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(from VA), patients with moderate-to-
severe TBI should be screened for BPPV. 
Future prospective TBI studies should 
routinely screen for BPPV since its force 
dependency indicates that post-traumatic 
BPPV could help to stratify the severity 
of head impact, even in a case designated 
as mild TBI. Finally, the nomenclature 
for ‘BPPV’ may need reappraising (e.g. 
vestibular lithiasis) since its occurrence 
sans vertigo may be a hindrance to BPPV’s 
diagnosis and treatment in patients with 
TBI with VA.
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Naïve B cells followed by 
aquaporin-4 antibodies 
characterise the onset of 
neuromyelitis optica: evidence 
from stem cell transplantation

INTRODUCTION
Neuromyelitis optica spectrum disorders 
(NMOSDs) are mediated by antibodies 
directed against the extracellular domain 
of aquaporin-4 (AQP4). These antibodies 
form a key pillar in diagnostic criteria 
for NMOSD.1 Yet, the immunological 
mechanisms underlying the generation of 
AQP4 antibodies during disease initiation 
are incompletely understood, principally 
because this is an asymptomatic period. To 
date, AQP4 antibodies and symptomatic 
NMOSD are known to develop several 
years after myasthenia gravis, typically 
post-thymectomy,2 or in the context of 
bone marrow transplantation.3 These 
examples suggest the immunopathogen-
esis of symptomatic NMOSD typically 
requires many years to mature.

The duration and nature of the immune 
response maturation can provide insights 
into the cellular processes responsible for 
AQP4 antibody production, in partic-
ular the potential relevance of long-lived 
plasma cells versus germinal centre reac-
tions.4 5 Hence, the fundamental immu-
nopathogenesis may inform the rational 
selection of targeted immunotherapeu-
tics.4 5

Here, we describe a patient who devel-
oped post-transplant NMOSD, and 
capture the key period of acute clinico-
serological disease conversion with 
serial biological samples. The findings 
revealed herein provide several unique 
insights into the immunopathogenesis of 
NMOSD.

MATERIALS AND METHODS
Phenotype and patient samples. Clin-
ical and radiology data collection was 
prospectively gathered, along with serial 
blood samples (both cells and serum), and 
archived for research purposes.

AQP4-antibodies. Live cell-based assays 
were performed, with minor modifica-
tions from published protocols.6 In brief, 
HEK293T cells were transfected with 
cDNA encoding full-length AQP4 and, 
while live, labelled with patient IgG or 
IgM which, after fixation, were detected 
with isotype-specific secondary antibodies 
(product numbers 709-585-098, Jackson 
labs, and A-21216, Thermofisher, respec-
tively). Prior to AQP4-IgM detection, 
IgGs were fully depleted with protein G 
beads. All positive results were titrated to 
endpoint dilutions.

B cell populations. From liquid nitrogen 
archived whole blood, mass cytometry 
immunophenotyped several populations 
including B cells (details in online supple-
mental data). Naïve B cells were defined as 
CD19+CD20+CD27−IgD+.

RESULTS
Clinical features
A boy (between 1 and 2 years of age) with 
STAT3 gain-of-function mutation received 
a matched unrelated donor peripheral 
blood stem cell transplant to treat severe 
refractory multisystem autoimmune 
disease, including neonatal giant cell hepa-
titis and complete lipodystrophy.

After an unremarkable early post-
transplant course, on day 49 he developed 
a fever and respiratory distress, with no 
infective cause identified (figure 1A). On 
day 61, oedema, rash and diarrhoea led 
to a diagnosis of graft-versus-host disease 
(GVHD), confirmed on upper gastro-
intestinal tract biopsy and treated with 
methylprednisolone (2 mg/kg) from day 
68. Subsequently, on day 76, he devel-
oped severe vomiting, initially consid-
ered secondary to progressive GVHD. 
However, after 1 week he had slow 
pupillary reactions, left-sided weakness, 
a decreased level of consciousness and 
apnoea. MRI showed T2 hyperintense 
lesions predominantly affecting the pons, 
medulla, area postrema and cervical cord 
(figure  1B), with optic nerve sparing. 
Serum AQP4-IgG was detected with 
normal total immunoglobulin levels. He 
was diagnosed with NMOSD and treated 
aggressively with 30 mg/kg methylpred-
nisolone, plasmapheresis and alemtu-
zumab (0.2 mg/kg×5 doses). On day 93, 
he developed labile blood pressure and 
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Figure 1  Time course of cellular immune reconstitution: naïve B cell repopulation, AQP4 antibody 
generation and imaging changes following stem cell transplant. (A) Time course of peripheral 
blood naïve B cell counts (red, right y-axis), and serum AQP4-IgG (blue solid line, left y-axis) 
and AQP4-IgM (blue dashed line, left y-axis) endpoint dilutions. The first sample obtained was 
preconditioning. Treatment 1 (Rx1, grey) was methylprednisolone (30 mg/kg); treatment 2 (Rx2, grey) 
was methylprednisolone (30 mg/kg), plasmapheresis and alemtuzumab (0.2 mg/kg). Vomit=onset of 
vomiting. (B) Sagittal T2-weighted MRI shows regions of inflammation in the brainstem and cervical 
cord (arrowheads) at day 82 and day 93 post-transplant. (C) Proportions of peripheral blood leucocyte 
subsets as measured by mass cytometry (Cytof-Helios). Annotated subsets include naïve B cells 
(CD19+CD20+CD27−IgD+); memory B cells (CD19+CD20+CD27+), natural killer (NK), CD3+ gamma 
delta T cells (gdTCR), CD3+ mucosal-associated invariant T cells (MAIT), dendritic cells (DC, including 
plasmacytoid DCs; pDC) and both naïve/central memory CD4+ T cells (CD4_CM). (D) AQP4-antibody 
live cell-based assay. AQP4-IgGs (red) from a serum of a patient with neuromyelitis optica spectrum 
disorder (NMOSD) binds to the surface of live AQP4-expressing HEK293T cells (middle panel), with 
similar reactivity demonstrated by the STAT3 gain-of-function (GOF) patient serum (bottom panel). 
Healthy control (HC) serum (top panel) shows no detectable binding to these cells. AQP4 tagged to 
EGFP (AQP4-EGFP, green); DAPI nuclear staining (blue). Images taken at ×40 magnification. AQP4, 
aquaporin-4; DAPI, 4′,6-diamidino-2-phenylindole; EGFP, enhanced green flourescent protein; GVHD, 
graft-versus-host disease.

fixed-dilated pupils. Repeat MRI showed 
brainstem lesion extension plus new bitha-
lamic involvement (figure 1B). The neuro-
logical disease was considered irreversible 
and respiratory support withdrawn on day 
94.

Laboratory findings
Retrospective live cell-based assays 
showed the de novo appearance of serum 
AQP4 antibodies (1:80 endpoint dilu-
tion) on day 67, with levels which rose 
to 1:160 by day 76 (figure  1). After 
confirmed depletion of IgG, these two 
samples additionally showed AQP4-IgM 
reactivities (1:40 and 1:80 endpoint dilu-
tions, respectively). No other samples 
showed AQP4-IgM or AQP4-IgG. Mass 
cytometry analysis revealed that these 
serological findings were preceded by a 
striking expansion of the naïve B lympho-
cyte population, between days 25 and 38, 
rising from 0.8% to 72% of all leucocytes 
(figure 1A–C). This time course represents 
a highly accelerated reconstitution of the 
naïve B cell compartment, which is usually 
delayed until >6 months post-transplant.7 

Genotyping on day 83 (a comparison of 
donor and recipient DNA using Power-
Plex 16 HS system) revealed that 70% of 
CD19+ cells were donor derived (30% 
were from the recipient); whereas none of 
the residual CD3+ T cells and only 21% of 
myeloid cells were donor derived.

DISCUSSION
This tragic case provides a unique oppor-
tunity to observe a de novo human auto-
immunisation directed against AQP4. 
Below, we synthesise longitudinal clinical, 
cellular and serological observations from 
this distinctive case to hypothesise mech-
anisms of AQP4 antibody synthesis, with 
both clinical and therapeutic relevance.

The temporal dynamics of this human 
autoimmunisation identified the genera-
tion of AQP4 antibodies over just a few 
weeks, early after stem cell transplantation 
and far more acutely than documented 
in two different clinical scenarios.2 3 An 
unusually sharp ~100-fold rise in naïve B 
cells occurred prior to generation of AQP4 
antibodies. This time course may reflect 

the exit of donor antigen-inexperienced B 
cells from the bone marrow (70% of the B 
cells were donor derived) and their subse-
quent maturation towards precursors of 
the serum AQP4 antibodies.

Around 1 month later, both de novo 
serum AQP4-IgG and IgMs were observed 
and temporally coincided with the devel-
opment of symptomatic NMOSD. The 
concurrent AQP4-IgG and IgMs suggest 
an acute immunisation in this patient 
(akin to that observed in many infec-
tions), and support a germinal centre-
based generation of AQP4 antibodies. 
This germinal centre activity may be 
fuelled by the reconstituting naïve B cells 
which, in patients with NMOSD, have 
been observed to both carry AQP4 reac-
tivities and show deranged regulatory 
properties.6 8 Hence, prevention of naïve 
B cell reconstitution, for example, with 
anti-CD19 and/or anti-CD20 drugs, may 
offer an important therapeutic target 
which represents a potential precursor to 
relapses in NMOSD.9 In further support 
of this mechanism, a few weeks is likely 
too short a duration to generate a signif-
icant population of human long-lived 
plasma cells. Yet, it remains possible that 
the AQP4-IgG generation resulted from 
incomplete depletion of plasma cells prior 
to transplantation.

STAT3 is a pleotropic transcrip-
tion factor expressed by the NMOSD-
associated Th17 T cell subset,10 which 
also drives the differentiation of T follic-
ular cells and inhibits the generation of T 
regulatory cells. Therefore, it may be that 
disordered STAT3 signalling, particularly 
from the recipient’s residual T cells, could 
be implicated in the pathogenesis of their 
NMOSD.3

In summary, by detailing a case with 
an early, severe neurological complica-
tion after stem cell transplantation, we 
provide an opportunity to observe in vivo 
the development of AQP4 antibodies. Our 
data support a role for naïve B cells and 
germinal centres in the initiating patho-
genesis of NMOSD. This conclusion has 
important implications for understanding 
disease pathogenesis and selecting optimal 
therapeutics.
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