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Variational consistent histories as a hybrid
algorithm for quantum foundations
Andrew Arrasmith 1,2, Lukasz Cincio1, Andrew T. Sornborger3, Wojciech H. Zurek1 & Patrick J. Coles1

Although quantum computers are predicted to have many commercial applications, less

attention has been given to their potential for resolving foundational issues in quantum

mechanics. Here we focus on quantum computers’ utility for the Consistent Histories

formalism, which has previously been employed to study quantum cosmology, quantum

paradoxes, and the quantum-to-classical transition. We present a variational hybrid

quantum-classical algorithm for finding consistent histories, which should revitalize interest

in this formalism by allowing classically impossible calculations to be performed. In our

algorithm, the quantum computer evaluates the decoherence functional (with exponential

speedup in both the number of qubits and the number of times in the history) and a classical

optimizer adjusts the history parameters to improve consistency. We implement our algo-

rithm on a cloud quantum computer to find consistent histories for a spin in a magnetic field

and on a simulator to observe the emergence of classicality for a chiral molecule.
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The foundations of quantum mechanics (QM) have been
debated for the past century1,2, including topics such as
the Einstein–Podolsky–Rosen (EPR) paradox, hidden-

variable theories, Bell’s Theorem, Born’s rule, and the role of
measurements in QM. This also includes the quantum-to-
classical transition, i.e., the emergence of classical behavior
(objectivity, irreversibility, lack of interference, etc.) from quan-
tum laws3–5.

The Consistent Histories (CH) formalism was introduced by
Griffiths6, Omnès7, Gell-Mann, and Hartle to address some
(though not all) of the aforementioned issues8. One inventor
considered CH to be “the Copenhagen interpretation done
right”6, as it resolves some of the paradoxes of QM by enforcing
strict rules for logical reasoning with quantum systems. In this
formalism, the Copenhagen interpretation’s focus on measure-
ments as the origin of probabilities is replaced by probabilities for
sequences of events (histories) to occur, and hence by avoiding
measurements it avoids the measurement problem. The sets of
histories whose probabilities are additive (as the histories do not
interfere with each other) are considered to be consistent and are
thus the only ones able to be reasoned about in terms of classical
probability and logic7.

Regardless of one’s opinion of the philosophical interpretation
(on which this paper is agnostic), this computational framework
has proven useful in applications such as attempting to solve the
cosmological measure problem9,10, understanding quantum
jumps11, and evaluating the arrival time for particles at a detec-
tor12–14. One of the main reasons that this framework has
not received more attention and use is that carrying out
the calculations for non-trivial cases (e.g., discrete systems of
appreciable size or continuous systems that do not admit
approximate descriptions by exactly solvable path integrals) can
be difficult11,15. Although numerical approaches have been
attempted16,17, they require exponentially scaling resources as
either the number of times considered or the system size grows.
This makes classical numerical approaches unusable for any but
the simplest cases.

With the impending arrival of the first noisy intermediate-scale
quantum computers18, the field of variational hybrid quantum-
classical algorithms (VHQCAs), which make the most of short
quantum circuits combined with classical optimizers, has been
taking off. VHQCAs have now been demonstrated for a myriad of
tasks ranging from factoring to finding ground states, among
others19–26. The VHQCA framework potentially brings the
practical applications of quantum computers years closer to
fruition.

Here we present a scalable VHQCA for the CH formalism. Our
algorithm achieves an exponential speedup over classical methods
both in terms of the system size and the number of times con-
sidered. It will allow exploration beyond toy models, such as the
quantum-to-classical transition in mesoscopic quantum systems.
We implement this algorithm on IBM’s superconducting qubit
quantum processor and obtain results in good agreement with
theoretical expectations, suggesting that useful implementations
of our algorithm may be feasible on near-term quantum devices.

Results
Consistent histories background. In the CH framework27–29, a
history Yα is a sequence of properties (i.e., projectors onto the
appropriate subspaces) at a succession of times t1 < t2 < … < tk,

Yα ¼ ðPα1
1 ; Pα2

2 ; ¼ ; Pαk
k Þ; ð1Þ

where P
αj
j is chosen from a set Pj of projectors that sum to the

identity at time tj. For example, for a photon passing through a
sequence of diffraction gratings and then striking a screen, a

history could be the photon passed through one slit in the first
grating, another slit in the second, and so on. Clearly, we find
interference between such histories unless there is some sense in
which the photon’s path has been recorded. As there is inter-
ference, we cannot add the probabilities of the different histories
classically and expect to correctly predict where the photon
strikes the screen.

The CH framework provides tools for determining when a
family (i.e., a set that sums to the multi-time identity operator) of
histories F ¼ fYαg exhibits interference, which is not always
obvious. In this framework, one defines the so-called class
operator

Cα ¼ Pαk
k ðtkÞPαk�1

k�1 ðtk�1Þ¼ Pα1
1 ðt1Þ; ð2Þ

which is the time-ordered product of the projection operators
(now in the Heisenberg picture and hence explicitly time
dependent) in history Yα. If the system is initially described by
a density matrix ρ, the degree of interference or overlap between
histories Yα and Yα′ is

Dðα; α′Þ ¼ Tr Cαρ Cα′y� �
: ð3Þ

This quantity is called the decoherence functional. The
consistency condition for a family of histories F is then

ReðDðα; α′ÞÞ ¼ 0; 8α≠α′: ð4Þ
If and only if this condition holds do we say that Dðα; αÞ is the

probability for history Yα. For computational convenience, we
will instead work with a stronger condition28:

Dðα; α′Þ ¼ 0; 8α≠α′; ð5Þ
As we are presenting a numerical algorithm, it will also be

useful to consider approximate consistency, where we merely
insist that the interference is small in the following sense:

jDðα; α′Þj2 � ε2Dðα; αÞDðα′; α′Þ; 8α≠α′; ð6Þ
which guarantees that probability sum rules for F are satisfied
within an error of ε30.

To study consistency arising purely from decoherence (i.e.,
records in the environment), researchers have proposed
a functional that instead takes a partial trace over E, which is
(a subsystem of) the environment31,32:

Dptðα; α′Þ ¼ TrE Cαρ Cα′y� �
: ð7Þ

With this modification, the consistency condition is

Dptðα; α′Þ ¼ 0; 8α≠α′; ð8Þ
where 0 is the zero matrix. Instead of only signifying the lack of
interference, partial-trace consistency singles out whether or not
the records of the histories in the environment interfere. It is
noteworthy that the full-trace condition of Eq. (5) is satisfied
when this partial-trace consistency is satisfied, but the converse
does not hold31.

With this formalism in hand, we can now see why classical
numerical schemes for CH have faced difficulty. For example,
consider histories of a collection of n spin-1/2 particles for k time
steps, depicted in Fig. 1. The number of histories is 2nk and hence
there are ~22nk decoherence functional elements. Furthermore,
evaluating each decoherence functional element Dðα; α′Þ requires
the equivalent of a Hamiltonian simulation of the system, i.e., the
multiplication of 2n × 2n matrices. This means modern clusters
would take centuries to evaluate the consistency of a family of
histories with k= 2 time steps and n= 10 spins. Given this
limitation, we can see why, for the most part, only toy models
have been analyzed in this framework thus far.
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Hybrid algorithm for finding consistent histories. We refer to
our VHQCA as Variational Consistent Histories (VCH), see
Fig. 2. VCH takes as its inputs a physical model (i.e., an initial
state ρ and a Hamiltonian H) and some ansatz for the types of
projectors to consider. It outputs the following: (1) a family F of
histories that is (approximately) full and/or partial-trace con-
sistent in the form of projection operators prepared on a quan-
tum computer, (2) the probabilities of the most likely histories Yα

in F , and (3) a bound on the consistency parameter ε.
VCH involves a parameter optimization loop, where a

quantum computer evaluates a cost function that quantifies
the family’s inconsistency, while a classical optimizer adjusts
the family (i.e., varies the projector parameters) to reduce the
cost. Classical optimizers for VHQCAs are actively being
investigated26,33 and one is free to choose the classical optimizer
on an empirical basis.

To compute the cost, it is noteworthy that the elements of the
decoherence functional form a positive semi-definite matrix with
trace one. In VCH, we exploit this property to encode D
in a quantum state σA, whose matrix elements are
hαjσAjα′i ¼ Dðα; α′Þ. Step b of Fig. 2 shows a quantum circuit
that prepares σA (see Supplementary Note 2 for more details).
This circuit transforms an initial state ρ ⊗ |0〉〈0| on systems SA,
where S simulates the physical system of interest and A is an
ancilla system, into a state σSA whose marginal is σA. For the full-
trace consistency, we introduce a global measure of the (in)
consistency that quantifies how far σA is from being diagonal,
which serves as our cost function:

C :¼
X
α≠α′

Dðα; α′Þj j2 ¼ DHSðσA;ZAðσAÞÞ; ð9Þ

where DHS is the Hilbert–Schmidt distance and ZAðσAÞ is the
dephased (all off-diagonal elements set to zero) version of σA.
This quantity goes to zero if and only if F is consistent. For the
partial-trace case, we arrive at a similar cost function but with σA

replaced by σSA:

Cpt :¼
X
α≠α′

Dptðα; α′Þ
��� ���2

HS
¼ DHS σSA;ZA σSA

� �� �
: ð10Þ

Here, the notation ZAðσSAÞ indicates that the dephasing
operation only acts on system A and the absolute squares of
Eq. (9) have been generalized to Hilbert–Schmidt norms,

Mk k2HS:¼ TrðMyMÞ. In the Methods section, we present
quantum circuits that compute these cost functions from two
copies of σA or σSA. Derivations of the second equalities in Eqs
(9) and (10) can be found in Supplementary Note 3. We remark
that alternative cost functions may be useful, e.g., to penalize
families F with high entropy (see Methods) or to obtain a
larger cost gradient by employing local instead of global
observables (see ref. 26).

The parameter optimization loop results in an approximately
consistent family, F , of histories, where the consistency parameter
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Fig. 1 An illustration of the branching of histories for k time steps. A one-
spin (n= 1) and two-spin (n= 2) system, respectively, shown in a, b, have
2k and 22k different histories. Here, k= 3 in a and k= 2 in b
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Fig. 2 Flowchart for VCH. The goal of VCH is to take a physical model
(a) and output an approximately consistent family F of histories (e), their
associated probabilities {p(α)} (c), and a measure ε of how consistent F is
(d). This is accomplished via a parameter optimization loop (b), which is a
hybrid quantum-classical computation. Here the classical computer adjusts
the projector parameters (contained in the gates {Bj(θ)}, where Bj(θ)
diagonalizes the Pj projectors) and a quantum computer returns the cost. It is
noteworthy that Pj denotes the set of Schrodinger-picture projectors at the jth

time. The optimal parameters are then used to compute the probabilities of
the most likely histories in F (c) and to prepare the projectors for any history
in F (e, where X is the Pauli-X operator). Although the quantum circuits are
depicted for a one-qubit system, the Supplementary Note 1 discusses the
generalizations to multi-qubit systems, non-trivial environment E, coarse-
grained histories, and branch-dependent histories
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ε is upper bounded in terms of the final cost (see Methods). In Step
c in Fig. 2, we then generate the probabilities for the most likely
histories by repeatedly preparing σA and measuring in the standard
basis, where the measurement frequencies give the probabilities (an
alternative circuit that reads out any one of the exponentially many
elements Dðα; α′Þ is introduced in Supplementary Note 4). Step e
shows how one prepares the set of projection operators for any
given history in F . These projectors can then be characterized with
an efficient number of observables (i.e., avoiding full state
tomography) to learn important information about the histories.

Let us discuss the scaling of VCH. With the potential
exceptions of the Hamiltonian evolution and the projection
operators, the complexity of our quantum circuits (i.e., the gate
count, circuit depth, and total number of required qubits) scales
linearly with both the system size n and the number of times k
considered. The complexity of Hamiltonian evolution to some
accuracy is problem dependent, but we typically expect
polynomial scaling in n for physical systems with properties like
translational symmetry34. On the other hand, we consider the
circuit depth for preparing the history projectors to be a
refinement parameter. One can begin with a short-depth ansatz
for the projectors and incrementally increase the depth to refine
the ansatz, potentially improving the approximate consistency.
We therefore expect the overall scaling of our quantum circuits to
be polynomial in n and k for the anticipated use cases of VCH.

The complexity of minimizing our non-convex cost function is
unknown, which is typical for VHQCAs. As classical methods for
finding consistent families also involve optimizing over some
parameterization for the projectors, classical methods also need to
deal with this optimization complexity issue.

Although the number of required repetitions of the probability
readout step can scale inefficiently in n and k for certain families
of histories, we assume that minimizing the cost outputs a family
F for which the probability readout step is efficient (see Methods
for elaboration on this point).

This scaling behavior means that for systems that can be
tractably simulated on a quantum computer and whose properties
of interest are simple to implement, we achieve an exponential
speedup and reduction in the needed resources as compared with
classical approaches to this problem.

Experimental implementations. Spin in a magnetic field. We
now present an experimental demonstration of VCH on a cloud
quantum computer. See the Supplementary Note 5 for further
details on this implementation. We examine the two time his-
tories of a spin-1/2 particle in a magnetic field Bẑ, whose
Hamiltonian is H=− γBσz. The histories we consider have a
time step Δt between the initial state (chosen to be ρ= |+ 〉〈+ |,
with jþi ¼ 1=

ffiffiffi
2

p ðj0i þ j1iÞ) and first projector, as well as
between the first and second projector, chosen so that γBΔt=
2rad. In addition, we only consider projectors onto the xy plane of
the Bloch sphere, parameterized by their azimuth. For this model,
Fig. 3 shows the landscape of the cost in (9) for the ibmqx5
quantum processor35 as well as a simulator whose precision was
limited by imposing the same finite statistics as were collected
with the quantum processor. Several minima found by running
VCH on ibmqx5 are superimposed on the landscape (all points
found below a noise threshold were considered to be equally valid
minima). As these minima correspond reasonably well to theo-
retically consistent families, this represents a successful proof-of-
principle implementation of VCH.

Chiral molecule. To highlight applications that will be possible
on future hardware, we now turn to a simulated use of VCH
to observe the quantum-to-classical transition for a chiral
molecule36,37. The chiral molecule has been modeled as a two

level system where the right |R〉 and left |L〉 chirality states are
described as jRi=jLi ¼ jþi=j�i ¼ 1ffiffi

2
p j0i± j1ið Þ37. A chiral mole-

cule in isolation would tunnel between |R〉 and |L〉, but we
consider the molecule to be in a gas, where collisions with other
molecules convey information about the molecule’s chirality to its

3

a

b

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.00

–0.04

2

1

0�
2

�1

Cost landscape (simulator)

Cost landscape (ibmqx5)

�
2

–1

–2

–3

–3 –2 –1 0 1 2 3

�1

–3 –2 –1 0 1 2 3

3

2

1

0

–1

–2

–3

Fig. 3 Consistency of three-time histories for a spin-1/2 particle in a
magnetic field, with initial state ρ= |+ 〉〈+ |. The full-trace cost landscape,
C(ϕ1, ϕ2), is plotted as a function of the azimuths, ϕ1 and ϕ2, of the first and
second projection bases, which we constrained to the xy plane of the Bloch
sphere. The point (0, 0) corresponds to both projections being along the x
axis. Consistency is expected everywhere along certain vertical lines (ϕ1=
2+ nπ rad), as they correspond to histories where the initial state is one of
the projectors after the first time step, so there are no branches to interfere
in the second time step. In addition, some slope-one lines (ϕ2= ϕ1+ (2+
nπ)rad) should be consistent, as they correspond to histories where the
second projectors are the same as the first after time evolution, so no
interference occurs in the second time step. Indeed, one can see valleys in
the cost landscapes for these vertical and slope-one lines, when the cost is
quantified on a simulator a and on the ibmqx5 quantum computer b. It is
noteworthy that negative cost values are possible due to finite statistics.
The white “x” symbols in b mark some of the non-unique minima that the
VCH algorithm found
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environment. This information transfer is modeled by a rotation
by angle θx about the x axis of an environment qubit, controlled
on the system’s chirality, and for simplicity we suppose such
collisions are evenly spaced at five points in time (see the
Supplementary Note 5 for further details). We then consider
simple families of stationary histories37, where the projector set
corresponds to the same basis at all five times (just after a
collision occurs). Letting θz be the precession angle due to
tunneling in the time between collisions, we can then explore the
competition between decoherence and tunneling. Figure 4 shows
our results for this model. Notably, we observe the transition
from a quantum regime, where the chirality is not consistent, to a
classical regime, where the chirality is both consistent and stable
over time.

Discussion
We expect VCH to revitalize interest in the CH approach to QM
by increasing its practical utility. Making it possible to apply the
tools and concepts of quantum foundations to a wide array of
physical situations, as VCH will, is an important step for our
understanding of the physical world. Specifically by providing an
exponential speedup and reduction in resources over classical
methods, VCH will provide a way to study phenomena including
the quantum-to-classical transition31,32,38, dynamics of quantum
phase transitions39, quantum biological processes40, conforma-
tional changes41, and many other complex phenomena that so far
have been computationally intractable. In addition, VCH could be
applied to study quantum algorithms themselves42. In order to
highlight such potential applications and examine their resource
requirements, we now focus on two of them: the emergence of
classical diffusive dynamics in quantum spin systems and the
appearance of defined pathways in protein folding.

In the context of nuclear magnetic resonance (NMR) experi-
ments, it has long been known that systems with many spins obey
a classical diffusion equation while smaller spin systems undergo
Rabi oscillations. Despite the long history of spin diffusion stu-
dies43–45, there is still no derivation of the transition from
quantum oscillations to classical diffusion that can predict the
size of the system where we should find that transition, or the

nature of the transition. Applying VCH to the study of histories
of spin systems would clarify this point by showing the scale and
abruptness with which the diffusive behavior emerges. As spin
diffusion has been observed for systems as small as
~30,000 spins46, we estimate that between ~102 and ~103 qubits
would allow us to study this transition. For more details about
this application, see the Supplementary Note 6.

In the protein-folding community there are currently two main
schools of thought on how proteins fold. The first is that proteins
fold along well-determined pathways with discrete folding units
(foldons)47, whereas the second is that there should be a funnel in
the energy landscape of folding configurations, causing the system
to explore a wide range of configurations before settling into the
final state48. The deterministic pathways of the foldon model are
favored by NMR experiments, raising the question of whether
these views can be reconciled47. By providing the means to study
the dynamic emergence of classical paths, i.e., the quantum-to-
classical transition for proteins, VCH could resolve this dis-
crepancy. For this purpose, we estimate that between ~103 and
~104 qubits will be needed. See the Supplementary Note 6 for
more details on this application and resource estimate.

Finally, our work highlights the synergy of two distinct fields,
quantum foundations and quantum computational algorithms,
and hopefully will inspire further research into their intersection.

Methods
Evaluation of the cost. Figure 5 shows the circuits for computing the full-trace
cost (partial-trace cost) from two copies of σA (σSA). It is noteworthy that both
costs can be written as a difference of purities:

C ¼ TrððσAÞ2Þ � TrðZAðσAÞ2Þ ð11Þ

Cpt ¼ TrððσSAÞ2Þ � TrðZAðσSAÞ2Þ: ð12Þ

The Tr((σA)2) and Tr((σSA)2) terms are computed via the Swap Test, with a
depth-two circuit and classical post-processing that scales linearly in the number of
qubits49,50. A similar but even simpler circuit, called the Diagonalized Inner
Product (DIP) Test26, calculates the TrðZAðσAÞ2Þ term with a depth-one circuit
and no post-processing. Finally, the TrðZAðσSAÞ2Þ term is evaluated with the
Partial-DIP Test26, a depth-two circuit that is a hybridization of the Swap Test and
the DIP Test.
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Fig. 4 The cost landscape for stationary histories of the chiral molecule. As the projectors in these stationary histories are always along a single axis, we
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Precision of probability readout. One does not know a priori how many histories
will be characterized in the probability readout step (Fig. 2c). Due to statistical
noise, the probability of histories with greater probability will be determined with
greater relative precision than those with lesser probability. Hence, it is reasonable
to set a precision (or statistical noise) threshold, ε. Let Nreadout be the number of
repetitions of the probability readout circuit. Then, histories Yα whose bitstring α
occurs with frequency fα<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nreadout

p
=εmax should be ignored, as their probabilities

p(α)= fα/Nreadout were not characterized with the desired precision. We separate F
into the set F c of histories whose probabilities are above the precision threshold
(which we previously referred to loosely as the most likely histories) and the set of
all other histories in F :

F ¼ F c ∪F c: ð13Þ
Computational complexity can be hidden in the value of Nreadout needed to

obtain a desired precision for the probabilities of histories of interest. This issue is
closely connected to the entropy of the set fDðα; αÞg, or equivalently, the entropy
of the quantum state ZAðσAÞ. When ZAðσAÞ is high entropy, an exponentially
large number of histories may have non-zero probability and hence Nreadout would
need to grow exponentially. VCH is therefore better suited to applications where
there is a small subset of the histories that are far more probable than the rest. In
the parameter optimization loop, one can select for families with this property by
penalizing families for which ZAðσAÞ has high entropy. Specifically, by noting that
P :¼ TrðZAðσAÞ2Þ can be efficiently computed via the circuit in Fig. 5a, one can
modify the costs functions in Eqs (9) and (10) to be ~C ¼ C=P and ~Cpt ¼ Cpt=P.

We remark that classicality is intimately connected to predictability, with the
emergence of classicality linked to the so-called predictability sieve51,52. As the CH
formalism is typically used to find classical families, this implies predictable
families (i.e., families with low entropy or high purity P) are arguably of the most
interest. Hence, our modified cost function ~C also serves to select those consistent
families with histories that are the most predictable and therefore the most
classical.

Approximate consistency. Here we discuss how VCH outputs an upper bound on
the consistency parameter ε. Let us first relate the cost C to ε. For any pair of
histories Yα and Yα′ in F ,

Dðα; α′Þj j2� C=2; ð14Þ
which follows from Eq. (9) and the fact that jDðα; α′Þj ¼ jDðα′; αÞj. Let us define

εα;α′ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
2Dðα; αÞDðα′; α′Þ

s
: ð15Þ

Then it follows from Eq. (14) that

jDðα; α′Þj2 � ε2α;α′Dðα; αÞDðα′; α′Þ; ð16Þ
which corresponds to the approximate consistency condition from Eq. (6). Hence,
probablity sum rules for these two histories are satisfied within error εα,α', which
can be calculated from Eq. (15) for histories in F c, as the probabilites are known
for these histories.

Next, consider histories in F c. As we do not have enough information to
differentiate these histories, we advocate combining the elements of F c into a single
coarse-grained history Yγ .

Let Yβ be the least likely history in F c. Then defining δ2 ¼ Dðγ; γÞ=Dðβ; βÞ, we
can make use of the positive semi-definite property of σA to write:

jDðγ; βÞj2 � Dðγ; γÞDðβ; βÞ ¼ δ2Dðβ; βÞ2: ð17Þ
As Yβ is the least likely history in F c , this expression then lets us bound the

error on the probability sum rule (giving a weaker approximate consistency
condition30) between Yγ and any Yα 2 F c as:

jDðγ; αÞj � δDðα; αÞ
� δðDðγ; γÞ þ Dðα; αÞÞ: ð18Þ

It is then possible to characterize the approximate consistency of the histories of
F pairwise with εα,α' and δ. Alternatively, to give an upper bound on the overall
consistency ε, we take the greatest of these pairwise bounds:

ε � maxðfεα;α′g∪ fδgÞ: ð19Þ
For those applications where we are working with the partial-trace consistency,

the notion of approximate consistency is somewhat more obscured. In order to
generate probabilities and bound ε, we therefore recommend evaluating the full-
trace cost function at the minimum found with the partial-trace cost. This
approach is helpful, as any partial-trace consistent family will also be full-trace
consistent and the partial-trace consistency does not directly allow one to discuss
probabilities in the same way. Taking this approach allows us to then directly
utilize the approximate consistency framework above.

Data Availability
The data used to create the figures in this article are available upon request. Requests
should be sent to the corresponding author.
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