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Abstract: In 1943, McCulloch and Pitts introduced a discrete recurrent neural network as a model
for computation in brains. The work inspired breakthroughs such as the first computer design
and the theory of finite automata. We focus on learning in Hopfield networks, a special case with
symmetric weights and fixed-point attractor dynamics. Specifically, we explore minimum energy
flow (MEF) as a scalable convex objective for determining network parameters. We catalog various
properties of MEF, such as biological plausibility, and then compare to classical approaches in the
theory of learning. Trained Hopfield networks can perform unsupervised clustering and define novel
error-correcting coding schemes. They also efficiently find hidden structures (cliques) in graph theory.
We extend this known connection from graphs to hypergraphs and discover n-node networks with
robust storage of 2Ω(n1−ε) memories for any ε > 0. In the case of graphs, we also determine a critical
ratio of training samples at which networks generalize completely.

Keywords: Hopfield networks; clustering; error-correcting codes; exponential memory; hidden
graph; neuroscience

1. Introduction

In their seminal work, McCulloch and Pitts [1] developed a theory of discrete recur-
rent neural networks (DRNNs) that simultaneously contained a model for spike trains
(sequences of action potentials in neural activity), a computational theory of mind [2],
and the start of circuit design for programmable electronic computers [3]. Many variations
of these concepts have since guided research in artificial intelligence and neuroscience. We
shall focus here on the problem of learning in the special case of Hopfield networks [4],
which are McCulloch–Pitts networks with symmetric weights having dynamics on states
that always result in fixed-point attractors. Such patterns that persist under the dynam-
ics [5] are considered to be the memories of the network.

Much attention in machine learning research in the last decade has been devoted to
supervised multi-layer feedforward networks [6]. More recently, though, it has been found
that shallow models [7], and in particular, classical ones such as the Hopfield network can
help simplify architectures in deep learning. For instance, the work of [8] links attractor
networks to deep learning and transformers [9,10]. These findings also bring the field closer
to biology, where recurrence seems to be a fundamental property of neuronal circuits [11,12].
Additionally, neuroscience has benefited from the application of single-layer maximum
entropy models [13]. In particular, it has been shown that retinal spiking output [14,15]
is well-described by a second-order Lenz–Ising distribution [16], which is the underlying
maximum entropy model for Hopfield networks.

More generally, a fundamental challenge in data science is to uncover and model the
latent causes generating a set of measurements. We show how to learn Hopfield networks
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that can be used to solve this problem and outline several experimental and theoreti-
cal findings. Our main tool is a convex learning objective called minimum energy flow
(MEF), defined in Section 3 (see Definition 1), which has many useful properties. For in-
stance, networks trained with MEF can perform unsupervised clustering and denoising
(Figures 1 and 2). Moreover, MEF learning is biologically plausible (Section 3.6).
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Figure 1. How many clusters? The entropy of corrupted binary distributions are estimated by
learning DRNNs. Over several trials, 26 = 64 binary vectors in dimension n = 256 are randomly
chosen as hidden cluster centers. Independent samples of sizes m = 4096 and m = 32,768 taken
from these originals are corrupted by independently changing bits with increasing probability. Using
MEF to obtain a Hopfield network, dynamics converges data points to fixed points, and the Shannon
entropy of these is calculated (SD errors) versus that of corrupted samples (dashed lines).

Another classical problem is to find networks that store a large number of memories,
all with large basins of attraction. Such networks determine practical (nonlinear) error-
correcting coding schemes. Several solutions to this problem have recently appeared
demonstrating robust exponential capacity in Hopfield networks [17–20]. We extend the
results of [19] from the graph case to that of hypergraphs (Theorem 2), which allows us to
construct n-node networks with robust storage of 2Ω(n1−ε) memories for any ε > 0.

It was also observed in [19] (Figure 2) that there is a critical ratio of training samples
to total number of patterns at which complete storage of all patterns occurs. Here, we
investigate this phenomenon deeper and provide evidence that the critical ratio decays
exponentially with the number of vertices (Conjecture 1).

The paper is organized as follows. In Section 2, we give an outline of some applications
that are touched upon by this work. In Section 3, we present the requisite background
for Hopfield networks and minimum energy flow learning, including a new inequality
relating MEF to probability density estimation (Theorem 1). Our main results appear in
Section 4, which include an application to experimental neuroscience as well as precise
statements of main theoretical and computational findings. Next, in Section 5, we give
detailed proofs of our mathematical results. Finally, we close with a discussion in Section 6
followed by a short conclusion in Section 7.
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Figure 2. Hidden fingerprints. Unsupervised clustering of corrupted versions of eighty 4096-bit
(64× 64) human fingerprints [21]. From top row to bottom (each column represents a different
fingerprint): one sample of a 30% corrupted fingerprint shown during learning, novel 40% corrupted
fingerprint shown to network after training, result of one iteration of dynamics initialized at a novel
pattern, and converged fixed-point attractor bit-for-bit identical to the original fingerprint.

2. Applications

The main motivation for this work was to extend the theory of learning and memory
capacity in Hopfield DRNNs, which at a high level can be viewed as denoising autoen-
coders for binary variables. However, the setup is sufficiently general to apply to clustering,
signal modeling, error-correcting codes, graph theory, and learning theory. We briefly
outline several of these applications of Hopfield networks.

In a typical example, an underlying true distribution is sampled then corrupted with
noise, and the goal is to learn network parameters (weights, thresholds) uncovering the
original distribution and sources (Figures 1 and 2). The recurrent dynamics can be used to
autoencode or label any new data point with its fixed-point attractor (Figure 2), and these
labels are interpreted as the network’s best guesses for latent structure in the samples.

2.1. Unsupervised Clustering

A classical problem in data science is to determine the number of true sources or
clusters that generate a specific set of samples [22], ideally with as few assumptions as
possible. For instance, in the specific problem of image category labeling, unsupervised
deep learning approaches have been found to be powerful [23]. Many other attacks on
the problem are possible, including hidden Markov models with Bayesian expectation–
maximization [24,25] and dimensionality reduction with PCA [26], among others [27]. We
investigate minimizing the energy flow objective function (Definition 1) over unlabeled
data sets to obtain Hopfield networks that cluster them.

As a simple example, consider a source distribution supported on several binary
vectors (the hidden clusters) in dimension n and assume access to it only through m
noisy samples. After training, we may estimate the Shannon entropy [28] of the original
distribution by calculating the entropy over the fixed points determined by dynamics
initialized at the data. The results are plotted in Figure 1 for a particular setup. Note
that when both the sample size and corruption level are small, this entropy estimate is
inaccurate since noisy original clusters are stored as distinct memories. However, with a
sufficient number of samples m, the estimate matches the underlying truth.

The general success of entropy estimation with this method is intimately connected
to whether the underlying causes in the data are being correctly or approximately au-
toencoded by the network. One way to illustrate this observation is by generating noisy
samples as before but with the hidden sources arising from natural image data.
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In Figure 2, we summarize the results of such an experiment. A set of binarized human
fingerprints was corrupted with significant noise (top row in Figure 2), and a Hopfield
network was trained with MEF on these data. Having never seen original fingerprints and
with unlabeled information, the network nonetheless learns each original source as a fixed
point with a large basin of attraction. For instance, as shown in Figure 2, dynamics takes
40% corrupted samples (second row) to the exact originals (bottom row).

2.2. Natural Signal Modeling

Modeling the structure of signals arising from nature is another classical topic [13].
With the appropriate discretization, a natural signal ensemble can be studied by learning a
Hopfield network; for instance, in the pursuit of image compression [29,30], perceptual
metrics [31], or rate-distortion analyses [32,33]. These networks and their memories can
also be used to understand data from neuroscience experiments [34,35]. In particular, it is
possible to uncover reoccurring spatiotemporal activity patterns in spontaneous neural
activity. We explain this finding in Section 4.1. The software package HDNET [36] was
used to perform analyses, and it is a general tool for neuroscience that includes neural
modeling with MEF and Hopfield networks.

2.3. Error-Correcting Codes

Each Hopfield network can be thought of as an error-correcting coding scheme about
its fixed points. In recent years, there has been much activity [17–20] finding networks
with large memory capacities that also have large basins of attraction around fixed points
(so-called robust networks). In particular, it has been shown that there are Hopfield
networks with robust exponential capacity (see Section 3.2), and thus can perform practical
error-correction. We add to this body of work by generalizing [19] to find new families of
error-correcting codes arising from larger attractor sets. See Section 4.2 for more details
(specifically, Theorem 2 and Corollary 1).

2.4. Computational Graph Theory

A classical approach of [37] is to identify solutions to graph problems, such as finding
short paths between vertices, with energy minima in Hopfield networks. An appropri-
ate network could, for instance, give approximate solutions to the Travelling Salesman
Problem by converging dynamics initialized at an input graph. More generally, many NP-
complete and NP-hard problems can be formulated as finding energy minima in Lenz-Ising
models [38], with practical applications leveraging quantum devices [39].

Another basic task in computer science is to efficiently find large cliques in graphs (the
NP-complete max clique problem). A simplification of this unsolved challenge is to uncover
a single clique that has been hidden with noise, called the hidden clique problem [40]. As a
direct consequence of the theory in [19], Hopfield networks can learn to solve this problem
by placing each clique as a local energy minimum of the dynamics. Here, we extend this
finding to the case of hypergraphs (Theorem 2), thereby providing an efficient DRNN
solution to the hidden hyperclique problem.

2.5. Theory of Learning

A theory of network computation in brains was formulated in [1], but the problem of
learning was largely left open. Several strategies for determining underlying parameters
(abstract synaptic weights) in McCulloch–Pitts networks have since appeared such as
Hebb [4,41,42], perceptron [43], delta [44,45], and contrastive divergence [46] rules; see
Table 1. We explore minimum energy flow in this context and describe several of its useful
properties. We also compare it to these classical approaches to learning (Figure 3).
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Figure 3. Learning to find hidden cliques. As a function of the ratio of random training samples
to total number of patterns to memorize, the fraction of all k-cliques in v-vertex graphs stored in a
Hopfield network on n nodes is calculated, trained with the learning rules OPR, perceptron, delta,
and MEF (Table 1) using all cliques as a test set (n = 28, v = 8, k = 6; 500 trials, SD errors).

Table 1. Learning rules to train Hopfield networks of binary linear threshold neurons.

Learning Rule Principle

Outer-product (OPR) Hebb’s rule sets weights to be correlation
Perceptron Supervised pattern memorization
Delta Least mean square objective function
Contrastive divergence Maximum likelihood estimation by sampling
Minimum energy flow (MEF) Approximate maximum likelihood estimation

3. Background

In this section, we present the abstract model and concepts that will be used through-
out the paper, including a theory of learning with minimum energy flow. We also outline
the advantages of this approach to training Hopfield networks.

Let 〈x, y〉 = x>y denote the inner product between two column vectors x and y (we
also set M> to be the transpose of a vector or matrix M). Furthermore, ‖x‖2 = 〈x, x〉1/2

and ‖x‖1 = |x1|+ . . . + |xn| are the `2 and `1 norms of x, respectively.

3.1. Hopfield Networks

Our basic objects are Hopfield networks [4] on n binary nodes. Given a real symmetric
weight matrix W = W> ∈ Rn×n with zero diagonal (Wii = 0 for all i) and a threshold vector
θ ∈ Rn, an energy function on states x = (x1, . . . , xn)> ∈ {0, 1}n is defined by:

Ex = −1
2

x>Wx + x>θ = −∑
i<j

Wijxixj +
n

∑
i=1

xiθi. (1)
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These weights and thresholds also parameterize a general Lenz–Ising [16] distribution
p = (px)x∈{0,1}n :

px =
e−Ex

Z
, Z = ∑

x
e−Ex . (2)

The Lenz–Ising model is known to have maximum entropy over all distributions with its
first- and second-order statistics [47] and often can be determined from very few of its
samples [48–50].

The pair (W, θ) determines asynchronous deterministic (zero-temperature) linear
threshold dynamics on states x by replacing, in some fixed order, each xi at node i with:
xi = 1 if ∑j 6=i Wijxj > θi; and xi = 0, otherwise. These dynamics are compatible with the
energy function as it does not increase energy (Wi is the ith column of W):

∆Ei = −∆xi(W>i x− θi). (3)

Using (3), one can verify that each initial state x ∈ {0, 1}n converges to a fixed-point
attractor x∗ in a finite number of such steps through all nodes:

x∗ = H(Wx∗ − θ). (4)

Here, H is the Heaviside function; that is, H(r) = 1 if r > 0; and H(r) = 0, otherwise.

3.2. Robust Capacity

We now formalize the notion of robust memory storage for families of Hopfield
networks. The p-corruption of x is the random pattern xp obtained by replacing each
xi by 1− xi with probability p, independently. The p-corruption of a state differs from
the original by pn bit flips on average so that for larger p it is more difficult to recover
the original binary pattern; in particular, x 1

2
is independent of x. Some examples of the

p-corruption of binary fingerprints for p = 0.3 and p = 0.4 can be found in Figure 2.
Given a Hopfield network, the fixed-point x∗ has (1− ε)-tolerance for a p-corruption

if the dynamics can recover x∗ from x∗p with a probability of at least 1− ε. The α-robustness
α(X, ε) for a set of states X is the most p-corruption every state (1− ε)-tolerates.

Finally, we say that a sequence of Hopfield networks robustly stores states Xn with
robustness index α > 0 if the following limit exists and equals α:

lim
ε→0+

lim
n→∞

α(Xn, ε) = α. (5)

Intuitively, if α is the robustness index, then the chance that dynamics do not recover
a p-corrupted memory, p < α, can be made as small as desired by devoting more neurons.

3.3. Learning Networks

Given an empirical distribution q corresponding to a set of data X, it is a classical goal
to determine a network with X as memories. Important for applications is that the network
has the ability to denoise a corrupted version of x ∈ X by converging dynamics; that is,
the network functions as an error-correcting coding scheme. Moreover, a practical desire is
to estimate such networks from noisy data.

Various scalable approaches to solving this problem are briefly summarized in Table 1.
We shall compare these all on the task of learning cliques in Figure 3.

To provide motivation for MEF, we explain its connection to density estimation. Given
a data distribution q = (qx)x∈{0,1}n ∈ R2n

, it is natural to try and minimize ‖q− p‖, where
p is the Lenz–Ising model (2) parameterized by (W, θ), and ‖ · ‖ is a norm between vectors
in R2n

. It is not clear that accomplishing this would determine networks that have X as
attractors, but as we will see, it can be useful for such purposes. One difficulty in dealing
with such a minimization is that the state space {0, 1}n is exponential in the number of
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nodes n; in particular, even if the support of q is small (i.e., few nonzero coordinates),
an exponentially large partition function Z is involved.

A subtle modification of the above optimization is the idea to minimize the difference
between data and its projection onto the model distribution:

min
W,θ

∥∥∥∥q− 〈q, p〉
〈p, p〉 p

∥∥∥∥. (6)

Although still intractable, we shall see that the quantity to be minimized in (6)
is bounded above by the energy flow EF (Definition 1), which is significantly easier
to optimize.

3.4. Minimum Energy Flow

Given a binary pattern x, let N1(x) be the set of all those binary vectors one bit
different from x. We learn Hopfield networks from data having empirical distribution q by
minimizing the following objective function [21].

Definition 1. (Energy Flow). The energy flow EF is:

EF(W, θ) = ∑
x∈X

qx ∑
x′∈N1(x)

e(Ex−Ex′ )/2. (7)

There are several ways to motivate minimizing energy flow (7) to fit networks. Aside
from several experimental [21,30–35] and theoretical [19] works detailing its utility and
properties, a direct explanation is that provably making EF small forces X to be attractors
of the network (if they can be). It should be somewhat surprising that minimizing (7) forces
nonlinear identities (4) of the dynamics.

We present a mathematical derivation of energy flow EF, making its genesis somewhat
less ad hoc. Instead of working directly with the projection objective (6), we shall dominate
it with the energy flow (7).

Theorem 1. The energy flow objective EF satisfies the inequality:∥∥∥∥q− 〈q, p〉
〈p, p〉 p

∥∥∥∥
2
≤ 2

σ2
EF, (8)

in which σ2 is the second smallest singular value of a certain matrix M (defined in Section 5).

The relation above is rather striking; proximity of data q to its projection onto the
full Lenz–Ising model (2) is bounded by a multiplication of a (data-sized) positive sum of
exponential-linear functions with a single structural statistic σ−1

2 > 0.
We shall prove Theorem 1 in Section 5 using a useful matrix inequality of independent

interest (Proposition 1).

3.5. Properties

We outline various properties of estimating neural networks from data using MEF.
First, note that as EF (7) is a positive sum of exponential-linear functions, it is convex in its
parameters [51]. Additionally, EF has a number of terms that are bilinear in the node count
and size of data. The networks found by minimizing energy flow determine probability
distributions via (2) and the inequality (8) gives a relationship between the objective and
distance from data to model. This allows for the estimation of large Lenz–Ising models that
model the experimental data well [34,35]; see also Section 4.1.

Minimizing the energy flow determines robust networks that can uncover clean
sources from noisy data (see Figures 1–4). In special cases, one can even minimize the
objective function exactly to analytically answer unsolved classical problems such as
proving robust exponential storage in Hopfield networks [19] (Theorem 2). MEF also finds
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near-optimal solutions to rate-distortion problems for natural signals [30,32,33]. Moreover,
MEF exhibits improved learning and generalization versus classical rules as is shown in
Figure 3 (see also [21]).

Finally, MEF is a local rule in that a weight changes (resp. threshold) only as a
function of feedforward input to its two connected nodes. This last property deserves
further discussion.

3.6. Minimizing Energy Flow Is Biologically Plausible

We call a descent down the gradient of the energy flow (7) given a single pattern
X = {x} the MEF learning rule. Weight and threshold changes for one step are:

∆Wij ∝ −xj∆xi exp(∆xiFi/2) = −xj∆xi exp(−∆Ei/2),

∆θi ∝ ∆xi exp(∆xiFi/2) = ∆xi exp(−∆Ei/2).
(9)

Here, Fi = W>i x − θi is the feedforward input to node i. Note that weight changes
above are not symmetric. Since the energy function is linked to attractor dynamics, it is
only important that we have the same energy function but with symmetric weights. Thus,
weight changes are symmetrized to achieve this: (∆W + ∆W>)/2. As these directions
descend the gradient of a smooth convex function, traversing them can be very fast [52].

Rule (9) is local and can be understood as a combination of plasticity mechanisms
found in biological neural networks. Four cases can be distinguished, depending on the
activity of nodes i and j. When neurons are opposite, it can be interpreted as an induction of
long-term depression (LTD) mediated by presynaptic activity in the absence of postsynaptic
activity. On the other hand, when both are active, the effect is long-term potentiation (LTP)
mediated by coincident pre- and postsynaptic activity. The negative exponent in the weight
update here can be interpreted as a form of homeostatic plasticity (HSP): the stronger the
postsynaptic cell is activated (measured by the feedforward input Fi), the stronger the effect
of synaptic potentiation is attenuated [53].

3.7. Extensions

There are a number of ways to modify the preceding. Larger Hamming neighborhoods
Nh can be incorporated (e.g., double bit flip neighborhoods N2) as well as adding regu-
larizers to the objective function such as an `1-norm constraint. Moreover, other discrete
dynamical systems can be incorporated into this framework (e.g., Potts models [54]). We
also note that the energy flow objective can be extended so that higher-order correlations
(e.g., third-order Lenz–Ising models) can be captured by MEF.

Inspiration for minimizing energy flow [21] as an objective to learn Hopfield networks
is the density estimation work of [55]. Although the MEF objective function presented here
and that of [55] are similar, the latter has the property that it is identically zero for data
with full support (i.e., all binary vectors appear in the data).

4. Results

Our main results are the following. We use MEF to train a Hopfield network over
a full recording of spontaneous spike data and reveal reoccuring spatiotemporal activity
patterns in the neural activity (Figure 4). We construct Hopfield networks with robust
exponential memory in hypergraphs, and we show that MEF can be used to efficiently
learn them (Theorem 2). These networks also naturally define new error-correcting codes
(Corollary 1). In the case of graphs, there is a critical ratio of samples when the networks
generalize, and we find that it decays exponentially in the number of vertices (Figure 5).
We used the Python package [36] to train networks with MEF and perform analyses.
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Figure 4. Hidden neural activity. A polytrode recording [56] is analyzed using Hopfield networks.
Binary windows of size 50× 50, corresponding to 50 neurons and 50 consecutive 2 ms time bins, are
extracted from spike timings to train 2500-bit networks with MEF. Over 90 s of data, each circle in the
figure represents an attractor initialized at the 100 ms long 50× 50 spatiotemporal window of activity
starting at a bin. The vertical height of a circle is the logarithm of the corresponding attractor’s
first appearance in sequential order; the horizontal position indicates the time bin (left-to-right).
Repeating circles along a horizontal line suggest reoccurring neural activity.
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Figure 5. Critical learning of cliques in Hopfield networks. For each value of v = 32, 48, 64, 80 (and
different v/k = 2, 3, 4) over five trials, the logarithm of the ratio of the number of training k-cliques
vs. all to achieve a critical 50% accuracy (see [19], Figure 2) on 1000 test cliques is plotted.
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4.1. Experimental Neuroscience

We extend the work of [34] and learn a network over all 5 min of data and all neurons
in a polytrode recording [56] through layers from an anesthetized cat visual cortex area
18. The result of the analysis is presented in Figure 4 and suggests significant repetition
of neural activity in the spike train, uncovered by tracking the sequence of fixed-point
(memory) labels as they appear in the data over time (each black circle represents a single
100 ms spatiotemporal window of activity). Note that the method is deterministic and
thus gives canonical features for a data set as well as Lenz–Ising parameter estimates. See
also [57] for another modern approach to finding structure in neural data.

4.2. Hypergraph Codes

We generalize clique learning [19] to the case of hypergraphs. Recall that robust
storage is the ability to recover each n-bit memory almost surely as n → ∞, given a
probability p that there is an error at each node, whenever p is less than some positive best
constant α > 0, called the index of robustness (see Section 3.2).

The theory from [19] shows that it is possible to store 2Ω(
√

n) memories with robustness
index α = 1/2. We will prove that for every d, there is a Hopfield network that stores

2Ω(nd/(d+1)) memories robustly. When d = 1, this recovers the result of [19].

Theorem 2. (A) For every d ≥ 1, there exists a Hopfield network on n nodes that stores 2Ω(nc)

memories robustly, where c = d/(d + 1). The index of robustness satisfies:

α =
1

2d(d + 1)− 2d
. (10)

(B) Such a Hopfield network can be trained using the MEF rule with index of robustness:

α =
1

2d+1(d + 1)− 4d
. (11)

The following is a direct application to the theory of error-correcting codes.

Corollary 1. For any ε > 0, there exist n-node Hopfield networks that error-correct 2Ω(n1−ε)

patterns through a binary symmetric channel with crossover probability α given by (10).

As the proof will show, Theorem 2 is true even with only a single synchronous iteration
of the dynamics. In particular, memories corrupted with αn bits of error on average can be
corrected from a single parallel recurrent pass through all nodes.

4.3. Critical Learning

The following computational result illustrated in Figure 5 demonstrates critical learn-
ing in Hopfield neural networks. In [19] (Figure 2), it was experimentally shown that there
is a critical number of training samples at which Hopfield networks trained with MEF
on random subsets of k-cliques in graphs on v = 2k vertices store all such cliques. We
extend this finding by computing for large graphs the ratio of this critical number c(v) of
samples to total number (v

k) of k-cliques; the result is that the ratio decays exponentially in
the number of vertices.

Conjecture 1. The critical ratio c(v)/(v
k) for learning all k-cliques in graphs on v vertices using

MEF decays exponentially in the number of vertices v = 2k.

Theoretical verification of this conjecture is the focus of future work.

5. Proofs

We provide complete proofs of the mathematical results stated in Theorems 1 and 2.
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5.1. MEF Inequality

Before proving inequality (8) from Theorem 1, we first need to state a basic fact relating
projections onto principal eigenvectors of a positive semidefinite matrix.

Proposition 1. Let A ∈ Rn×n be an n×n singular positive semidefinite matrix and let {u1, . . . , un}
be an orthonormal set of eigenvectors of A corresponding to eigenvalues 0 = λ1 ≤ . . . ≤ λn.
Suppose that the rank of A is n− 1 (so that λ2 > 0). Then, for any x ∈ Rn, we have:

‖x− 〈x, u1〉u1‖2
2 ≤

x>Ax
λ2

. (12)

Proof. Since {u1, . . . , un} is an orthonormal basis of Rn, we can write x = ∑n
i=1 αiui, for real

numbers αi = 〈x, ui〉. A straightforward computation gives:

x>Ax =
n

∑
i=2

α2
i λi ≥ λ2||x− 〈x, u1〉u1||22. (13)

Rearranging produces the inequality in the theorem statement.

Corollary 2. Suppose that a 2n × 2n matrix M has eigenvector p and second smallest singular
value σ2 > 0. Then, ∥∥∥∥q− 〈q, p〉

〈p, p〉 p
∥∥∥∥

2
≤ ‖Mq‖2

σ2
≤ ‖Mq‖1

σ2
. (14)

Proof. Set u1 = p
〈p,p〉1/2 with A = M>M in Proposition 1, take the square root of both sides,

and use the inequality ‖ · ‖2 ≤ ‖ · ‖1.

Proof of Theorem 1. There are several ways to construct a matrix M so that we can apply
Corollary 2. One move is to define (recall N1 from Section 3.4):

Myx = e(Ex−Ey)/2, y ∈ N1(x); Myx = 0, x 6= y /∈ N1(x); Mxx = − ∑
y 6=x

Myx. (15)

This matrix has column sums zero, and it can be readily checked that p as in (2) is an
eigenvector with eigenvalue 0 for M since it satisfies detailed balance:

Mxy py = Myx px. (16)

Note also that the graph for the matrix M is connected (so that σ2(M) > 0).
Let us examine the right-hand side of inequality (14) in light of this choice of M.

Decompose M = D + T into a nonpositive diagonal matrix D and a nonnegative matrix T
with zeroes on its diagonal. From the triangle inequality, we have:

‖Mq‖1 ≤ ‖Dq‖1 + ‖Tq‖1. (17)

Note that T and q are both nonnegative so that (1 is the all ones vector):

‖Tq‖1 = 〈1, Tq〉 = 〈T>1, q〉 = ‖Dq‖1 = ‖(−D)q‖1 = ∑
x

qx ∑
x′∈N1(x)

Mx′x = EF. (18)

The inequality (8) now follows directly from combining (14), (17), and (18).

5.2. Hyperclique Theorem

Our approach is inspired by [19], which proceeded by defining nodes of a Hopfield
network to correspond to possible edges on a vertex set, with memories corresponding to
certain graphs on that vertex set. In our case, nodes will correspond to hypercliques on a
vertex set, and memories will correspond to hypergraphs on that vertex set.
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Consider a set V of v vertices and define a corresponding Hopfield network on
n = ( v

d+1) nodes, where each node i corresponds to a (d + 1)-element subset Vi ⊂ V (the
case of d = 1 is analogous to the approach of [19]). Note that for clarity throughout, we will
use nodes to refer to neurons of the Hopfield network, and vertices to refer to the elements
of the underlying set V used to define the network.

Given a node i and a d-uniform hypergraph G on vertex set V, we say that i is complete
(otherwise incomplete) if the corresponding subset Vi of V is a hyperclique; that is, if all
d-element subsets of Vi are hyperedges of G. We define x(G) to be the assignment x of
states such that xi = 1 if and only if i is complete.

Our goal will be to set weights such that the set of memories contains x(G) for almost
all d-uniform hypergraphs G on the vertex set V, and that these memories are stored
robustly. Since the number of d-uniform hypergraphs on vertex set V is 2Θ(vd), the number
of memories of the Hopfield network will be 2Ω(vd). Because n = ( v

d+1) = Θ(vd+1), we

have 2Ω(vd) = 2Ω(nd/(d+1)), as desired.
For nodes i, j in the Hopfield network, we write i ∼ j if we have |Vi ∩ Vj| = 1. We

write w(G, i) for the number j ∼ i such that j is complete. We will consider the set S of
graphs G such that w(G, i) satisfies the following conditions:

1. If i is complete,

w(G, i) =
(d + 1)v

2d (1± o(1)). (19)

2. If i is incomplete,

w(G, i) =
dv
2d (1± o(1)). (20)

3. The number of complete i is

(1± o(1))2−(d+1)
(

v
d + 1

)
. (21)

Lemma 1. With probability 1− o(1), a random d-uniform hypergraph G is in S.

Proof. First, we consider the probability that condition 1 holds. Let us suppose that a
certain (d + 1)-hyperclique i is present in G, but no other hyperedges are known. Consider
a hyperedge-exposure martingale Xk, where the remaining hyperedges of G are presented
in some order, and Xk represents the expected value of w(G, i) after revealing which of the
first k hyperedges are present.

Note that Xk 6= Xk−1 if and only if the hyperedge last revealed is present in some
hyperclique j ∼ i. This hyperedge must share d− 1 vertices with i, which means that it
is an element of exactly two such hypercliques j. Therefore, |Xk − Xk−1| ≤ 2. Applying
the Azuma–Hoeffding inequality [58,59], we can upper bound the probability that w(G, i)
deviates markedly from expectation:

Pr
[∣∣∣∣w(G, i)− (d + 1)v

2d

∣∣∣∣ > √v log v
]
≤ exp[(log v)2/8]. (22)

Thus, the probability this condition holds for every i is at most ( v
d+1) exp[(log v)2/8].

We now consider the probability that condition 2 holds. As before, suppose that a
certain (d + 1)-hyperclique i is present in G and that we know its hyperedges but no others.
Consider a hyperedge-exposure martingale Xk, where the remaining hyperedges of G are
presented in some order and Xk represents the expected value of w(G, i) after revealing
which of the first k hyperedges are present. Once more, |Xk − Xk−1| ≤ 2, and we obtain
the same bound on the probability of condition 2 as in condition 1.

Finally, we consider the probability that condition 3 holds. Consider a hyperedge-
exposure martingale Xk where all the hyperedges of G are presented in some order and
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Xk represents the expected number of (d + 1)-hypercliques after revealing which of the
first k hyperedges are present. Note that |Xk − Xk−1| < v, since at most v hypercliques can
contain a certain hyperedge. Now we apply the Azuma–Hoeffding inequality:

Pr
[∣∣∣∣# of hypercliques − 2−(d+1)

(
v

d + 1

)∣∣∣∣ > v3/2 log v
]
≤ exp[(log v)2/2]. (23)

Combining our results together, we find that the probability that none of conditions 1,
2, and 3 are violated is at most:(

v
d + 1

)
exp[(log v)2/8] +

(
v

d + 1

)
exp[(log v)2/8] + exp[(log v)2/2] = o(1). (24)

It thus suffices to prove that every element of S is stored robustly by our Hopfield
network. To simplify the model, we will suppose that all weights are a constant x ≥ 0 for
i ∼ j and otherwise 0. We will also assume that θi equals z for every i. See [19] (Section 5.1)
for more detail on such symmetry considerations.

Consider G ∈ S, and let i be a node of the network.

Proof of Theorem 2. In order to prove robust storage, we must consider two sets of condi-
tions. First, fixed-point conditions are needed to ensure that every element of S is indeed a
memory. There are two cases to be considered.

If i is complete, then we require xi = 1 to be preserved by the dynamics. This condition
is equivalent to w(G, i)x − vz > 0. From the definition of S, we have
w(G, i) ≥ (d+1)v

2d (1− o(1)), so it suffices to satisfy:

0 <
(d + 1)v

2d (1− o(1)) · x− vz. (25)

Alternatively, if i is incomplete, then we require xi = 0 to be preserved by the dynam-
ics, given by w1x− vz < 0. From the definition of S, we have w(G, i) ≤ dv

2d (1 + o(1)), so it
suffices to satisfy:

0 >
dv
2d (1 + o(1)) · x− vz. (26)

Next, we shall need conditions to ensure that every α-corrupted element of S is
reconstructed under the dynamics. We will work with the stronger condition that the
reconstruction takes place in a single step. Let w′(G, i) denote the number of j ∼ i such
that j is incomplete; thus, w(G, i) + w′(G, i) = (d + 1)(v− (d + 1)). Then, after corruption,
the number of j ∼ i such that xj = 1 is given by:

p · w′(G, i) + (1− p) · w(G, i) = (1− 2p) · w(G, i) + p(w(G, i) + w′(G, i))
= (1− 2p) · w(G, i) + p(d + 1)(v− (d + 1)).

(27)

Once again, there are two cases.
If i is complete, then we require xi = 1 to be recovered by the dynamics, so we

must have:
0 < ((1− 2p) · w1 + p(d + 1)(v− (d + 1)))x− vz. (28)

It thus suffices to satisfy:

0 <
(
(1− 2p) · (d+1)v

2d (1− o(1)) + p(d + 1)(v− (d + 1))
)

x− vz

=
(
(1− 2p) · dv

2d + p(d + 1)v
)
(1− o(1))x− vz.

(29)

This inequality follows immediately from (25), since we have assumed x ≥ 0 and
d ≥ 1.
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Alternatively, if i is incomplete, then we require xi = 0 to be recovered by the dynamics,
so we must have:

0 > ((1− 2p) · w(G, i) + p(d + 1)(v− (d + 1)))x− vz. (30)

It thus suffices to satisfy:

0 >
(
(1− 2p) · dv

2d (1 + o(1)) + p(d + 1)(v− (d + 1))
)

x− vz

=
(
(1− 2p) · dv

2d + p(d + 1)v
)
(1 + o(1))x− vz.

This inequality immediately implies (26), where we again use x ≥ 0 and d ≥ 1.
We conclude that robust storage is satisfied if and only if both (25) and (31) are satisfied.

Since we can pick x and z arbitrarily, it suffices to have:

(d + 1)v
2d (1− o(1)) >

(
(1− 2p) · dv

2d + p(d + 1)v
)
(1 + o(1)). (31)

This inequality reduces to

p <
1− o(1)

2d(d + 1)− 2d
, (32)

proving part (1) of Theorem 2.
In order to prove part (2), we must find the minimum of the expression for energy flow:

1
|S| ∑

x(G)|G∈S
∑

x(G,i)|i∈V
exp

[Ex(G) − Ex(G,i)

2

]
, (33)

where x(G, i) denotes the state of the Hopfield network in which xi is switched from the
state x(G). For a given value of z, we wish to find the value of x such that (33) is minimized.
For each choice of (G, i) in the summand, there are two possibilities. If i is complete, then
Ex(G) − Ex(G,i) = −w(G, i) · x + z. If i is incomplete, then Ex(G) − Ex(G,i) = w(G, i) · x− z.

Thus, we seek to minimize the following with respect to x:

1
|S| ∑

G∈S, i complete
exp

[
−w(G, i) · x + z

2

]
+

1
|S| ∑

G∈S, i incomplete
exp

[
w(G, i) · x− z

2

]
. (34)

Leaving off the initial constant and taking the derivative with respect to x, we seek
x satisfying:

0 = ∑G∈S, i complete−w(G, i) exp
[
−w(G,i)·x+z

2

]
+∑G∈S, i incomplete w(G, i) exp

[
w(G,i)·x−z

2

]
.

(35)

It is simple to verify that this critical point for x exists uniquely and represents a
global minimum.

From the definition of S, we have:

0 = ∑G∈S, i complete−w(G, i) exp
[
−w(G,i)·x+z

2

]
+∑G∈S, i incomplete w(G, i) exp

[
w(G,i)·x−z

2

]
= ∑G∈S, i complete−

(d+1)v
2d (1± o(1)) exp

[
− (d+1)v

2d (1±o(1))·x+z
2

]
+∑G∈S, i incomplete

dv
2d (1± o(1)) exp

[ dv
2d (1±o(1))·x−z

2

]
.

(36)
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Again from the definition of S, we know the approximate number of complete i for
each G, giving us:

(1± o(1))2−(d+1)( v
d+1) · (d + 1) · exp

[
− (d+1)v

2d (1±o(1))·x+z
2

]
= (1± o(1))

(
1− 2−(d+1)

)
( v

d+1) · d · exp
[ dv

2d (1±o(1))·x−z
2

]
.

(37)

Simplifying, we obtain:

exp

− (2d+1)v
2d (1± o(1)) · x

2
+ z

 = (1± o(1))
(

2d+1 − 1
)

v · d
d + 1

. (38)

Thus, we have:

x = (1± o(1))
2d+1

(2d + 1)v
· (z− (1± o(1))(d + 1) ln 2). (39)

We obtain the same expression if we minimize energy flow with respect to z while
holding x constant. Therefore, the minimum occurs for any x and z satisfying the above
equation. By picking a z that is large enough, we find that a minimum occurs at:

x = (1± o(1))
2d+1

(2d + 1)v
z. (40)

This setting for x and z satisfies (25) and (31) if we have:

p < (1− o(1))
1

2d+1(d + 1)− 4d
, (41)

completing our proof of Theorem 2.

Note that in the case d = 2, the theorem shows that a Hopfield network can reconstruct
almost every graph from its set of triangles, even with significant corruption.

6. Discussion

Although we are motivated by problems involving memory storage and capacity for
recurrent networks, there are several other applications (Section 2) of the methods and
results (Section 4) presented here. For example, unsupervised clustering and denoising
can be used to understand experimental data coming from science (Figure 4), and new
DRNN-based error-correcting codes are poised for practical effect (Corollary 1).

The findings here also suggest hypotheses of synaptic adaptation in neuroscience
that can be verified experimentally. In particular, it is possible to dissociate between the
different learning rules found in Table 1. One intriguing possibility arising from this work
is that minimizing energy flow is a scalable approximation to the powerful (but intractable)
maximum likelihood estimation for adjusting synaptic strength in neurons.

There are several directions to take this work further. For instance, it would be
interesting to generalize to other combinatorial patterns sets, as well as incorporate the full
McCulloch–Pitts time-series model [60]. It is also possible to view MEF learning of robust
pattern storage in the context of Probably Approximately Correct (PAC) theory [61] from
computer science, but we have not explored the connection fully.

Finally, the concept of criticality has deep ties to neuroscience and complex systems
theory [62,63] and is believed to be an important signature of intelligent systems performing
a computation. With Figure 5 and Conjecture 1, we suggest that critical learning might be a
key property of Hopfield networks. In particular, full generalization of the networks to
unseen patterns appears to take place at sharp phase transitions.
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7. Conclusions

Minimizing energy flow to learn parameters in Hopfield networks has applications in
memory capacity, unsupervised clustering, signal modeling, error-correcting codes, graph
theory, and neuroscience. Moreover, networks determined using the convex MEF objective
are dissociable from classically trained ones and display characteristics such as locality,
homeostasis, scalability, robustness, and generalization.
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