
residues participating in the PPI interface. The tool provided
ΔΔGaffinity values, measuring the difference between the free
energy of the mutated complex and the ΔGaffinity of the wild-
type complex.

Therefore, a positive ΔΔGaffinity indicates a reduction in
protein-protein binding affinity for the complex, and it provides
indication the contribution of each amino acid to the binding
affinity. Thus, it is possible to conclude that not all the
mutations are equally important. Usually, a crucial interaction
hot spot is identified when mutation to alanine in a given
position causes a change in ΔΔG�2.0 kcal/mol,[67] while
residues with ΔΔG<2 kcal/mol are defined neutral.[68] Accord-
ing to Beard et al., the computational alanine scanning results
performed using Schrödinger suite have a correlation with the
experimental ones, and a residue can be defined as an
interaction hot spot, if its mutation to alanine generates a
ΔΔGaffinity�3.0 kcal/mol.[69] In Table S2, the ΔΔGaffinity values are
reported for the residues showing values�3.0 kcal/mol for
ACE2 and S glycoprotein interaction according to the three
interface regions (Figure S4). When analysing these results, all
the identified hot spots of S glycoproteins are common
between the two alanine scanning experiments, while for ACE2
some hot spot residues differ from one PDB to another. For this
reason, only the common hot spots were taken further in our
study, considering that the non-shared hot spots are likely not

crucial. Furthermore, the obtained ΔΔGaffinity values allowed us
to create a sort of contribution-to-binding ranking, discriminat-
ing the most relevant hot spots from the less important
residues. In this scenario, for ACE2 peptidase domain (from PDB
6M17), the key residues were Tyr41, involved in the recognition
at N-terminal region, Tyr83 in the C-terminal region and His34
in the central region. Referring to the other PDB structure 6M0J,
the most valued residues were found in the N-terminal region,
with Tyr41, Gln42, Gln24 and Lys353, while Tyr83 and Lys31
belonged to the C-term and middle region, respectively. At the
same time, for S glycoprotein from PDB 6M17 the residues
Phe486 and Tyr489 in the C-terminal region were found to be
crucial, while in the N-terminal region Thr500, Gly496, and
Asn501 were the amino acid contributing the most to the
binding. Looking at PDB 6M0J, the most valued residues were
Asn487 and Phe486 involved in the C-terminal region, Lys417
and Gln493 in the middle region, and Tyr505, Asn501 and
Thr500 in the N-terminal.

In conclusion, notably, the majority of identified hot spots
for both proteins were significantly involved in N-terminal
region (Table S2), suggesting this part of the protein-protein
interface as fundamental for the interaction compared to the
central and the C-terminal regions. In particular, Tyr41 aromatic
hydroxyl residue, Lys353 backbone carbonyl and Gln42 side
chain of ACE2 seem to be the key recognition features in the
interaction with the RBD domain of S glycoprotein and may
pave the way forward in the selection and design of novel RBD
S small molecule modulators.

Molecular dynamics simulations on SARS-CoV-2 S protein in
complex with ACE2

The above analysis provided several information about crucial
interactions between the two protein partners, only from a
static point of view. Therefore, in order to get more compre-
hensive data about crucial contacts, the two PDB structures of
ACE2-Spike protein complex (PDB IDs: 6M17 and 6M0J) were
used to perform two MD simulations of 200 nanoseconds each
in water solvent. The experiments were performed using

Figure 2. Spike RBD-ACE2 PD interactions according to three interface regions. PDB ID 6M0J – light blue chain is ACE2 PD, while orange chain is Spike RBD.
On the left, N-terminal region; in the middle, central region; on the right, C-terminal region.
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Desmond[70] with the aim of exploring the frequency and
stability of interactions during the whole trajectories. For PDB
6M17, chain B (ACE2 PD) and chain E (SARS-CoV-2 RBD) were
included in the MD, while for PDB 6M0J chain A (ACE2 PD) and
chain E (SARS-CoV-2 RBD) were considered. For both MD
simulations, the root-mean-square deviation (RMSD) plot was
generated to check the stability of the protein-protein com-
plexes during the simulation, including also energy, temper-
ature and pressure of the systems during the trajectories. For
PDB 6M17 the system reached a stationary shape at about 30
nanoseconds of simulation, while for PDB 6M0J it was obtained
at about 80 nanoseconds of trajectory (Table S3). All the other
parameters turned out to be reliable for a further analysis. Thus,
the frames of both trajectories (1001 per simulation) were
clustered applying average as hierarchical cluster linkage
method to identify five representative clusters for all frames for
PDB 6M17, and ten clusters for PDB 6M0J. According to the
RMSD plot, only frames corresponding to the stable trajectory
portion – after 30 nanoseconds for 6M17 and after 80
nanoseconds for 6M0J – were considered to retrieve the most
abundant and frequent interactions amongst the clusters.
Table 1 summarises the related results, and details about H-
bond frequency occurrences are displayed in Table S4.
Although MD performed on PDB 6M17 (cryo-EM) highlighted a
fewer number of interactions than PDB 6M0J (X-ray), this fact
should be ascribed to the different methods applied to resolve
3D structures and the consequent different starting points for
MD simulations. However, the two MD simulations shared ten
equal interactions, that were considered the most important;
besides for those different contacts, most of the involved amino
acids were highlighted for both MD. Notably, the information
retrieved from both MD simulations were mainly in accordance
with data from literature and computational alanine scanning

approaches. Therefore, these results were used as references for
selecting molecules as putative modulators of ACE2-S protein
interaction (refer to the next section).

Supervised molecular docking to identify potential
compounds able to bind N-terminal region

As already mentioned the aim of this work was to identify
potential compounds able to modulate ACE2-S protein inter-
action interface. For this reason, based on the previous data, we
decided to perform a knowledge-based and computational
data-driven molecular docking screenings on the three contact
regions between ACE2 PD and SARS-CoV-2 RBD, at the N-
terminal, central and C-terminal regions, respectively. For this
purpose, PDB 6M0J was chosen due to its better resolution
(2.45 Å) compared to the PDB 6M17 (2.9 Å), in order to create
three different docking grids on S RBD, one per each interaction
region. For virtual screening purposes, two different compound
libraries were used, i. e. in-stock MolPort library (commercially
available compounds), and a library consisting of molecules Life
Chemicals databases. Due to the high number of compounds,
high-throughput virtual screenings were performed and the
best 10,000 molecules were re-docked applying docking
standard precision (SP) using Schrödinger suite.[72,73] classified as
PPI modulators by Asinex, ChemDiv, Enamine and the outputs
of these overall six docking screenings were analysed and the
best 1,000 molecules were selected according to interactions
retrieved from literature, computational alanine scanning, MD
simulations and docking scores for a further computational
exploration. The analysis of ligand binding poses highlighted
that the N-terminal portion was able to accommodate the
ligands better compared to the middle and C-term regions. In
fact, in these latter, compounds exhibited significantly different
binding poses among them, while the protein surface of N-
terminal region showed to take part into the interactions
providing a small pocket able to accommodate functional
groups of the docked compounds. Interestingly, many ligands
had a complementary fit with the RBD S cavity described by the
following amino acids as depicted in the Figure 3: Arg503,
Tyr505, Asn501, Phe497, Gly496 and Tyr495. These collected
information provided us a good starting point to deeply explore
this region at the interface and consider it as the most
potentially druggable compared to the other two. Therefore,
compounds establishing contacts with key residues at the N-
terminal region were selected and used to perform pharmaco-
phore screenings.

Pharmacophore screening of selected compounds from
docking screenings

In order to focus our attention on a small representative group
of the most promising compounds, the molecules selected
from docking screenings were further analysed using a
pharmacophore approach. For this purpose, two different
pharmacophore maps of SARS-CoV-2 RBD-ACE2 PD N-terminal

Table 1. MD results showing the key interactions between ACE2 PD and
SARS-CoV-2 RBD. On the left, MD results for PDB 6M17; on the right MD
results for PDB 6M0J.

PDB ID: 6M17 PDB ID: 6M0J
ACE2
PD

Spike
RBD

Interaction ACE2
PD

Spike
RBD

Interaction

Gln24 Gln474 Contact[a] Gln24 Asn487 1 H-bond
Thr27 Phe456 Contact[a] Thr27 Phe456 Contact[a]

Phe28 Tyr489 Contact[a] Phe28 Ty489 Contact[a]

Asp30 Lys417 1 H-bond
+1 salt bridge

Phe28 Phe486 Contact[a]

Lys31 Gln493 1 H-bond Asp30 Lys417 1 H-bond
+1 salt bridge

His34 Tyr453 1 H-bond Lys31 Gln493 1 H-bond
His34 Leu455 Contact[a] Lys31 Tyr489 Contact[a]

Tyr41 Thr500 1 H-bond His34 Tyr453 1 H-bond
Tyr83 Ala475 1 H-bond His34 Leu455 Contact[a]

Tyr83 Gly476 Contact[a] Tyr41 Thr500 Contact[a]

Lys353 Gly502 1 H-bond Tyr41 Gln498 Contact[a]

Lys353 Asn501 Contact[a] Phe79 Gln486 Contact[a]

Lys353 Tyr505 Contact[a] Tyr83 Asn487 Contact[a]

Tyr83 Phe486 Contact[a]

Lys353 Gly502 1 H-bond
Lys353 Asn501 Contact[a]

Lys353 Tyr505 Contact[a]

[a] Expressed as good VdW shape complementarity[71].
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interface were created, one per PDB structure (PDB IDs: 6M17
and 6M0J). As above mentioned, we focused our attention on
the portion of interaction interface we considered most
targetable, i. e. the N-terminal region, neglecting the other two
portions. Therefore, from PDB 6M17, the pharmacophore of N-
term was composed by three features (Figure 4, on the left): a
hydrogen-bond donor on Tyr41 side chain hydroxyl and two
hydrogen bond acceptors, namely one on Lys353 backbone
carbonyl and another on carboxyl of Glu37 side chain of ACE2
PD.

For the second PDB structure (PDB ID: 6M0J), a six-featured
pharmacophore was generated (Figure 4, in the middle),
showing a hydrogen-bond donor on the amine side chain
group of Gln42, four hydrogen-bond acceptors on the side
chain hydroxyl of Tyr41, backbone carbonyl of Lys353, carbox-
ylic groups of Glu37 and Asp38, and a negative ionisable
feature on Asp38 side chain of ACE2 PD.

The comparison of the two pharmacophore maps showed
that both PDB complexes shared two comparable features on
Lys353 and Glu37, while the features corresponding to the
Tyr41 side chain hydroxyl were different. In PDB 6M17, the
oxygen atom of the hydroxyl group formed a H-bond to

Asn501 side chain of S protein, while in PDB 6M0J, the
hydrogen of the same hydroxyl accepted a H-bond from Thr500
side chain. Therefore, the same hydroxyl group of Tyr41 side
chain could act as H-bond acceptor or donor. In light of these
findings, the information from both pharmacophores were
considered equally important, and a shared pharmacophore
was created (Figure 4, on the right), including overall seven
features from both PDB complexes.

Indeed, the high number of features could be too strict for
this preliminary virtual screening, thus limiting the opportunity
to identify potentially promising compounds. For this reason,
the shared pharmacophore was modified according to alanine
scanning ΔΔGaffinity values, taking into account that Glu37 and
Asp38 were the less valued hot spots compared to Tyr41, Gln42
and Lys353. Therefore, the negative ionisable feature corre-
sponding to Asp38 was removed and two H-bond acceptor
features corresponding to Glu37 and Asp38 were marked as
optional, i. e. they were considered less important for screening
purposes. Then, pharmacophore screenings were run, where no
omitted features were permitted. For MolPort library, 19
molecules were retrieved from the initial 1,000, while 22
compounds were obtained from the initial 1,000 PPI library

Figure 3. RBD N-terminal binding region description. On the left, protein surface of N-terminal region; in the middle, residues composing the cavity; on the
right, an example of ligand binding pose at N-terminal region.

Figure 4. Pharmacophore maps built on RBD N-terminal region. On the left, 6M17 Pharmacophore map; in the middle, 6M0J Pharmacophore map; on the
right, shared pharmacophore map. Red spheres are hydrogen-bond acceptors, green spheres are hydrogen bond donors, green-red sphere is both hydrogen-
bond donor and acceptor, red spike is a negative ionisable feature and dotted spheres are features marked as optional.
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molecules. Some virtual hit molecules were nucleoside ana-
logues as a consequence of the highly hydrophilic nature of the
binding side. However, these molecules were discarded from
the overall selection of the consensus molecules, as we
considered these not suitable to enter hit-to-lead optimization
from a drug discovery perspective. Finally, 8 compounds were
selected as the most promising ones taking into consideration
MM-GBSA and chemical diversity. In Table 2 we report 2D
structures of these 8 molecules including the established
interactions with SARS-CoV-2 crucial amino acids, while Table S5
shows structures and some physicochemical properties of the
overall 32 identified compounds. These molecules could
represent putative modulators that can provide crucial informa-
tion about the druggability of N-terminal region. These overall
32 molecules would require further validation via biophysical or
biological wet lab screening before entering a hit optimisation
programme towards novel anti-COVID-19 therapeutics and they
will be available together with the related SDF files on request
by interested research groups.

Conclusion

Our investigational analysis aimed at assessing the druggability
of the S glycoprotein RBD-ACE2 PPI to deliver potential hit
molecules to enter drug discovery program aimed at finding
drugs against the COVID-19 pandemic. While targeting PPI with
small molecule remains a challenge in drug discovery, our
studies suggest that the S RBD-ACE 2 alpha helix interface
represents a non-canonical PPI. Using orthogonal computa-
tional techniques and investigating the S-ACE2 interaction
interface, we propose the N-terminal region of S glycoprotein
RBD as a druggable hot spots to be targeted as a therapeutic
intervention point that may interfere with the host-guest
recognition mechanism. Based on the preliminary computa-
tional studies and literature evidences, supervised virtual
screening models were built and used in a consensus manner.
The entire workflow yielded a list of potential ligand binders
waiting to be validated in biochemical, biophysical or cellular
screening. The total list of identified virtual hits will be made
available to the scientific community for screening purposes. It
remains to be clarified if small-molecules targeting the S
glycoprotein RBD-ACE2 interaction represents a meaningful
approach to block COVID-19 infection or reduce its systemic
viral loading.

Computational Methods

Computational alanine scanning on SARS-CoV-2 – ACE2
interaction interface

In order to perform the computational alanine scanning on both
PDB structures of ACE2 PD-SARS-CoV-2 RBD (PDB IDs: 6M17 and
6M0J) the protein complexes were first optimised using “Protein
preparation wizard”[74] tool (Schrödinger Release 2018–3).[72,73,75]

Bond orders were assigned into the protein structures, missing
hydrogens were added, water molecules beyond 5.0 Å from het

groups were deleted, and het states were generated at pH 7.4�0.2
using Epik.[76,77] Then H-bonds assignment within protein structures
were optimised using PROPKA[78] at pH 7.4. The residues of both
PDB complexes were imported into the “Residue scanning” tool[69]

released with Biologics suite to perform computational alanine
scanning. The calculation type was flagged on “stability and
affinity” to retrieve the ΔΔGaffinity for each mutated residue. Only the
amino acids of ACE2 PD and SARS-CoV-2 RBD involved in the
interaction interface were selected for mutating to alanine, i. e.
residues in positions 21 to 48, 79 to 83, and 352 to 357 for ACE2
peptidase domain; and amino acids in positions 416, 417, 455, 456,
475 to 478 and 486 to 505 for S glycoprotein instead. Furthermore,
the side-chains of the mutated residues were refined including a
backbone minimization.

MD simulations on SARS-CoV-2 Spike protein in complex with
ACE2

The optimised PDB structures (6M17 and 6M0J) used to perform
the computational alanine scanning were also considered for
Molecular Dynamics simulations using Desmond (released version
11.6).[70] Firstly, for both protein-protein complexes, a system was
built using “System builder” tool. TIP3P[79] was chosen to simulate
water solvent model with an orthorhombic box shape to include
the system. The simulation box size was calculated by using a
buffer with 10 Å of distance between the solute structures and the
simulation box boundary. In order to neutralize the system 14 Na+

ions were added into the 6M17 simulation box and 22 Na+ into
6M0J MD system, and the applied force field was OPLS3.[80] Then,
the two systems were submitted for running MD simulations using
the “Molecular Dynamics” tool. The simulation time was 200
nanoseconds for each system with a trajectory recording interval of
200 picoseconds, and the simulation seed was randomised. Finally,
number of atoms (144,165 for PDB 6M17 and 105,302 for PDB
6M0J), pressure (1.01325 bar) and temperature (300 K) were main-
tained constant during the whole simulation. Then, the MD outputs
were processed to identify the most abundant and frequent
interactions between ACE2 PD and SARS-CoV-2 RBD. Indeed, the
trajectories were clustered to get five clusters for PDB 6M17 and
ten clusters for PDB 6M0J. The backbone was chosen to set the
RMSD matrix and frequency of clustering was 10, setting average as
the hierarchical cluster linkage method. Only the frames corre-
sponding to the stable portion of RMSD plot were analysed to
retrieve the key interactions between protein partners.

Virtual compound libraries preparation for molecular docking
screening

In order to perform a massive molecular docking screening at
ACE2-S protein interaction interface and to identify putative
modulators of this PPI, several compound libraries were down-
loaded and prepared for the calculations. For this purpose, Asinex,
ChemDiv, Enamine, and Life Chemicals PPI-targeted libraries were
considered together with all MolPort compound database. The
virtual libraries were filtered through KNIME platform[81] using the
SMART alerts, in order to delete those compounds containing
carcinogenic, mutagenic, chelating, reactive, unstable, toxic and
skin sensitising groups,[82] thus getting overall about 1.8 millions of
molecules. Next, all the compounds were prepared using “LigPrep”
tool of Schrödinger suite. The selected force field was OPLS3[80] and
the protonation states were generated at pH 7.4�0.2 using Epik.[76]

The molecules were desalted and tautomers were generated
retaining compound specific chirality. Finally, no more than 32
different conformations were generated per ligand.
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Table 2. Ligand interaction diagrams of the most promising compounds. Among the 32 consensus molecules, 8 compounds were further selected
according to their MM-GBSA and chemical diversity.

SELECTED COMPOUNDS

Spike_RM03
ΔΔGbinding= � 58.259 kcal/mol

Spike_RM14
ΔΔGbinding= � 56.750 kcal/mol

Spike_RM15
ΔΔGbinding= � 53.986 kcal/mol

Spike_RM25
ΔΔGbinding= � 51.707 kcal/mol

Spike_RM30
ΔΔGbinding= � 51.658 kcal/mol

Spike_RM29
ΔΔGbinding= � 50.333 kcal/mol
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High-throughput virtual screening

At the same time, three different docking grids were built,
considering the three above mentioned interaction regions at ACE2
PD-SARS-CoV-2 RBD interface. The grid centroids were defined
selecting the key amino acids according to the previous collected
data from literature and computational results analysis. In detail, for
N-terminal region Gly496, Gln498, Thr500, Asn501, Gly502, Tyr505
were selected to define the docking grid, while residues Lys417,
Leu455, Phe456, Gln493 for the central region and Phe486, Asn487,
Tyr489 to create the docking grid at the C-terminal portion. Each
grid was generated using the “Receptor grid generation” tool of
Schrödinger suite, setting a Van der Waals (VdW) radius scaling
factor of 1.0 for non-polar atom with a partial charge cut-off of 0.25.
Then, these grids were used to perform molecular docking screen-
ings applying a flexible protocol and the VdW radii of ligand non-
polar atoms were scaled at 0.80 with partial atomic charge cut-off
0.15. All the mentioned libraries were docked on the three grids, in
order to explore docking poses of ligands on the three interface
regions. In details, due to the large number of molecules for the
two compound libraries, high-throughput virtual screening work-
flows were run. The related first prioritised 10,000 compounds were
re-docked using docking SP. The outputs were analysed and,
especially for N-terminal region, the most promising molecules
were selected considering the main interactions established with
the S protein crucial amino acids and the docking score values.

Pharmacophore screening of selected compounds from
docking screening

In order to perform pharmacophore screenings, the selected
molecules from MolPort and PPI libraries were optimised using the
tool “Create screening database” of LigandScout software (version
4.3 – released by Inte:Ligand GmbH),[83–86] specifying “iCon Best”[87]

as conformer generation type to create high-quality ligand
conformations. The maximum number of conformations per
compound was 200 and all other default settings were applied.
After all compounds were prepared, it was necessary to create the
pharmacophore map for the screenings. For this purpose, PDB

6M17 and PDB 6M0J were used to generate two pharmacophore
maps. Chain B of PDB 6M17 and chain A of PDB 6M0J
corresponding to ACE2 were converted into ligands, in order to
allow the software to identify a ligand out of the two proteins.
Thus, two pharmacophore maps were generated using the “Create
pharmacophore” button, and they were transferred to the “Align-
ment perspective” window. The two pharmacophores were cleaned
out deleting those features not involved into the N-terminal region,
getting three features for PDB 6M17 (Figure 4, on the left) and five
features for PDB 6M0J (Figure 4, in the middle). All hydrogen-bond
vectors were converted into features to increase the ligand-
matching capacity of pharmacophores. Then, a shared pharmaco-
phore was generated, using the tool “Generate shared feature
pharmacophore”, setting 6M0J pharmacophore as reference. The
result was a pharmacophore map including overall seven features
(Figure 4, on the right), where a negative ionisable feature on
Asp38 was deleted and the two H-bond acceptor features
corresponding to Glu37 and Asp38 side chains were converted in
optional. This modified pharmacophore map was used to perform
screening on the compound libraries previously generated. For this
purpose, the used scoring function was “pharmacophore-fit”, the
screening mode was “match all query features”, and for the retrieval
mode “get best matching conformation” was selected. Finally, for
the compound libraries the maximum number of permitted
omitted features was 0. The pharmacophore screenings retrieved
19 molecules of the initial 1,000 MolPort chemical entities and 22
molecules of 1,000 starting PPI ligands.
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Table 2. continued

SELECTED COMPOUNDS

Spike_RM09
ΔΔGbinding= � 49.420 kcal/mol

Spike_RM24
ΔΔGbinding= � 48.338 kcal/mol
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