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a b s t r a c t

This article contains data related to the research article entitled
“Id2 determines intestinal identity through repression of the
foregut transcription factor, Irx5” [1]. Id2 deficient (Id2�/�) mice
developed gastric tumors and heterotopic squamous epithelium in
the small intestine. These tumors and heterotopic tissues were
derived from ectopic gastric cells and squamous cells formed in
the small intestine respectively during development. In this study,
microarray data of the developing small intestine of Id2�/� mice
was analyzed.
© 2019 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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Specifications table

Subject area Developmental Biology, Gastroenterology
More specific subject
area

Gene expression

Type of data Table, Figure
How data was
acquired

Applied Biosystems Mouse Genome Survey Microarray Ver2.0

Data format Raw and Normalized
Experimental factors The midgut of E13.5 Id2KO and wild-type embryos
Experimental
features

Microarray expression profile analysis of Id2KO midgut

Data source location University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, Fukui, Japan
Data accessibility Microarray data are available from Gene Expression Omnibus database. The deposited data can be found

at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE43014
Related research
article

Mori K, Nakamura H, Kurooka H, Miyachi H, Tamada K, Sugai M, Takumi T, Yokota Y. 2018. Id2 determines
intestinal identity through repression of the foregut transcription factor Irx5. Mol Cell Biol 38:e00250-
17. https://doi.org/10.1128/MCB.00250-17. [1]

Value of the data
� These data provide information about the cellular differentiation of the developing gastrointestinal tract.
� These data give insight into Id2 regulated foregut gene expression in the midgut.
� These data are useful for understand the molecular mechanisms underlying gastrointestinal organ development.
� The midgut of Id2 knockout mice is useful for identifying master regulator of gastric epithelial cell differentiation which

has not yet been identified. These data can also be a benchmark to elucidate the function of such factors.
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1. Data

Microarray analysis was performed in the developing small intestine of Id2�/� mice. In total, 34
genes were differentially expressed in Id2�/� embryo compared with Id2þ/þ embryo with criteria of
fold change >2. Of these differentially expressed genes, 14 genes were upregulated and 20 genes were
downregulated in Id2�/� embryo (Table 1) [1].

Furthermore, the expression levels of the selected 24 genes that are preferentially expressed in a
specific embryonic gut segment, including foregut (eight genes), anterior-midgut (eight genes) and
posterior-midgut (eight genes) were analyzed [16]. Heatmap visualization indicated that the expres-
sion of six of foregut-enriched genes were upregulated in Id2�/� embryo (Fig. 1) while the expressions
of three of the midgut-enriched genes were remarkably downregulated in Id2�/� embryo. The
remaining two foregut-enriched genes and 12 midgut enriched genes were not altered.

Sox21 is highly expressed in the anterior region over the period of foregut endoderm formation
[3,16,17]. qRT-PCR analysis revealed that Sox21 expression increased only in the posterior part of the
Id2�/� mice midgut (Fig. 2A). RT-PCR analysis clearly showed that heterotopic Sox21 expression was
confined to the midgut of Id2�/� embryo, but not to the posterior part of midgut or hindgut (Fig. 2B).
2. Experimental design, materials and methods

2.1. Animals

Id2 mutant mice with 129/Sv genetic background were used for analysis [18]. Preparation of Id2þ/þ

and Id2�/� embryos was performed by crossing 8-week-old Id2þ/� male and Id2þ/� female mice.

2.2. RNA extraction

Total RNA samples were extracted using an RNeasyMini Kit (QIAGEN, Valencia, CA, USA). Tissue
lysate was purified by QIAshredder (QIAGEN) and treated with DNaseI to remove genomic DNA. For
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Table 1
Differentially expressed genes in Id2 KO midgut.

Gene Expression pattern in the
developing digestive tract

Reference

Up-regulated genes
(KO/WT, fold
change >2)

Cym, Irx3, Irx5 Specifically expressed in foregut
endoderm

[2], [3]

Krt15, Foxa2, Adcy8 Preferentially expressed in
foregut endoderm

[4], [5], [6]

Traf6 Oral endoderm and mesenchyme [7]
Orfr1337, Cacng7,
Wdr86, Ocrl, C030016D13Rik,
Cdc96

not anotated

Down-regulated genes
(KO/WT, fold
change <0.5)

Sul1d1, Spink3, Anxa13, Muc13,
Lingo1, Bspry, Fabpl

Highly expressed in midgut
endoderm

[8], [9], [10], [11],
[12], [13], [14]

Cbln2 Preferentially expressed in midgut
mesenchyme

[13]

Myl1, Slc27a2, Foxq1 Highly expressed in the other
region of midgut endoderm

[13], [15]

Them7, Kynu, Ppp1r1b,
Mkrn2os,
Hapln2, BC030870, 2610044O15Rik,
Ifi203, Faim3

not anotated
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microarray analysis, total RNA from three midguts of the same genotype was taken as one sample. RNA
quality was measured using the Agilent 2100 Bioanalyzer 2100 (Agilent Technology, Wilmington, DE,
USA), and samples with 28S/18S ribosome ratio >2.0 were used for analysis.
2.3. Microarray

Onemicrogram of total RNAwas amplified and labeled with digoxigenin (DIG) for one round using a
NanoAmp RT-IVT Labeling Kit (Applied Biosystems, Foster City, CA, USA). DIG labeled cRNA was
fragmented and hybridized to Mouse Genome Survey Microarray ver.2.0 (Applied Biosystems) fol-
lowed by chemiluminescence detection.
2.4. Data analysis

Raw signal values were normalized by the median. In all probe sets with false spots (flag < 5000)
and signal-to-noise values < 3 (as determined by the software) were excluded. Normalized signal
values were converted to log2 ratios. Fold changes between Id2�/� and wild-type samples were
calculated for each of the resulting probe sets. Heatmap visualization was constructed by Cluster 3.0
and Treeview software [19].
2.5. RT-PCR

Oligo(dT)-primed cDNA synthesis was performed using SuperScript III reverse transcriptase (Invi-
trogen, Carlsbad, CA, USA). qRT-PCR was performed using the Power SYBR green PCR master mix and a
StepOnePlus real-time PCR system (Applied Biosystems, Foster City, CA, USA). Primer sequences for RT-
PCR analysis are as follows: Sox21-forward, TACATGATCCCGTGCAACTG; and Sox21-reverse,
TTCGAGCTGGTCATTCACTG. PCR primer sequences for qRT-PCR and Actb primers for RT-PCR analysis
were described previously [1].



Fig. 1. Heatmap of specific gene expressions in the midgut of Id2 wild-type (WT) and Id2 deficient (KO) mice embryos. The colored
scale at the top of heatmap is log based. Genes are preferentially expressed in the specific gut segment. Foregut enriched genes,
Anterior-Midgut enriched genes and Posterior-Midgut enriched genes were represented with different colors; cyan, orange and
magenta respectively. Hierarchical clustering was performed with the complete-linkage method.

K. Mori et al. / Data in brief 24 (2019) 1037174



−/− −/− −/− −/− −/−

−/−

Fig. 2. Sox21 expression in the developing gastrointestinal tract of Id2�/� embryo. (A) qRT-PCR analysis of Sox21 expression in E13.5
midguts. Midgut tissues were subdivided into anterior and posterior parts (n¼7 per genotype). (B) RT-PCR analysis of Sox21
expression in E15.5 gastrointestinal tract. Midgut tissues were subdivided into three segments along the anterior-posterior axis. Ant
- anterior segment of midgut; Mid - middle segment of midgut; Pos - posterior segment of midgut.
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