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Synopsis
The HMGA2 (high-mobility group AT-hook) protein has previously been shown as an oncoprotein, whereas ectopic
expression of HMGA2 is found to induce growth arrest in primary cells. The precise mechanisms underlying this
phenomenon remain to be unravelled. In the present study, we determined that HMGA2 was able to induce apoptosis
in WI38 primary human cells. We show that WI38 cells expressing high level of HMGA2 were arrested at G2/M
phase and exhibited apoptotic nuclear phenotypes. Meanwhile, the cleaved caspase 3 (cysteine aspartic acid-
specific protease 3) was detected 8 days after HMGA2 overexpression. Flow cytometric analysis confirmed that
the ratio of cells undergoing apoptosis increased dramatically. Concurrently, other major apoptotic markers were
also detected, including the up-regulation of p53, Bax and cleaved caspase 9, down-regulation of Bcl-2; as well
as release of cytochrome c from the mitochondria. We further demonstrate that the shRNA (small-hairpin RNA)-
mediated Apaf1 (apoptotic protease activating factor 1) silencing partially rescued the HMGA2-induced apoptosis,
which was accompanied by the decrease of cleaved caspase-3 level and a decline of cell death ratio. Our results
also reveal that γ H2A was accumulated in nuclei during the HMGA2-induced apoptosis along with the up-regulation of
cleaved caspase 2, suggesting that the HMGA2-induced apoptosis was dependent on the pathway of DNA damage.
Overall, the present study unravelled a novel function of HMGA2 in induction of apoptosis in human primary cell
lines, and provided clues for clarification of the mechanistic action of HMGA2 in addition to its function as an
oncoprotein.
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INTRODUCTION

The HMGA2 protein is a member of the HMGA (high-mobility
group AT-hook) family, consisting of HMGA1a, HMGA1b and
HMGA2 [1,2]. HMGAs are widely expressed in early embryo-
genesis but are restricted as the fetal development progresses.
HMGAs are absent or present at low levels in normal adult so-
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matic cells and tissue [3–5]. As an oncoprotein, HMGA2 is over-
expressed in many tumours and plays important roles in stem cell
self-renewal, proliferation and differentiation [6]. In contrast to
these known functions, however, recent studies have implicated
that the HMGA2 protein is specifically accumulated in chro-
matin in senescent cells, and the ectopic expression of HMGA2
can induce growth arrest in primary cells, followed by the occur-
rence of senescent phenotypes [7,8] and accumulation of DNA
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damage [9]. Apparently, more intensive studies are required
for further insights into the precise functional mechanisms of
HMGA2 protein.

Apoptosis is a delicately orchestrated process that is respons-
ible for many biological functions [10,11]. Apoptosis is initiated
by two major pathways, namely the extrinsic (receptor-mediated)
and the intrinsic (mitochondria-mediated) pathways [12]. One of
the features of apoptotic cell death is the activation of caspases
(cysteine aspartic acid-specific proteases), a class of cysteine
proteases [13]. Caspases 3 as an effector enzyme [14] is activ-
ated through cleavage by the initiator Caspase 9 or -8/10 [15].
Caspase 9 is activated by the Apaf1 (apoptotic protease activat-
ing factor 1) apoptosome in the cytoplasm, whose formation is
triggered by MOMP (mitochondrial outer membrane permeab-
ilization) and the release of cytochrome c from mitochondria to
cytosol [16,17]. Caspase-8/10 are activated by the DISC (death-
inducing signalling complex) [18,19]. Intriguingly, caspase 2 as
one of the most evolutionarily conserved of the caspases [20],
exhibits features of both initiator and effector caspases [21,22].
The mechanism of pro-caspase-2 activation in apoptosis remains
poorly defined in contrast to other caspases. It was reported that
caspase 2 is implicated in cytochrome c release and is essen-
tial for cytotoxic stress-induced apoptosis in several human cell
lines [23–26]. Furthermore, caspase 2 has been increasingly seen
as a tumour suppressor, being able to influence many tumour-
promoting activities [27–32].

In the present study, we demonstrate that HMGA2 was able
to induce apoptosis in primary human cells, a function that has
not been previously identified. We also detected the accumula-
tion of DNA damage in HMGA2 expressing cells, which may
initialize caspase 2 activation and further induces MOMP to act-
ive downstream caspases. Data arising from the present study are
important for clarification of the mechanisms of the induction of
apoptosis by oncoprotein HMGA2 in primary cells.

MATERIALS AND METHODS

Cell culture and reagents
WI38, IMR90 and HEK-293T cells [HEK-293 cells expressing
the large T-antigen of SV40 (simian virus 40)] were purchased
from the ATCC (USA), and HUVEC (human umbilical-vein
endothelial cells) cells were provided by Professor Ju Gu of
Peking University. Cells were maintained in MEM (WI38 and
IMR90) media and DMEM (Dulbecco’s modified Eagle’s me-
dium) (293 T) media from Gibco, supplemented with 10 % (v/v)
FBS (NCD500, Shanghai ExCell Biology Inc for 293T cells.
HyClone, USA, Thermo Scientific Inc for WI38 and IMR90).
HUVEC cells were maintained in ECM media from ScienCell,
supplemented with 100 mg/ml penicillin and 100 mg/ml strepto-
mycin, and kept in a humidified atmosphere containing 5 % (v/v)
CO2 at 37 ◦C.

Vector construction and viral infection
The pWPXLD lentiviral vectors were used. HMGA2 gene was
cloned by RT–PCR from total RNA of senescent WI38 cells. The

amplified PCR product was inserted into the PmeI/BamHI or
BamHI/EcoRI sites of pWPXLD vector, and then fused with or
without EGFP (enhanced green fluorescent protein) gene. Len-
tiviruses were packed using the HEK-293T cells. Lentivirus su-
pernatant was diluted with culture medium and applied to WI38
cells for 24 h.

Cell proliferation assay
The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium-bromide] assay was conducted to measure cell
proliferation. WI38 cells stably expressing alien genes trans-
duced by lentivirus were seeded in 96-well plates at a density
of about 8000 cells/well. Twenty microliters of MTT (5 mg/ml)
was added at 2d–14d after seeding. The samples were incubated
at 37 ◦C for 4 h, then the supernatant was discarded, and 100 μl
DMSO was added to each well. Absorbance at 492 nm was
measured on a microplate reader. Assays were repeated six
times, and the survival percentage (%) was calculated relative to
the control.

Western blotting
Western blotting was performed as described previously [43].
The primary antibodies used were: anti-pp53 (1:1,000, CST),
anti-p53 (1:1000, CST), anti-p21 (1:500, Santa Cruz), anti-
p16 (Santa Cruz, sc-468), anti-caspase 3 (1:1000, CST), anti-
PARP [poly(ADP ribose) polymerase] 1 (1:3000, ECTOMICS),
anti-HMGA2 (1:5000, ECTOMICS), anti-caspase 9 (1:1000,
Bioworld), anti-Bax and anti-Bcl2 (1:1000, CST), anti-caspase 2
(1:1000, KeyGEN), anti-γ H2A (1:2000, Millipore) and anti-β-
actin (1:10 000, Sungene).

Immunofluorescence
WI38 cells were grown on coverslips in six-well plates and
washed three times with PBS, fixed in 4 % (v/v) formaldehyde
solution for 10 min and then permeabilized with 0.2 % (v/v) Tri-
ton X-100 in PBS for 10 min. Cells were blocked with 5 % (w/v)
BSA in PBS for 1 h at room temperature. Coverslips were incub-
ated with respective primary antibodies for 1 h. The following
primary antibodies were used: anti-caspase 3 (1:200, CST), anti-
γ H2A and anti-cyto-C (1:200, Millipore). The specimens were
washed with TBST (TBS containing Tween 20) and incubated
for 1 h with TRITC (tetramethylrhodamine β-isothiocyanate)-
conjugated secondary antibodies at 1:400 dilutions. Cells were
further washed in TBST and DNA was visualized by using DAPI
(4′,6-diamidino-2-phenylindole) (1 μg/ml). Images were taken
under a confocal laser-scanning microscope (Olympus FV1000).

Real-time PCR
Total RNA was extracted using a QIAGEN RNeasy Mini Kit
(74104), and RT–PCR was performed using a TaKaRa RNA
PCR Kit (RR019A). The sequence-specific primers used were
indicated as follows. Apaf1 sense: ACATTTCTCACGAT-
GCTACC; antisense: CAATTCATGAAGTGGCAA. CyclinA
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sense: TTCATTTAGCACTCTACACAGTCACGG; antisense:
TTGAGGTAGGTCTGGTGAAGGTCC. CyclinB1 sense:
CAGTCAGACCAAAATACCTACTGGGT; antisense: ACAC-
CAACCAGCTGCAGCATCTTCTT. CyclinE sense: GGAA-
GAGGAAGGCAAACG; antisense: GCAATAATCCGAG-
GCTTG.

Annexin-V/PI (propidium iodide) staining
Control and HMGA2-treated cells (0.5×106 cells) were collec-
ted by trypsinization. Samples were washed once with PBS and
then resuspended in 100 ml Annexin-binding buffer provided by
the manufacturer (Alexis). Then 5 ml of Annexin-V–FITC stock
solution (Alexis) and 1 mg/ml (final) PI were added and the cells
were incubated for 15 min before the stained samples were meas-
ured by flow cytometry (Epics XL Beckman coulter). The debris
was excluded from analysis. The assay kit was provided by Sun-
gene.

Cell circle assay
Control and HMGA2 overexpressing cells were centrifuged
(300× g, 2 min) and the pellets were resuspended in 1 ml of 70 %
(v/v) ethanol at − 20 ◦C. Cells were fixed at room temperature
for 30 min and stored at − 20 ◦C overnight. Oligo-nucleosomal
DNA fragments were treated by 10 mg/ml RNAse A (Sigma) for
15 min, stained with PI (propidium iodide, Sigma, 5 mg/ml final
concentration) for 15 min before measurement. Cells were gated
to exclude the debris and then analysed by flow cytometry (Epics
XL Beckman coulter).

Statistical analysis
Data are expressed as mean+−S.D.. The statistical significance of
differences was assessed by t test. In all comparisons, P<0.05
(*) was considered statistically significant and P<0.01 (**) was
considered highly significant.

RESULTS

HMGA2-induced growth arrest in WI38 cells
To establish a model for studying the HMGA2-induced growth ar-
rest in WI38 cells, we ectopically expressed the HMGA2 protein
fused with GFP (green fluorescent protein) in WI38 cells using
a lentiviral delivery system driven by the strong EF1α promoter.
By consulting a previous study with lung cancer [33] and other
cancer lines (Supplementary Figure S1C), we adjusted the relat-
ive ectopic HMGA2 mRNA below the limit of pathological level
(from 100 to 2000 multiples) in different WI38 cells infected with
different doses of virus (Figure 1A). Data from Figure 1(B) show
that the cell growth was dramatically inhibited depending upon
the doses of HMGA2 overexpression, and the 500-multiple rel-
ative ectopic HMGA2 mRNA level, within a pathological range,

was used in the following experiments. Intriguingly, in addi-
tion to the detection of senescence phenotypes (Supplementary
Figure S1A) and SAHF (senescence-associated heterochromatin
foci)-like foci (Figure 1C, H2-GFP 4d), we observed a consecut-
ive change of the heterochromatin foci containing HMGA2-GFP
protein in WI38 cells as monitored by fluorescence microscopy
after HMGA2 expression (Figure 1C). Specifically, the SAHF-
like foci became enlarged at day 6 (Figure 1C, HMGA2-GFP 6d),
and these foci were apparently co-localized with the H3K9me3
(tri-methylated histone H3 at lysine 9) (Supplementary Figure
S1B). At day 8 of HMGA2 overexpression, the nuclei became
condensed (Figure 1C, H2-GFP 8d), which is a typical change
of apoptotic nuclei [34]. Moreover, the apoptotic bodies began to
emerge in a number of cells at day 9 (Figure 1C, H2-GFP 9d),
along with a decrease in cell number (Figure 1B, H2-GFP 500×).

HMGA2 overexpression arrested WI38 cells at
G2/M
We further investigated the molecular events during the HMGA2-
induced WI38 cell-cycle arrest. The qRT–PCR assays detected
the up-regulation of CyclinA and CyclinB mRNAs (Figures 2A
and 2B) and down-regulation of CyclinE mRNA (Figure 2C)
at day 2 of HMGA2 expression. However, the CyclinA, B and
E mRNAs decreased at day 11 post-HMGA2 expression (Fig-
ures 2A–2C). These results implicated an increase of cell popu-
lation at G2/M phase, since CyclinA and B are responsible for
G2/M checkpoint transition in cell-cycle progression; whereas
CyclinE is responsible for G1/S checkpoint, as illustrated in Fig-
ure 2(D). The flow cytometric assay confirmed that WI38 cells
expressing HMGA2 were arrested at G2/M phase at day 5 (Fig-
ure 2E).

HMGA2-induced apoptosis in human primary
fibroblasts
We next intended to determine whether the HMGA2-induced
cell growth arrest was achieved through an apoptotic pathway.
We first assessed the expression levels of the apoptotic-related
proteins, and we found that the p53, phosphorylated p53 (Fig-
ure 3A) and cleaved caspase-3 protein levels were prominently
up-regulated upon HMGA2 overexpression (Figures 3A and 3C).
Furthermore, the degradation of PARP (Figure 3A), a caspase-3
substrate, was readily evident in WI38 cells expressing HMGA2
in 8 days. Similar results were also obtained in other primary
cells, including IMR90 and HUVEC cells (Figure 3B), suggest-
ing that this may be a common feature of the human primary
cells. The HMGA2-induced apoptosis was further verified by
flow cytometric assays with Annexin-V and PI staining, which
revealed that the population of Annexin-V positive cells signi-
ficantly increased in WI38 cells expressing HMGA2, compared
with the control cells (Figure 3D). Only few cells underwent
necrosis-like cell death (characterized by PI incorporation) (Fig-
ure 3D). These results indicate that overexpression of HMGA2
was sufficient to induce apoptosis in different primary fibroblasts.
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Figure 1 Establishment of the HMGA2-induced cell growth arrest model and the change of heterochromatin
(A) WI38 cells infected with series dilution of concentrated lentivirus containing HMGA2, in which the relative HMGA2 mRNA
level was titred between 100 and 2000 multiples as assessed by qPCR. (B) Proliferation of WI38 cells with the indicated
expression level of HMGA2 in (A) was estimated through cell counting at indicated time. (C) Change of heterochromatin
foci containing HMGA2-GFP protein in WI38 cells as monitored by fluorescence microscopy at indicated time points after
∼500-multiple HMGA2 expression level. The arrows indicate the SAHF-like foci at days 3–4, the apoptotic nuclear change
at day 8, and the apoptotic body at day 9. Scale bar: 20 μm.

Release of mitochondrial cytochrome c and
formation of apoptosomes in apoptotic cells
expressing HMGA2
As shown in Figure 4(A), HMGA2 also triggered the caspase-9
activation preceding the caspase-3 activation, concurrent with the
increase of Bax and decrease of Bcl-2 in apoptotic WI38 cells.

Furthermore, the release of cytochrome c, a crucial step in trigger-
ing the formation of the apoptosome and subsequent activation of
the effector caspase, was detected by using immunofluorescence
and western blotting (Figures 4B and 4C). We next established the
WI38 cell line stably expressing shRNAs (small-hairpin RNAs)
directed against Apaf1, a cytoplasmic factor that binds with
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Figure 2 HMGA2-induced G2/M cell cycle arrest in WI38 cells
Relative mRNA levels of CyclinA (A), CyclinB (B) and CyclinE (C) in WI38 cells were assessed by qPCR at indicated
time points after HMGA2 expression. (D) Illustration of changes of cell cycle-related proteins during a normal cell cycle
progression. (E) WI38 cells expressing HMGA2 at day 5 was analysed by flow cytometry using PI staining, showing that
the dramatic increase of percentage (from 13.4 to 46.4 %) of cells arrested at G2/M phase.

cytochrome c and triggers the formation of the apoptosome and
the subsequent activation of caspase 9. The silencing efficiency
of the Apaf1 shRNA in WI38 cells was confirmed (Figure 4D).
We show that when challenged with the HMGA2 overexpression,
the Apaf1-deficient cells exhibited remarkable resistance to cell
death (Figure 4E). Meanwhile, activation of downstream effector
caspases (cleaved caspase 3/9) was detected (Figure 4F). These
results indicate that the mitochondrial death pathway was activ-
ated and required for HMGA2-induced apoptosis in WI38 cells.

Caspase 2 was activated and required for
HMGA2-induced apoptosis in WI38 cells
The observation that the γ H2A-DNA damage foci were accu-
mulated in HMGA2-expressing WI38 cells (Figures 5A and 5B)
implicates the involvement of DNA damage in HMGA2-induced
apoptosis. Since caspase 2 has been shown to play critical roles in
stress-induced apoptosis [23,26], we sought to determine whether
this caspase was involved in the apoptotic process observed in
the present study. Indeed, we found that the HMGA2-expressing
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Figure 3 Characterization of apoptosis in human primary fibroblasts expressing HMGA2
(A) Up-regulation of the apoptotic proteins p53, pho-p53 and cleaved caspase 3; and degradation of caspase-3 substrate
PARP in WI38 cells expressing HMGA2 at indicated time points. (B) Cleaved caspase 3 and PARP were detected in IMR90
and HUVEC cells expressing HMGA2 at day 8. (C) Immunofluorescence of WI38 cells expressing HMGA2 at day 8, showing
the increase of cleaved caspase 3. Scale bar: 20 μm. (D) WI38 cells expressing HMGA2 at day 5 were analysed by flow
cytometry using Annexin-V and PI staining. The percentage of apoptotic cells, characterized by the positive Annexin-V and
the negative PI staining, was dramatically increased from 3.72 to 28.76 %.

apoptotic WI38 cells displayed a marked increase in activated
caspase 2 (Figure 5B, H2 8d). Similar results were also ob-
tained when the IMR90 and HUVEC cells were infected with
lentivirus containing HMGA2-GFP at day 8 (results not shown).
Furthermore, WI38 cells transfected with Caspase-2 siRNA
exhibited significantly lower cell death rates and weaker activa-

tion of effector caspases compared with the control (Figures 5C
and 5D), suggesting that caspase 2 was necessary for the apop-
totic pathway induced by HMGA2. To determine whether cas-
pase 2 regulates cytochrome c release, WI38 cells were treated
with the shRNA targeting caspase 2 before HMGA2 overexpres-
sion, and cytochrome c release was subsequently assessed by
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Figure 4 Release of cytochrome c from mitochondria was required for HMGA2-induced WI38 cell apoptosis
(A) The decrease of Bcl-2 levels with a concomitant increase in Bax and cleaved caspase 9, as measured by immunoblotting
in apoptotic WI38 cells induced by HMGA2 at indicated time point. (B) Immunofluorescence images showing the release
of mitochondrial cytochrome c in HMGA2-expressing cells at day 5 (enlarged areas in frames). Scale bar: 50 μm. (C)
Mitochondrial-cytosolic extracts were prepared from cells expressing GFP or HMGA2-GFP at day 5 and analysed for
the cytochrome c by Western blotting, showing the release of cytochrome c from mitochondria in response to HMGA2
overexpression. VDAC as a mitochondrial marker and tubulin as a cytosolic marker were detected. (D) Verification of the
silencing efficiency of shApaf1 by qPCR in WI38 cells. (E) Apaf1 deficient WI38 cells partially escape from HMGA2 induced
cell death as calculated in relative survival percentage using MTT assay at day 8. (F) Attenuated levels of cleaved caspase
9 and -3 were detected in cells treated as in (E).

immunofluorescence microscopy. The results showed that in the
presence of shcaspase 2, cytochrome c release was partially
blocked in HMGA2 expressing cells (Figure 5E). Taken together,
these data implicate that caspase 2 contributed to the HMGA2-
induced apoptosis in primary cells.

DISCUSSION

Over the past few years, intense research has shown that HM-
GAs are involved in many cellular processes including prolifera-
tion, differentiation and neoplasm [35]. In the present study, we
demonstrate a previously unidentified function of HMGA2 pro-
tein to induce cellular apoptosis in primary cells. The observed
HMGA2-induced apoptosis is modulated through a mechanism
apparently distinct from that identified in an earlier study, which

showed that HMGA1, the other member of HMGA family, in-
duced apoptosis through up-regulation of CyclinA [36]. In the
present study, we detected the apoptotic processes in different
primary cells that overexpressed high level of HMGA2 (Fig-
ures 3A and 3B), and the model we used was similar to that in
previous studies with HMGA2-induced senescence [8,37]. Ap-
parently, HMGA2 is capable of either triggering an apoptosis
or a senescence process, as manifested in this and other studies,
respectively. We figure that the contradictory results may prob-
ably be ascribed to the different expression levels of HMGA2 in
the cells (Figure 1B). Interestingly, we found that WI38 cells ec-
topically expressing a relative HMGA2 mRNA level higher than
500-multiple embarked upon the apoptotic process (Figure 1B,
H2-GFP 500×), whereas cells expressing only a 100-multiple
relative HMGA2 mRNA level tended to undergo a senescence
process (Figure 1B, H2-GFP 100×). The similar phenomenon
was also seen in Narita’s study [8], in which the authors used
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Figure 5 Caspase-2 was crucial for HMGA2-induced apoptosis in WI38 cells
(A) DNA-damage foci labelled by γ H2A in WI38 cells expressing HMGA2 at day 5. The percentage of γ H2A positive cells
was shown in brackets. Scale bar: 20 μm. (B) Western blots showing the increase of γ H2A and activated caspase 2 in
WI38 cells expressing HMGA2 at indicated time. (C) Caspase-2-deficient WI38 cells partially escaped from HMGA2-induced
cell death as manifested in relative survival percentages calculated from MTT assay at day 8. (D) Attenuated levels of
cleaved caspase 2 and -3 in cells treated as in (C). (E) Immunofluorescence images showing that the cytochrome c release
from mitochondria induced by HMGA2 was interrupted by shCaspase 2. The percentage of cytochrome c diffusion positive
cells was shown in brackets. Scale bar: 50 μm.

retroviruses to express HMGA fused to GFP, driven by either
the strong CMV (cytomegalovirus) promoter or by the weaker
LTR promoter, leading to different levels of transgene expres-
sion. They found that cells expressing high levels of HMGA1/2
protein underwent an acute cell cycle arrest resulted in decrease
of cell population. In contrast, low expression level of HMGA1/2
did not cause severe growth arrest, instead, these cells exhibited
an early replicative exhaustion; however, the relative ectopically
expressing HMGA1/2 mRNA levels were not determined in Nar-

ita’s study [8]. Noticeably, in our study, the occurrence of senes-
cence phenotypes, including the increase of SA-β-galactosidase
activity and formation of the SAHF, were also detected in cells
undergoing apoptosis (Supplementary Figure S1). Interestingly,
the decreased mRNA level of Wnt2 was also detected in our cellu-
lar model (Supplementary Figure S2). This phenomenon consists
with the results in a previous report that in tumour cells, Wnt2 was
one of the genes with over 2-fold down-regulation by HMGA2
[38]. We postulate that the down-regulation of Wnt pathway upon
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HMGA2 overexpression in primary cells may be the reason for
HMGA2-induced SAHF formation and senescence phenotypes,
as described by Narita et al. [8]. Similarly, a number of other
studies also found that down-regulation of Wnt2 initiated the
SAHF formation [39,40]. Nevertheless, other mechanisms may
also be involved in HMGA2-mediated cell growth arrest. Our
data may provide an explanation of why the senescence phen-
otypes and the SAHF-like foci were detected in this apoptosis
model.

Although the partial senescence phenotypes can be observed
in the experimental model system used in the present study, our
results support the notion that the apoptotic pathway is the major
contribution to the HMGA2-induced cell growth arrest in human
primary cells. Moreover, we identified the apparent accumulation
of DNA damage in HMGA2 expressing cells, which is consistent
with the previous study [9]. Presumably, the HMGA2-induced
DNA damage may initialize the caspase-2 activation and fur-
ther active the downstream effecter caspases through MOMP.
Although the detailed mechanisms about how DNA damage ac-
tivated caspase-2 and cytochrome c release in our system remain
to be further explored, our data strongly suggest that caspase-
2 activation is a crucial process in HMGA2-induced apoptosis.
Probably, this process represents a native defence machinery to
avoid aberrant cellular proliferation and to eliminate the accumu-
lation of genetic defects in oncoprotein HMGA2-overexpressing
primary cells. Deregulation of this apoptotic pathway may confer
the cancer cells with resistance to cell death even under a severe
DNA damage stress [41]. Additionally, caspase 2 has been at-
tracting a great deal of research attention since its activation was
found to induce apoptosis in many tumour cells [42]. Thus, the
tumour suppressor function of caspase 2 may become a new op-
tion in therapeutic strategy aimed at control of tumour growth
under a high level expression of HMGA2.

To summarize, the possible signalling pathways that are in-
volved in HMGA2-mediated cell growth arrest either through
senescence or through apoptosis in primary cells has been dia-
grammatically illustrated in Figure 6. Briefly, high-level expres-
sion of HMGA2 induces cell growth arrest mainly depending
on the apoptosis process, which is activated by accumulation of
DNA damage that may initialize caspase-2 activation and fur-
ther induces MOMP to active downstream caspases 9 and -3. In
addition, we propose that down-regulation of Wnt2 may be the
reason for HMGA2-triggered SAHF assembly and senescence
phenotypes in our model.

Overall, based on data both from the present study and from
others, we propose that both senescence and apoptosis contrib-
ute to anti-proliferative function of HMGA2 proteins in primary
cells.
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