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Since the first report of SARS-CoV-2 virus in Wuhan, China in December 2019, a global

outbreak of Corona Virus Disease 2019 (COVID-19) pandemic has been aroused. In

the prevention of this disease, accurate diagnosis of COVID-19 is the center of the

problem. However, due to the limitation of detection technology, the test results are

impossible to be totally free from pseudo-positive or -negative. Improving the precision

of the test results asks for the identification of more biomarkers for COVID-19. On

the basis of the expression data of COVID-19 positive and negative samples, we first

screened the feature genes through ReliefF, minimal-redundancy-maximum-relevancy,

and Boruta_MCFS methods. Thereafter, 36 optimal feature genes were selected through

incremental feature selection method based on the random forest classifier, and the

enriched biological functions and signaling pathways were revealed by Gene Ontology

and Kyoto Encyclopedia of Genes and Genomes. Also, protein-protein interaction

network analysis was performed on these feature genes, and the enriched biological

functions and signaling pathways of main submodules were analyzed. In addition,

whether these 36 feature genes could effectively distinguish positive samples from the

negative ones was verified by dimensionality reduction analysis. According to the results,

we inferred that the 36 feature genes selected via Boruta_MCFS could be deemed as

biomarkers in COVID-19.

Keywords: COVID-19, feature selection, random forest classifier, gene expression markers, bioinformatics

INTRODUCTION

Since the first report of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)
in Wuhan in December 2019, the pandemic of the Coronavirus Disease 2019 (COVID-19) has
swept the whole world. As of March 1, 2021, according to data published by the World Health
Organization, SARS-CoV-2 has caused 113,820,168 infected cases and 2,527,891 deaths (https://
www.who.int/en/). SARS-CoV-2 infection is mainly characterized by high viral load and high
infectivity in patients at (or before) the onset of COVID-19 symptoms, while a proportion of
infected individuals are asymptomatic (1–4). Therefore, the precise diagnosis for COVID-19 is of
great importance. Presently, assistance of COVID-19 diagnosis broadly covers the following ways:
detecting the viral RNA through qPCR; detecting antigens or corresponding antibodies in serum by
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colloidal gold or chemiluminescence; lung images via computed
tomography (CT). However, none of these methods could avoid
missed diagnosis or misdiagnosis of COVID-19 (5). To improve
the diagnostic precision of COVID-19, it is urgent to discover
new biomarkers.

ReliefF, minimal-redundancy-maximum-relevancy (mRMR)
and BorutaMCFS were adopted to screen feature genes from
expression data. RelieF is an algorithmic process for assessing the
weight ratio percentage of multiple attributes in a system, and is
often used in practical applications to preprocess data to obtain
a feature subset (6). mRMR is an algorithm that measures the
relevance and redundancy of features, and selects the one with
maximum relevance and minimum redundancy. This approach
focuses on preprocessing data to improve prediction accuracy
(7). Tao Li et al. proved that ReliefF, mRMR, and the combination
of the two could select feature genes from different tumor
samples based on gene expression data. However, after being
validated by support vector machine (SVM) and Naïve Bayes
Classifier (NB), the optimal feature genes were selected through
the combination of ReliefF and Mrmr (6). Boruta is a random
forest-based screening approach. It iteratively removes features
that have been proven to be less correlated with random probes,
which in turn reduces signal noise (8). Degenhardtet al. (9) used
Boruta to screen feature genes of breast cancer patients and
classified ER-positive and -negative samples by a random forest
classifier, which was indicated to have a stable classification effect.
However, the importance of the features identified through this
approach could not be determined. Hence, we further performed
MCFS feature selection based on Boruta. MCFS is a feature
selection method based on random sampling and constructing
multiple decision trees (10). In a study by Yu-DongCai et al. (10)
MCFS was adopted to preprocess peptide chain profiling data,
which in turn led to the selection of peptide chains that could
effectively classify different cancers. The combination of Boruta
and MCFS was adopted in this study.

In this study, we selected 36 effective feature genes as
biomarkers for COVID-19 on the basis of their expression data in
COVID-19 positive and negative samples with the combination
of Boruta and MCFS methods. Through enrichment analysis,
literature review, and principal component analysis (PCA), these
feature genes were evaluated for their qualification as COVID-19
biomarkers. Based on the analysis results, we concluded that the
identified 36 feature genes were expected to be novel biomarkers
for COVID-19.

MATERIALS AND METHODS

Study Design and Acquirement of
Expression Data of Genes and MRNAs
Related to COVID-19
COVID-19-related data were acquired by following steps
mentioned in literature (11). Specifically, the gene expression
data contained upper respiratory tract mRNA expression data
(GSE156063) from 93 COVID-19 patients with acute respiratory
disease and 141 uninfected patients with acute respiratory
disease. The expression data were downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). Clinical characteristics of 234 samples were
manifested in Supplementary Table 1. The mRNA expression
data were obtained through RNA metagenomic sequencing
with GPL24676 Illumina NovaSeq 6000 (Homosapiens). In the
expression matrix, genes with mean values <1 and maximum
values >5 were removed. The remaining data were subsequently
normalized by the edgR package (12). Based on the dataset, the
flowchart of the study is displayed in Figure 1.

Feature Genes Screening
The data were classified by ReliefF (13) and the feature genes
were ranked by the mRMR method (11). Algorithm 1 is a novel
algorithm based on Relief (14). Relief is an algorithm that assigns
features different weights based on the relevance of each feature
and category, and features with weights less than a specific
threshold will be removed. Since Relief can only process two
categories of data, ReliefF, which can process multiple categories
of sample data, was later developed based on Relief algorithm.
This algorithm is used to deal with regression problems where the
targets are continuous values. The processes of ReliefF algorithm
were as follows: Sample Ri is randomly taken from the dataset
W[A] each time, and then k nearest neighbor samples Hj (nearest
hits) are found from the set of Ri similar samples, while k nearest
neighbor samples Mj (nearest misses) are found from the set of
Ri non-similar samples. The weight of each feature is updated
according to the Ri, Hj, Mj values, and ranked according to each
feature weight.

The mRMR is an algorithm (7) that measures the relevance
and redundancy of features and picks those with the maximum
relevance (Max-Relevance) and the minimum redundancy
(Minimal-Redundancy). Max-Relevance was calculated with the
following formula:

maxD (S, c) , D =
1

|S|

∑

xi∈S

I (xi; c)

Features selected on the basis of Max-Relevance can be
redundant and have large interdependencies. Therefore,
removing one feature from these mutually highly dependent

Algorithm 1 | ReliefF.

Input: for each training instance a vector of attribute values and the class value

Output: the vector W of estimations of the qualities of attributes

1. set all weights W[A]: = 0.0;

2. for i: = 1 to m do begin

3. randomly select an instance Ri;

4. find k nearest hits Hj;

5. for each class C 6= class(Ri) do

6. from class C find k nearest misses Mj(C);

7. for A: = 1 to a do

8. W [A] : = W [A]−
∑k

j=1 diff (A, Ri, Hj)/(m k)+

9.
∑

C 6=class(Ri)

[

p(C)
1−p(class(Ri)

∑k
j=1 diff(A, Ri, Mj(C))

]

m.k ;

10. end;
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FIGURE 1 | The flowchart of the study.

features did not hugely change the classification results. To select
independent features, Minimal-Redundancy was introduced:

minR (S) ,R =
1

|S|2

∑

xi ,xj∈S

I
(

xi, xj
)

In the above formula, S represents the feature set, x represents
the feature, and c represents the classification. The algorithm
mRMR combined Max-relevance and Minimal-Redundancy and
is defined as:

maxΦ (D,R) , Φ = D− R

Boruta is a random forest-based screening approach. It iteratively
removes features that have been shown to have low correlation
with random probes, which in turn reduces signal noise (15). The
algorithm for Boruta is listed below:

1. Enlarge the information system by adding sample data.
2. Disrupt the added attributes.
3. Run random forest classifier in the expanded information

system, where Z scores were calculated.
4. Find the maximum Z-score in the shadow attribute (MZSA),

and then assign a hit to each feature with scores higher
than MZSA.
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5. Perform a two-sided test equivalent to MZSA on attributes
with undetermined significance.

6. Remove features significantly less important thanMZSA from
the information system.

7. Delete all the MZSA.
8. Repeat the algorithm until importance was assigned to

all attributes.

However, the importance of features selected by this method
could not be determined. Therefore, we further performedMCFS
to select features based on Boruta results.

MCFS builds multiple decision trees based on random
sampling in multiple characteristics and then infers relative
importance (RI) of each feature through the repeated bootstrap
tests (16). The MCFS algorithm is defined as:

RIg =

p×t
∑

τ=1

(wACC)u IG
(

ng (τ )
)

(

no.in ng (τ )

no.in τ

)v

In the formula, wACC was the weighted accuracy; ng (τ ) was the
node of the characteristic in the decision tree; the information
acquisition of ng (τ ) was expressed as IG

(

ng (τ )
)

; no.in ng (τ )

represents the number of training samples in ng (τ ); u and v
represent different weight factors, whose default value was 1.

Feature genes were screened through ReliefF, mRMR, and
Boruta_MCFS. The ReliefF algorithm was based on the python
package “sklearn.” The mRMR algorithm-related program
(http://home.penglab.com/proj/mRMR/) was downloaded,
by which the features were ranked. The Boruta feature
selection method was constructed on the basis of the python
package “Borutapy” for removing less correlated feature
genes. Subsequently, the MCFS feature selection method was
constructed based on the python package “skfeature” (17) to
further identify important feature genes.

The Construction of Classifier and the
Selection of Optimal Feature Genes
Three sets of top 50 feature genes were selected by the three
feature selection methods. Thereafter, we set up a classifier to
filter optimal feature genes bymethods described previously (18).
A random forest classifier was constructed based on the python
package “skfeature” (17). Owing to the unbalanced samples,
model training was conducted on the basis of python package
“imblearn” and upsampling method. An incremental feature
selection (IFS) curve (19) was drawn based on the Matthews
correlation coefficient (MCC) obtained based on the 10-fold
cross-validation of random forest classification. MCC is the
Pearson correlation coefficient of the actual and predicted values
calculated by the confusion matrix method. MCC values range
from −1 to +1, with values approaching +1 indicating a more
precise prediction, values approaching 0 indicating the prediction
is not better than random one, and values approaching −1
indicating the opposite relationship between predicted and actual
observations (20). The feature gene selection method with the
highest MCC value in the IFS curve and the corresponding
top feature genes were selected as feature genes with good
prediction performance.

Enrichment Analyses
Optimal feature genes were subjected to pathway enrichment
analyses by Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) (11). GO and KEGG
enrichment analyses were performed by adopting the R
package “clusterProfiler” (21) (pValue < 0.05, qValue < 0.05).
GO enrichment analysis revealed the biological process (BP)
and molecular function (MF) were mainly enriched by the
feature genes. KEGG unveiled the relevant signaling pathways
with major enrichment of feature genes. The protein-protein
interaction (PPI) network subset analysis was carried out at
Metascape (http://metascape.org/) (pValue < 0.05) for GO
enrichment analysis (http://metascape.org/).

PPI Network Analysis
Interactions between proteins were analyzed by PPI networks
by ways described before (22). Through String database (https://
www.string-db.org/), a PPI network analysis (with default
parameters) was performed on the feature genes (with all
parameters as default), major PPI network subsets were selected
by using MCODE in Cytoscape. Meanwhile, we performed a
topological analysis of the PPI network. GO enrichment analysis
was performed on the subsets selected by Metascape.

Principal Component Analysis (PCA)
Validity of the feature genes was verified by PCA method
according to a previous report (11). PCA is a dimensionality
reduction analysis for high latitude data. The R package
“FactoMineR” was adopted to extract the first and second
principal components of optimal feature genes (23). Through the
dimensionality reduction analysis of high-latitude feature genes,
the expression profile dataset is mapped to two dimensions to
obtain sample scatter plots with different distances.

RESULTS

Different Feature Selection Methods
Including ReliefF, MRMR, and
Boruta_MCFS Were Compared
Based on the 15,696 genes obtained, we further used the
ReliefF, mRMR, and BorutaMCFS algorithms for feature gene
selection after data normalization by the package “edgeR.” We
selected the top 50 feature genes using the above 3 methods
(Supplementary Table 2). The obtained feature genes were
classified through the random forest classifier and then subjected
to the 10-fold cross-validation. Optimal feature gene set checked
by IFS curve was used as biomarkers for COVID-19. The IFS
curve revealed the highest MCC value, with a sensitivity of 0.892,
a specificity of 0.923 and MCC of 0.839 (Figure 2) in the random
forest classification model constructed with the 36 top feature
genes (Table 1) selected by the Boruta_MCFS method.

Enrichment Analyses
In order to explore the biological functions and signaling
pathways involved by the feature genes, we performed GO and
KEGG enrichment analyses on these 36 feature genes. These
genes were mainly enriched in biological functions including
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FIGURE 2 | Different feature selection methods including ReliefF, mRMR, and

Boruta_MCFS were compared. The IFS curves of ReliefF, mRMR, and

Boruta_MCFS methods based on the random forest classifier. The abscissa

represents the number of feature genes, and the ordinate represents the MCC

value.

Table 1 | 36 feature genes screened by Boruta_MCFS feature selection method.

Boruta_MCFS

PLVAP SIGLEC1 SERPING1 IFIT5

TRO IFI6 CXCL10 ATM

TMEM126A LGR6 MED9 PTAFR

RTP4 PBDC1 LAG3 RILPL2

NOC3L PADI2 SCN2A PRMT7

ICAM4 ISG15 USP18 CDC42EP3

CXCL11 HERC5 OAS3 COPS5

BST2 HRASLS2 DDX58 PPARD

DSC2 NDUFB9 NPFFR1 IFI44

response to virus, defense response to virus, regulation of multi-
organism process, type I interferon signaling pathway, and
negative regulation of viral genome replication (Figure 3A).
KEGG revealed that these genes were largely enriched in
signaling pathways including Epstein-Barr virus infection
and Coronavirus-COVID-19 (Figure 3B). Besides, it could be
predicted from the results that the signaling pathway of
coronavirus infection may be similar to that of Epstein-Barr
virus. Also, this assumption has also been pointed out in previous
works through proteomic and transcriptomic analyses (24).

PPI Network Analysis
To further validate the relationship of the 36 feature genes, we
performed PPI network analysis through the String database,
where 73 interactions and 22 nodes were contained in the
network (Figure 4A). Eleven out of 22 feature genes in the PPI
network had more nodes: CXCL10, ISG15, IFI44, OAS3, BST2,
DDX58, USP18, HERC5, IFI6, RTP4, and IFIT5 (Figure 4B).
Then, based on the PPI network, the largest subset containing 11
nodes was selected throughMCODE (Figure 4C). GO functional
enrichment analysis was performed on the main subset on the
Metascape website (Figures 4D–F). These genes were mainly
enriched in biological functions including response to virus,
interferon signaling, antiviral mechanism by IFN-stimulated
genes, and type II interferon signaling.

PCA
In order to verify whether the above 36 feature genes could
effectively distinguish the positive cases from the negative ones,
we performed PCA on these genes (Figure 5). The results
suggested that positive and negative COVID-19 samples could be
separated in PC1 and PC2. Therefore, we inferred that the above
36 feature genes could be used to judge whether the sample was
COVID-19 positive or negative.

DISCUSSION

In this study, in order to find new biomarkers for COVID-
19, we screened effective feature genes based on the expression
data of COVID-19 positive and negative samples. Enrichment
analysis, literature review, and PCA were performed to verify
whether these feature genes could be COVID-19 biomarkers.
First, 3 methods of ReliefF, mRMR, and Boruta_MCFS were
adopted to screen feature genes from the expression data. Then,
the optimal feature genes were confirmed by the random forest
classifier based on IFS. Compared with ReliefF and mRMR,
Boruta_MCFS can screen feature genes that are more reliable.
We performed GO and KEGG enrichment analyses on the
optimal feature genes and found that these genes were mainly
enriched in biological functions and signaling pathways relating
to SARS-CoV-2 and antiviral functions, as well as immune
regulation. At the same time, PPI network analysis was also
performed on the feature genes to confirm the main subsets in
the network. GO and KEGG were performed on the subsets
on the Metascape website. The results revealed that the main
subset was enriched in the above-mentioned biological functions
and signaling pathways. Finally, the PCA analysis verified that
COVID-19 positive and negative samples could be distinguished
by PC1 and PC2 based on the selected feature genes. Combining
the results of all bioinformatics analyses, a COVID-19 classifier
based on 36 feature genes was built. At the same time, we inferred
that these 36 feature genes were expected to be novel biomarkers
for COVID-19.

Based on the 36 selected feature genes, we performed further
analysis in combination with literature review and found 13
genes (CXCL11, BST2, CXCL10, MED9, LAG3, USP18, OAS3,
DDX58, IFI6, PADI2, ISG15, PTAFR, IFI44) were reported
in articles relating to SARS-CoV-2 (25–35). According to the
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FIGURE 3 | Functional enrichment analyses. (A) GO was performed on 36 feature genes. (B) KEGG was performed on 36 feature genes.

FIGURE 4 | PPI network analysis. (A) The PPI network based on 36 feature genes. (B) The number of nodes of the 22 feature genes in the PPI network. (C) Major

subsets identified using MCODE; (D) The heat map of the enriched module (the smaller the p-value, the darker the color). (E) The network of the enriched module (the

same cluster with the same color). (F) Enriched module network (the smaller the p-value, the darker the color).
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FIGURE 5 | PCA. PCA was performed on the 36 feature genes. Green represents positive samples and red represents negative ones.

study reports, CXCL10, CXCL11, LAG3, OAS3, PADI2 and
other genes are significantly upregulated in the blood or lung
tissue in patients with severe COVID-19 (25, 27, 29, 31, 33,
36). The expression of BST2 and DDX58 is associated with
antiviral functions (26, 30, 37). In addition, LAG3 and USP18
are involved in inhibiting the cytotoxicity of CD8+T cells and
inhibiting IFN-I signaling pathway, respectively (29, 38, 39).
Some existing studies also demonstrated that some genes are
associated with COVID-19.

The functional enrichment analysis of 36 feature genes
showed that these genes were mainly enriched in functions
and pathways relating to SARS-CoV-2 and antivirus, as well
as immune regulation (especially in the functions related
to interferon regulation). BST2 protein can be activated by
interferon and inhibit the synthesis of viral coat protein when
cells are infected, thus playing an antiviral role (37). DDX58
can edit RIG-I protein, while RIG-I protein can detect viral
nucleoprotein, and then activate interferon-stimulated genes
(ISGs) (30). The above genes are all involved in the antiviral
function. Some of the feature genes are also associated with
negative immune regulation. For example, USP18k negatively
regulates the interferon signaling pathway and dissociates ISG15

from binding to proteins of interest to inhibit the ubiquitination
process (38). LAG3 acts as an immune checkpoint molecule
to inhibit the activity of CD8+T cells (40). In addition, an
article stated that ISG15 as a ubiquitin-like protein can be
recognized and degraded by SARS-CoV-2, thereby repressing
the ubiquitination activity (34). Since the process of protein
ubiquitination modification is crucial to the regulation of the
human immune system, the above process is possible to be
involved in immune regulation (41). Therefore, we inferred
that the 36 feature genes were highly correlated with SARS-
CoV-2 infection. Further, we also performed GO enrichment
analysis on the main subset of the PPI network of 36 feature
genes, indicating the genes in the subset were largely enriched
in the biological functions relating to response to virus and
interferon signaling. From the results of enrichment analysis, it
is deduced that the function of these feature genes was closely
related to the immune regulatory response after SARS-CoV-
2 infection.

Taken together with the above discussion, the 36 feature genes
we selected were unique biomarkers in COVID-19 that could
effectively distinguish the positive cases from the negative ones.
Nevertheless, there were some limitations. We only predicted the
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candidate biomarkers for COVID-19, but did not study further
mechanisms of them. Therefore, we plan to explore the role
of some of these genes in the infected cells through a series
of molecular as well as in vitro cellular functional experiments.
For example, after SARS-CoV-2 infection, what would change
in the LAG3 level; whether LAG3 inhibits the activity of
CD8+T cells; if LAG3 affects the activity of CD8+T cells, which
pathways would be affected and what is the significance of
these effects.
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