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Cone-beam Computerized Tomography (CBCT) has the advantages of high ray utilization
and detection efficiency, short scan time, high spatial and isotropic resolution. However,
the X-rays emitted by CBCT examination are harmful to the human body, so reducing the
radiation dose without damaging the reconstruction quality is the key to the reconstruction
of CBCT. In this paper, we propose a sparse angle CBCT reconstruction algorithm based
on Guided Image FilteringGIF, which combines the classic Simultaneous Algebra
Reconstruction Technique(SART) and the Total p-Variation (TpV) minimization. Due to
the good edge-preserving ability of SART and noise suppression ability of TpV
minimization, the proposed method can suppress noise and artifacts while preserving
edge and texture information in reconstructed images. Experimental results based on
simulated and real-measured CBCT datasets show the advantages of the
proposed method.

Keywords: CBCT reconstruction, guided image filtering, simultaneous algebraic reconstruction technique, the total
p-Variation minimization, radiation therapy
1 INTRODUCTION

Computerized Tomography (CT) technology has attracted widespread attention in the field of
medical imaging technology since 1963. Unlike conventional CT, the Cone-beam Computerized
Tomography (CBCT) system uses a flat panel detector, so it can reconstruct a three-dimensional CT
image after only one scan with high ray utilization and short scanning time. Moreover, CBCT
images have higher spatial resolution, and the imaging effect has isotropic resolution in three-
dimensional space. Because of these advantages, CBCT has become more and more important in
radiation therapy. Despite the above-mentioned advantages of CBCT, X-rays are still harmful to the
body. Therefore, the study of incomplete angle CBCT reconstruction algorithm is of great
significance for reducing radiation dose, improving the quality of reconstruction, and the
development and application of CBCT.

The traditional reconstruction algorithm of CBCT is mainly divided into analytical methods and
iterative methods. The FDK algorithm (1) is a classic analytical method proposed by Feldkamp,
which based on the filtered back-projection algorithm. FDK is suitable for the reconstruction of
circular trajectory CBCT. Since no iterative calculation is required, the calculation required by FDK
is low and easy to implement. In 2005, Tang et al. proposed a 3D weighted cone beam filter back
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projection (CB-FBP) (2) algorithm based on the FDK. In CB-
FBP, the projection data is weighted before the 3D back-
projection to reduce the inconsistency of the conjugate rays. In
2006, the CB-FBP is extended in spiral scan CT (3).

In 2006, Donoho proposed a theory of Compressed Sensing
(CS) (4), which provides a new way for solving the
reconstruction problem of sparse angle CBCT. For a sparse
sampled signal, even if the sampling frequency is much smaller
than the Nyquist sampling frequency, the sparse solution of the
underdetermined linear equation can be solved and the original
signal can be restored with the CS techniques. The sparse
optimization theory based on CS mainly involves two aspects
(5), sparse representation model and optimization algorithm.

So far, the Total Variation (TV) minimization model is the
most widely used in the reconstruction of sparse angle CBCT. In
(6), Candes et al. proposed a constrained TV minimization model
based on the theory of CS, assumed that the Gradient Magnitude
Image (GMI) is sparse, added the l1-norm minimization of GMI
into the regularization constraints, and achieved a more accurate
reconstruction result in image reconstruction. In the same year,
Sidky et al. (7) applied TV minimization to limited-angle
divergent-beam CT, and achieved good reconstruction results.
In 2008, they further improved the TV minimization model, and
proposed the Adaptive Steepest Descent-Projection onto Convex
Sets (ASD-POCS) algorithm (8). which uses convex set projection
to enforce constraints, and minimizes TV through the steepest
descent method with adaptive step size. The ASD-POCS is
relatively simple, and can effectively suppress cone beam
artifacts, but it has a long solution time, and it is difficult to
balance convex set projection and steepest descent. To overcome
these shortcomings, some improved algorithms have been
proposed. Liu et al. (9) proposed an adaptive weighted TV
minimization algorithm, which takes the anisotropic edge
characteristics between adjacent image voxels into consideration,
and adaptively adjusts the preserved edge details with local image
gradients. In (10), Bian et al. proposed an adaptive steepest descent
weighted convex set projection algorithm. Zhang et al. (8)
proposed an alternating direction TV minimization algorithm,
which reformulates the TV problem as a linear equality
constrained separable problem of the objective function, and
splits the augmented Lagrangian function minimization into two
sub-problems. In 2014, Cai et al. (11) proposed an edge-guided
reconstruction algorithm based on weighted alternating direction
minimization, which combined TV regularization and iterative
edge detection strategies. Wang et al. (12) developed a distributed
reconstruction algorithm based on Alternating Direction
Minimization(ADM) for TV minimization, which accelerated
the reconstruction speed without losing accuracy. In 2015, they
further proposed a general block distribution reconstruction
algorithm based on TV minimization and ADM algorithm (13),
solved the need for large-scale reconstruction with few angles.

Due to the segmental constant assumption of TV
minimization, the TV regularization method penalizes the
image gradient, and the reconstruction results were locally too
smooth, leading to a step effect (14). In order to overcome the
step effect, many improved TV algorithms were proposed.
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Tian et al. (15) proposed edge-preserving TV, by introducing
penalty weights into the original TV regularization model. Chen
et al. (16) proposed an anisotropic TV minimization algorithm
to balance the smoothness and data consistency caused by TV
minimization. Liu et al. (17) proposed a TVS-POCS algorithm
for projecting TV onto a convex set.

In 2010, Yang et al. (18) assumed the target region (Region of
Interest, ROI) was a piecewise constant, allowed piecewise
polynomials, and introduced high-order TV (HTV) minimization
to solve internal problems. Similar models include fourth-order
partial differential equation models (19) and combined models of
second-order and fourth-order partial differential equation (20).
However, although the pure high-order method effectively
overcomes the step effect, it will cause the side effect of blurred
edges. In order to balance these two aspects, a mixed-order method
is proposed. In 2014, Niu et al. (21) proposed a penalty-weighted
least squares method for sparse angle CT reconstruction based on
the Generalized Total Variation (TGV) (22). In 2014, Hu et al. (23)
proposed a generalized higher degree total variation (HDTV)
regularization method. Many second-order TV extensions are
special cases of generalized HDTV. The generalized HDTV
significantly improves image quality, and increases the speed of
the algorithm ten times.

In 2015, Cai et al. (24) proposed the TpV (Total p-Variation)
model by replacing the l1-norm with the lp-norm for a better
measurement of sparsity, which can solve the constrained
optimization problems stably and effectively through the ADM
method. In 2016, Zhang et al. (25) further proposed the TGpV
regularization model, by using lp-norm to improve the sparsity of
TGV. In 2019, Sun et al. (26) proposed a log-norm TV
minimization, which uses non-convex log-norm instead of l1-
norm to improve the TV minimization.

In the field of image denoising, the Low-Rank Matrix
Approximation (LRMA) has attracted widespread attention.
The LRMA can be solved by minimizing the nuclear norm,
nuclear norm is the sum of the singular values of the matrix. In
2002, Nuclear Norm Minimization (NNM) (27) was proposed to
solve LRMA, it was a convex relaxation of rank minimization. In
2012, Schatten p-norm minimization (28) was used to solve
LRMA. However, both minimization techniques treat all singular
values equally and shrink them with the same threshold, which
will damage the integrity of edges and texture retention. In order
to overcome this shortcoming, Gu et al. proposed the Weighted
Nuclear Norm Minimization (WNNM) (29), and Xie et al.
proposed the Weighted Schatten p-norm Minimization
(WSNM) (30). Compared with the WNNM, the WSNM is a
better approximation of the original LRMA problem. In (31), it
was proved that when the weights are arranged in non-
descending order, the WSNM can be equivalently transformed
into a series of independent non-convex lp-norm sub-problems,
and each sub-problem can be solved by the generalized soft-
thresholding (GST) algorithm. In 2018, Zhang et al. (32)
proposed the NOWNUM algorithm based on WNNM for
sparse angle CT reconstruction.

In recent years, machine learning (33–35), especially deep
learning (36–39), has aroused extensive research interest and
April 2022 | Volume 12 | Article 832037
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made significant progress in many fields (40, 41), including
medical imaging (42). In 2018, Chen et al. (43) proposed a
new statistical iterative CBCT reconstruction algorithm based on
neural networks, which uses a data-driven approach instead of
manually designing penalty items to overcome the step effect and
keep edge details. Zheng et al. (44) proposed a low-dose 3D CT
reconstruction method based on learning and clustering. By
using the penalty-weighted least square method, alternating
between image reconstruction steps and clustering steps, their
method optimizes cost functions and enhances image quality. In
2019, Jiang et al. (45) proposed a symmetric residual
convolutional neural network SR-CNN based on deep learning,
using a TV-based method to reconstruct CBCT from the limited
projections simulated by real CT. Yang et al. (46) proposed a new
neural network residual learning algorithm, which was directly
applied to projection data to reduce the stripe artifacts in CBCT.

At the same time, many methods based on guided image
filtering (GIF) were proposed for CT image reconstruction. In
2016, Ji et al. (47) proposed the SART-G algorithm, previous CT
images are used as the initial prior guidance images for filtering
guidance images. However, in most cases, previous CT images
cannot be obtained. Therefore, how to carry out high-quality
reconstruction without the help of previous CT images is of
greater significance. In 2020, Shen et al. (48) proposed a guided
image filter reconstruction based on TV and prior image (TVPI-
G). This algorithm reduces the number of parameters and the
influence of the prior image as early as possible in the iterative
process. However, the best way to survey the GMI’s sparsity is to
use the GMI’s l0- norm (49), TV is not the best choice (14).

GMI’s lp- norm has been shown as a better way to survey the
GMI’s sparsity in TpV algorithm (24). Although the lp- norm
causes non-convex optimization problems, the authors believe
guided image filtering can help point out the iterative direction
and find the right sparse solution. This paper proposes a sparse
angle CBCT reconstruction algorithm based on guided image
filtering (GIF), which can suppress noise and artifacts while well
preserving edges and restoring texture. The GIF can transfer the
features of the guidance image to the target image. Since SART
has good edge retention ability and the TpV minimization can
reduce noise, we use the TpV minimization result as the initial
guidance image, and the SART result as the filter input. For each
round of iteration, the guidance image is updated by the
weighted average of the last guidance image and the SART
reconstructed result. The experimental results based on
simulated and real CBCT data prove the advantages of the
combination of the two algorithms and the feasibility of guided
image filtering in non-convex optimization problems.
2 METHOD

Guided Image Filtering (GIF) (50, 51) is a kind of edge-preservation
smoothing operator, which has a better performance near the edges
than the popular bilateral filters. Nowadays, the guided filter is both
effective and efficient in a great variety of computer vision and
computer graphics applications including noise reduction, detail
smoothing, image defogging.
Frontiers in Oncology | www.frontiersin.org 3
2.1 Guided Image Filtering Reconstruction
Algorithm Based on Prior Image
The emergence of the guiding image filtering theory provides a
new direction for sparse angle CT reconstruction. The SART-G
algorithm (47) is one of them, which is based on SART and
guiding image filtering. The algorithm sets the previously
captured CT image as the initial prior guidance image for
guided image filtering. Nowadays, the SART-G algorithm is
mainly applicable to the situation where a prior image is
known, and due to some small parts of the prior image having
been changed, the sparse angle projection data is used to
reconstruct the changed CT image.

The SART-G algorithm is an iterative algorithm. In the first
iteration, the initial prior image is used as a guidance image to
constrain the CT reconstruction. Later during each iteration, the
guidance image is continuously updated. The updated guidance
image combines the information contained in the initial prior
guidance image and the image reconstructed by the SART
algorithm, and the guided image filter conveys the combined
information to the output, so that the changed part of the prior
image can be effectively reconstructed. By considering the
constantly updated guidance image, the effectiveness of the
SART-G algorithm is ensured.

The CT scanning process can be discretized into the following
linear system:

y = Ax (1)

Where A∈ RM×N, Ai,j = ai,j denotes the length of the ith X-ray
through the jth image pixel. y is the projection data collected by
the detector, x is the linear attenuation coefficient of the object.

In the SART-G algorithm. The iterative formula of SART is as
follows:

xk+1j = xkj + lcj, cj =
oi ∈ Ijmiai,j
oi ∈ Ijai,j

,mi =
by − yi

oN
j = 1ai,j

(2)

The algorithm steps of the guiding image filtering are shown
in Table 1.

2.2 Sparse Angle CBCT Reconstruction
Based on TpV Minimization
lp- norm is closer to l0- norm than l1- norm (24), which can
better measure the sparsity of GMI. Using non-convex
optimization and generalized p- shrinkage mapping, the TpV
TABLE 1 | Guiding image filtering steps.

Input: input image P, guide image I, window radius R, regularization parameters ϵ
1 mean filter meanI = fmean (I) ,meanP = fmean (P)
2 Calculate correlation coefficient cor r = fmean (I· *I), corrIP = fmean (I· *P)
3 Calculate the variance varI = corrI – meanI· *meanI
4 Computed covariance covIP = cor rIP – meanI· *meanP
5 a = covIP /(var + e), b = meanP – a· *meanI;
6 meana = fmean (a), meanb = fmean (b);
7 Q = meana· *I + meanb
output: output image Q
April 2022 | Volume 12 | Article 832037
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minimization model can be solved iteratively by alternating
minimization (52).

The TpV minimization model is shown below:

arg  min
z
Gp(z) s : t :

jjy − Ax j22 = e,
�� �� ej jj22  ≤ ϵ

z = ∇x

x ≥ 0

8>><>>: (3)

Gp(z) is a penalty function, whose proximal mapping Sb,p is
defined as:

Sb ,p(xi) = sb ,p( xij j)sign(xi) (4)

Where Sb,p (xi) = max{t – bp–2tp–1,0}

z = argmin  ‖ z ‖pp +
b
2
‖ z −∇f − r=b ‖22, 0 < p ≤ 1    (5)

Where z is auxiliary variable, z = D&x∈3N, and r∈3N is an
auxiliary variable of multipliers.

Then, ADM is used to solve the optimization problems with
two separable variables. By using the augmented Lagrange
function, Equation (3) can be expressed as the following
unconstrained optimization problem:

LA(x, z) = Gp(z) − lT
j (z −∇x) + b1

2 jz −∇xj22
−lT

j (y − Ax − e) + b2
2 jy − Ax − ej22 + dpos(x)

dpos(x) =
0, x ∈ RN

+

∞, x ∉ RN
+

( (6)

The question is split into two subproblems of x and z, and
then iterated alternately.

The algorithm steps of the TpV minimization model are
shown in Table 2.

2.3 Guided Image Filtering Reconstruction
Based on TpV Minimization
Inspired by the SART-G algorithm, this section proposes the
TpV-GIF algorithm, which uses the TpV minimized
reconstruction result as the initial guidance image, and
Frontiers in Oncology | www.frontiersin.org 4
dynamically updates the guidance image during iterations. In
the initial iteration, the guidance image mainly reflects TpV’s
output to quickly remove the noise in the SART’s result. As the
iteration progresses, the noise in the SART reconstruction result
is effectively removed, at this time, the proportion of TpV
reconstruction result in the guidance image is reduced to avoid
over-smoothing, turning to focus on preserving edges and
texture. The steps of the TpV-GIF algorithm are as follows:

1. Parameter initialization, projection matrix A, projection
data y, the number of iterations N, the initial value of the image
f(0), and the parameters of the guide image filtering step: window
radius R, regular term parameters ϵ;

2. Calculate the initial guided image Iinitial, which is the
reconstruction based on the minimization of TpV (see Table 2);

3. For the nth iteration, using f(n-1) as the initial value of the
SART algorithm iteration to perform SART algorithm
reconstruction, the reconstruction result is f (n)SART ;

4. Update the guide image Iguide:

Iguide = Iinitial � (N − n)=N + f nð Þ
SART � (n=N) (7)

5. Take f (n)SART as the filtered input image, and use Iguide as the
guiding image for guiding image filtering; the output image is
f (n)SART−G (see Table 1);

6. f (n) = f (n)SART−G, n = n + 1;
7. Repeat steps (3)-(6) until the iteration termination

condition is met, and the reconstruction result is obtained.

In this paper, for the TpV minimization algorithm, p is set to
0.9. For the guidance image filtering step, the guided image filter
operates the CBCT image layer by layer, the window radius is set
to 4, and the regularization parameter ϵ is set to 0.0016.
3 DATASET

We first use the digital brain model (53) for reconstruction as the
data 1. The model is created based on realistic MRI data of the
human brain. It is widely used model for cone beam CT
reconstruction and very suitable for evaluating reconstruction.

Then, we use real clinical projection data for reconstruction as
data 2. In the dataset, the distance from the source to the detector
is 1040mm, and the distance from the source to the origin is
570mm.We use projection data from 32 angles for reconstruction.
The size of reconstructed voxels is 256×256×266, and the voxel
resolution is 1.6272mm×1.6272mm×1mm.
4 EXPERIMENT AND RESULTS

4.1 CBCT Reconstruction Quality
Evaluation Index
This paper uses Root Mean Square Error (RMSE), Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) as
evaluation indicators, to quantitatively nalyse and compare the
reconstruction results.
TABLE 2 | TpV minimization algorithm steps.

Input: projection matrix A, projection data vectory, b1, b2, h, ϵ, initial value z(0), x(0)

let k = 0
1 Iterate the following steps until the iteration termination condition is met

2 Update z(k+1),  z(k+1) Sp(∇ x(k) + l(k)
1 =b1)

3 Update x(k+1), x(k+1) posfF½F−1½∇T½b1z(k+1) − l(k)1 � + ATl(k)2 +
b2
t
x(k) −

b2d
(k)�=J�g

Where function pos forces all elements with negative values to be 0.

4 Update e(k+1), e(k+1) min  f1, ϵ= ‖ y − Ax(k+1) ‖22g · (y − Ax(k+1)ht)

5 Update l(k+1)
1 , l(k+1)

1  l(k)
1 − hb1(z

(k+1) −∇x(k+1))

6 Update l(k+1)
2 , l(k+1)

2  l(k)
2 − hb2(y − Ax(k+1) − e(k+1))

7 k & k + 1
8 End
output: reconstruction result x(k)
April 2022 | Volume 12 | Article 832037
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The RMSE is the square root of the mean square error (MSE).
MSE is the ratio of the sum of squares of the voxel value errors
between the reconstructed image and the true value image to the
number of voxels (54, 55), defined as the formula (2):

MSEðx̂ , xÞ = 1
No

N

i=1
(x̂ i − xi)

2 (8)

Among them, x̂ is the reconstructed image, x is the actual
image, x̂ and xi are the element values of the reconstructed image
and the actual image, and N is the number of image elements.
The definition of RMSE is shown in formula (3):

RMSEðx̂ , xÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðx̂ , xÞ

p
(9)

RMSE is used to measure the deviation between two signals
(56). Generally, the smaller the value of RMSE, the better the
reconstruction result. PSNR is also a common objective
standard for evaluating images (57), and its definition is
shown in formula (4):

PSNRðx̂ , xÞ = 10log10
2l − 1
MSE

� �
(10)

Where l is the bit depth of the image. For example, when the
pixel value range is 0-1, the value of l is 1, and when the pixel
value range is 0-255, the value of l is 8. Both RMSE and PSNR are
based on the deviation between pixel values and do not consider
the visual characteristics of the human eye, so the results may be
inconsistent with human subjective perception.

SSIM measures the structural similarity between two images
(58), and its definition is shown in formula (5):

SSIMðx̂ , xÞ = (2mx̂mx + c1)(2sx̂ x + c2)
(m2

x̂ + m2
x + c1)(s 2

x̂ + s 2
x + c2)

(11)

Among them, mx̂ and mx are the pixel mean values of the
reconstructed image and the real image respectively, sx̂ and sx
are the variances of the reconstructed image and the real image
resspectively, and sx̂ x is the covariance. And c1 are c2 two very
small constants, mainly to prevent the denominator from
being zero.

In addition, the Profile curve method is also a common
method for judging the quality of the reconstructed image. It
selects a certain row or column of the image, takes the pixel
position as the abscissa and the pixel value as the ordinate, and
draws the gray-scale curve of the reference image and the
reconstructed image in a picture. By observing the similarity
between the curve and the reference image curve, the quality of
the reconstruction result can be easily judged.
4.2 Simulation Model Reconstruction
We use the Siddon line driver to simulate the projection data,
generate projection data from 32 angles, and use these projection
data for reconstruction. This paper selects 4 widely used methods
(SART, ASD-POCS, SART-TV, TpV) as the comparison
algorithm, where SART and TpV can be found in section 3,
ASD-POCS is an algorithm who combines the ART algorithm
Frontiers in Oncology | www.frontiersin.org 5
and TV algorithm, SART-TV combines the SART algorithm and
TV algorithm.

For the SART algorithm, l is set to 1, the reduction of l, lred
is set to 0.99. For the ASD-POCS algorithm, l is set to 1, lred is
set to 0.99, TV hyperparameter a is set to 0.002. For the SART-
TV algorithm, l is set to 1, lTV is set to 15 which gives the ratio
of importance of the image vs the minimum total variation. and
the reconstruction result of the 80th layer of data 1 is shown
in Figure 1.

It can be seen from Figure 1B that the SART reconstructed
image under the sparse angle is full of artifacts and the image
quality is poor. The images in Figures 1C-F are relatively smooth
because they all involve TV constraints. However, the TV
minimization reconstruction result in Figure 1C has a step
effect, and many small details are smoothed out. The image in
Figure 1D is more serious in the problem of excessive
smoothness and has a strong sense of smearing. The image
reconstructed based on TpV minimization is much better,
suppresses artifacts while retaining most of the edges and
details, and the reconstruction results of the algorithm
proposed in this paper show better edge retention
characteristics. In order to better observe the reconstruction
details, the part of the image in the red box in Figure 1 is
individually enlarged and displayed to Figure 2. As shown in
Figure 2, our algorithm can effectively remove artifacts while
better restoring the edges and details of the image. Figure 3 is a
profile graph. It can be seen that the reconstruction result of
TpV-GIF is very close to the reference image, no matter in a
smoother area or an edge area where the voxel value changes
greatly. This means that the algorithm has a good performance in
suppressing noise and preserving edge details.

Table 3 shows the quantitative evaluation results of CBCT
reconstruction of the entire model. It can be seen from Table 4
that, compared with other algorithms, the TpV-GIF we proposed
has obtained the highest score in the quantitative
evaluation index.

4.3 Actual Data Reconstruction
Figures 4, 5 are the reconstruction results of CBCT of the place
that close to the center plane and bottom plane, respectively, it
can be seen from Figure 4B that with the sparse angle projection,
the reconstruction result of SART near the center plane still has
serious artifacts. The reconstruction result of the SART-TV
algorithm has a significant blocky effect, and many details are
blurred. The reconstruction result of ASD-POCS algorithm is
better than that of SART-TV reconstruction, but compared with
the TpV minimization algorithm, the blocking effect is still more
serious. The reconstruction result of the TpV-GIF algorithm not
only suppresses artifacts as effectively as TpV, but also has better
detail restoration, which can be seen in Figure 6.

Observe the details indicated by the black and white arrows in
Figure 6, and compared with the reference image, you can see
that the ASD-POCS reconstruction result is relatively fuzzy, and
details of the SART reconstruction image are more complete, but
they all have serious artifacts. The details of the TpV
reconstruction image are better preserved while the
performance of TpV-GIF is even better. For the area indicated
April 2022 | Volume 12 | Article 832037
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A B

D E F

C

FIGURE 1 | Reference image and 32-angle reconstruction results: (A) reference image; (B) SART; (C) ASD-POCS; (D) SART-TV; (E) TpV; (F) TpV-GIF.
A B

D E F

C

FIGURE 2 | ROI area enlargement result: (A) real graphics; (B) SART; (C) ASD-POCS; (D) SART-TV; (E) TpV; (F) TpV-GIF.
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by the red arrow, the SART does not perform well in suppressing
artifacts, the ASD-POCS blurs the details and has a blocky effect,
on the contrary, TpV and TpV-GIF reconstruction results are
better, the artifacts are suppressed while the edges are preserved.

From Figure 7, it can be seen that the SART reconstruction
results are very smooth regardless of whether it is in a smooth
Frontiers in Oncology | www.frontiersin.org 7
area or an area where the voxel value changes greatly, so the
edges and details may be blurred. The SART reconstruction
result also changes seriously in the smooth area, which is
reflected in the image as an artifact. TpV and TpV-GIF are
relatively smooth in the smooth area, and change with the true
value in the area where the voxel value changes greatly. The
TpV-GIF curve is closest to the reference image curve, which
means that the reconstruction result of the TpV-GIF
algorithm is more accurate. Figure 8 shows the absolute
difference between various reconstruction algorithms and
the reference image. Obviously, the difference between the
TpV-GIF reconstructed image and the reference image
is smaller.

Table 4 shows the quantitative evaluation results of the
overall reconstruction of the real clinical data. It can be seen
from Table 4 that the TpV-GIF algorithm has achieved the best
results among the three evaluation criteria, which is consistent
with the results of the visual evaluation.
5 CONCLUSION

Aiming at solving the problem of incomplete projection data
under sparse angle projection, this paper proposes and
discusses a better reconstruction algorithm based on guided
image filtering. Guided image filtering is a kind of edge-
preserving filtering that utilizes the guidance image to effect
the result of the output image, transfers the characteristics of
the guidance image to the output image. We combine the SART
with edge preservation characteristics and the TpV
A B

D E F

C

FIGURE 3 | Profile curve images: (A) The full voxel curve of the 80th layer and 128 rows; (B, C) is a partial enlargement of (A); (D) the complete curve of the 128th
row and 128 columns; (E, F) Is a partial enlargement of (D).
TABLE 3 | Quantitative evaluation of brain phantom reconstruction with 32-angle
projection.

RMSE PSNR SSIM

SART 0.0219 33.1911 0.9855
ASD-POCS 0.0227 32.8975 0.9846
SART-TV 0.0312 30.1169 0.9781
TpV 0.0158 36.0269 0.9883
TpV-GIF 0.0114 38.8500 0.9900
Bold values are the results of our method, RMSE, PSNR,SSIM have been shown in
equation 9-11.
TABLE 4 | Quantitative evaluation of 32-angle projection real projection data
reconstruction.

RMSE PSNR SSIM

SART 0.0354 29.0199 0.9743
ASD-POCS 0.0404 27.8724 0.9684
SART-TV 0.0443 27.0719 0.9653
TpV 0.0258 31.7568 0.9777
TpV-GIF 0.0184 34.7036 0.9814
Bold values are the results of our method, RMSE, PSNR,SSIM have been shown in
equation 9-11.
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A B

D E F

C

FIGURE 5 | 260th slice reconstruction result: (A) reference image; (B) SART; (C) ASD-POCS; (D) SART-TV; (E) TpV; (F) TpV-GIF.
A B

D E F

C

FIGURE 4 | 40th slice reconstruction result: (A) reference image; (B) SART; (C) ASD-POCS; (D) SART-TV; (E) TpV; (F) TpV-GIF.
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A B

D E F

C

FIGURE 7 | Profile curve images. (A) The full voxel curve of the 128th row of the 133rd slice; (B, C) A partial enlargement of (A, D) the axial voxel curve of the 128th
row and 128th column of all faults; (E, F) Partial enlargement of (D).
FIGURE 8 | The absolute difference between the reconstructed image and the reference image.
A B D EC

FIGURE 6 | ROI area enlarged image: the first row and the second row are the enlarged images of the red box area in Figure 4 and Figure 5, from left to right
there are the reference image, SART, ASD-POCS, TpV and TpV- Reconstructed image of GIF. The (A–E) in this figure are correspond to the (A–E) in Figure 4 and
Figure 5.
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minimization with good smoothing characteristics and capable
of suppressing artifacts. The SART reconstruction result is used
as the filter input, and the reconstruction results of the two
algorithms are combined as the guidance image and are
dynamically updated. Verifications and comparisons
performed using various datasets illustrate that the proposed
method is effective and promising.
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