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Objective: Behavioral assessments that effectively predict sleep-wake states were tried in animal research. This study 
aimed to examine the prediction power of an infrared locomotion detector on the sleep-wake states in ICR (Institute 
Cancer Research) mice. We also explored the influence of the durations and ways of data processing on the prediction 
power.
Methods: The locomotor activities of seven male mice in home cages were recorded by infrared detectors. Their 
sleep-wake states were assessed by video analysis. Using the receiver operating characteristic curve analysis, the cut-off 
score was determined, then the area under the curve (AUC) values of the infrared motion detector that predicted 
sleep-wake states were calculated. In order to improve the prediction power, the four ways of data processing on the 
prediction power were performed by Matlab 2013b. 
Results: In the initial analysis of raw data, the AUC value was 0.785, but it gradually reached to 0.942 after data 
summation. The simple data averaging and summation among four different methods showed the maximal AUC value. 
The 10-minute data summation improved sensitivity (0.889) and specificity (0.901) significantly from the baseline value 
(sensitivity 0.615; specificity 0.936) (p ＜ 0.001).
Conclusion: This study suggests that the locomotor activity measured by an infrared motion detector might be useful 
to predict the sleep-wake states in ICR mice. It also revealed that only simple data summation may improve the pre-
dictive power. Using daily locomotor activities measured by an infrared motion detector is expected to facilitate animal 
research related to sleep-wake states.
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INTRODUCTION

Animal studies are effective to explore the pathophysi-
ology of mental disorders and to initially evaluate the effi-
cacy of drugs that are difficult to perform in human studies 
[1-6]. Even though some animal studies have faced with 
difficulties to find proper animal models, animal research 
on sleep-wake cycles related to sleep disorders or circa-
dian rhythm disorders could be beneficial due to the com-

monality of sleep-wake states between human and animal 
[7]. Sleep-wake states can be precisely measured by elec-
troencephalography (EEG) and electromyography (EMG) 
on the basis of rapid eye movement (REM) and non-REM 
[8-11]. 

However, there are several problems with employing 
EEG in research. EEG leads could be broken when the ani-
mal moves actively that the EEG electrodes are usually 
placed on the brain surface through a surgical procedure 
[12,13]. This surgical procedure to set EEG leads could 
cause surgical complications such as wound infections or 
local brain damages which can distort the research results 
on sleep-wake states [12,13]. Also, accessory equipments 
of EEG can restrict free movements of animals. In order to 
solve these problems, remote EEG recording without elec-
trode lines has been developed [14-16], but the remote 
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EEG still has the problem of setting the EEG electrodes on 
the brain surface. For these reasons, it was difficult to use 
EEG in animal research for longitudinal study of sleep- 
wake states.

Other than measuring sleep-wake states through EEG, 
behavior of animals could be used to predict sleep-wake 
states. Locomotor activities would be useful to predict 
sleep-wake states, considering that activity levels of ani-
mals drop while asleep and vice versa [10,17,18]. Loco-
motor activities have been assessed by various methods 
[17-20]. Wheel-running activity is widely used to meas-
ure locomotor activities in research of circadian rhythms 
[21,22]. However, wheel-running activity is suitable for 
measuring voluntary movements and not adaptable for 
measuring the wake state showing subtle motion in-
dependent of voluntary movements [18]. Recent develop-
ment of experimental apparatus allowed advanced high- 
throughput behavioral assessments to measure locomotor 
activities in details. Several methods such as video based 
monitoring [13,18], piezo-electric sensor [23], infrared 
beam break detector [12], passive infrared motion sensor 
[24] have been tried to predict sleep-wake states using lo-
comotor activity instead of EEG/EMG. 

While each method to measure locomotor activity has 
its own advantages and disadvantages, the assessments 
using infrared detectors might be useful in several aspects 
[25,26]. Firstly, infrared detectors can monitor free move-
ments in home cages using external detectors without sur-
gical procedures as in EEG [24]. Additionally, the data de-
rived from infrared detectors can be easily collected and 
analyzed in real time and longitudinal observations [24]. 
Furthermore, because it is less likely to harm the animal 
body, it is used for measuring movements and predicting 
sleep-wake states in clinical studies [27]. Thus, the find-
ings in animal research can be conveniently expanded in-
to clinical studies. 

Several validation studies of infrared detectors on measur-
ing locomotor activities were done in the 1980s [28,29]. 
However, there was only one validation study of infrared 
detectors on sleep-wake states despite of several advan-
tages [24], and such studies using measurement devices 
for measuring locomotor activities have been attempted 
recently [12,13,18,23,24]. This validation study showed 
that the sleep states predicted by passive infrared motion 
sensors were highly correlated with EEG-defined sleep in 
four C57BL/6J mice (Pearson’s r ＞ 0.95) [24]. Given that 

the difference of biological mechanisms between sleep- 
wake cycles and rest-activity rhythms, proper algorithms 
to process the raw data of locomotion could be warranted 
to predict the sleep-wake states efficiently. A previous val-
idation study considered immobilization of more than 40 
seconds as sleep state [12,24]. This algorithm was identi-
cally used in validation studies using other devices such 
as video-tracking monitoring [12,13], piezo-electric sen-
sor [23] and infrared beak breaking activity monitoring 
[30], and this could be reasonable when considering 
sleep state tends to sustain more than a certain amount of 
time. However, more various algorithms for data process-
ing need to be tried to improve predictability. Also, vali-
dation studies on various strains and species, as well as 
various conditions are required in order to utilize this de-
vice extensively. Therefore, this study aimed to examine 
the prediction power of an infrared locomotion detector 
on sleep-wake states in ICR (Institute Cancer Research) 
mice that are widely used in animal studies. Lastly, we al-
so explored the influence of the durations and methods of 
data processing on improvement of the prediction power 
using four different techniques such as data averaging, da-
ta summation, moving average, and the definition of sleep 
state by Pack et al. [12].

METHODS

Animals
Male ICR mice (n = 7, 33−37 g, 5−6 weeks old) were 

used. During the experiments, temperature and humidity 
were maintained 20 ± 1°C and 40−60% respectively. 
Animals were placed in cages that allowed free move-
ments and were given ad libitum access to food and 
water. The cages were hexahedron shaped with bottom of 
17 × 26 cm and top of 18 × 30 cm. The mice were al-
lowed to adapt to the new environment for 7 days. The 
light was turned on from 8 am to 8 pm and turned off until 
next 8 am under a 12:12 light-dark cycle. This research 
was approved by Institutional Animal Care and Use 
Committee at Pusan National University Hospital 
(PNUH-2017-118).

Measurements

Sleep-wake state

Sleep-wake states were measured using video record-
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Fig. 1. The schematic process to predict sleep-wake state after preprocessing data obtained by infrared locomotion detector. 
AUC, area under the curve.

ings (Sony Model HDR-CX560; Sony, Tokyo, Japan). The 
locomotor activities of the mice in each home cage were 
recoded for 24 hours and their sleep-wake states were an-
alyzed according to the determining criteria which were 
modified from the methods by Schwartz and Smale [11]. 
The criteria for determining the sleeping state were stated 
as follows: 1) keeping inactive states while the eyes are 
shut and 2) leaning the body on the wall or floor, or 3) dip-
ping head without gross motion. On the other hand, the 
criteria for making decisions on the wake state were as fol-
lows: 1) moving actively, 2) eating or gnawing something, 
3) grooming body, 4) standing with only two hind legs, 5) 
turning its head with blinking eyes with active motions 
and 6) exploring the environment with blinking eyes with 
no active motion. Vague behaviors around inactive state, 
such as body shivering, muscle twitching or jerky move-
ment, were evaluated based on the degrees of features or 
durations that have sufficient influences on changing the 
sleep state. Sleep-wake states were determined as 1 (wake 
state) or 0 (sleep state) in the video analysis (Fig. 1).

Locomotor activity

The locomotor activities of mice were measured by us-
ing an infrared locomotion detector, Mlog system 
(Biobserv Inc., Bonn, Germany), which can detect infra-
red rays that mice emit while they are moving freely in 
their cages. Activities measured by this system were con-
verted to voltage, and the values were saved as a natural 
number for each second according to the degrees of 

movement (In this study, minimum 1 to maximum 164, 
Fig. 1). When there was no movement, the value was re-
coded as zero. A larger value indicates more activity.

Experiment Procedure
Total of 7 mice were entrained into a light-dark 12:12 

cycle for one week. Light was automatically controlled by 
Light Control System (Philips, Burlington, MA, USA). After 
the one-week accommodation period, sleep-wake states 
and locomotor activities of mice were simultaneously 
evaluated for 24 hours a day by using video recording and 
intra-red locomotion detectors under the conditions with 
free movement in each home cage. The light-dark con-
dition in experiment was maintained as the same con-
dition at the accommodation period.

Data Analysis
The receiver operating characteristic (ROC) curve anal-

ysis was used in order to evaluate the prediction power of 
the infrared locomotion detector on sleep-wake states. 
The sleep-wake states from the video analysis was consid-
ered as a true class label for the ROC curve analysis. 
Locomotor activities measured by Mlog system was used 
as a predictor. The ‘perfcurve’ method in Matlab is uti-
lized to perform the ROC curve analysis. Sensitivity, spe-
cificity, positive predictive value (PPV), negative pre-
dictive value (NPV), accuracy, area under the curve 
(AUC) value and optimal cut-off scores were calculated 
by Matlab R2013b. 
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Table 1. Results of receiver operating curve analysis according to data summation

Duration of data processing 1-second 2-minute 4-minute 6-minute 8-minute 10-minute

Sensitivity 0.615 0.813 0.840 0.880 0.895 0.889
Specificity 0.936 0.888 0.912 0.886 0.866 0.901
PPV 0.945 0.932 0.947 0.936 0.926 0.954
NPV 0.575 0.715 0.752 0.796 0.816 0.778
Accuracy 0.730 0.839 0.865 0.882 0.885 0.893
AUC 0.785 0.906 0.921 0.932 0.938 0.942
Optimal cut-off score 1 76 161 185 243 313
DeLong ’s test

D value (p value) in comparison 
of baseline data (1 second)

- 28.981 
(＜ 0.001)

25.339 
(＜ 0.001)

24.480 
(＜ 0.001)

23.098 
(＜ 0.001)

21.933 
(＜ 0.001)

D value (p value) in comparison 
of 10-minute data

−21.933 
(＜ 0.001)

−4.389 
(＜ 0.001)

−2.359 
(0.018)

−1.053 
(0.293)

−0.481 
(0.631)

-

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve. 

For examining the influence of the duration of data 
processing for improvements of the prediction power, 
four methods of data processing, data average, data sum-
mation, moving average, and the definition of sleep state 
by Pack et al., were used for data processing in this study 
(Fig. 1). Through the process, the original data gathered 
per second were newly transformed into gradually in-
creasing the duration of data processing, such as 2, 3, …, 
3,600 seconds. The AUC values based on newly trans-
formed data were calculated by Matlab. As the duration of 
data processing increases, the changes of the AUC values 
were demonstrated on graphs (Fig. 1). While performing 
data processing of Mlog data using data averaging and 
summation, the data of sleep-wake states were also trans-
formed for the new analysis, because the sleep-wake were 
originally evaluated per second. If the mean value of data 
of sleep-wake states for the duration of data processing us-
ing data averaging and summation was greater than 0.5, 
the sleep-wake state was considered as wake state (1 
score). Meanwhile, the moving average and permission 
methods used the raw data of Mlog, because the total data 
numbers were not changed. Additionally, the possibility 
of further improvements using the combination of existing 
ways was explored. In the results of data processing using 
moving average, the 120 seconds showed the maximal 
value of AUC. Thus, the combined method, which is the 
data summation after the 120 second-leading moving 
average, was performed additionally. 

During the 10-minute period, the sensitivity, specific-
ity, PPV, NPV, accuracy, AUC, and optimal cut-off scores 
were calculated at every 2-minute interval. Also, these 
characteristics of ROC curve analysis were compared at 

every 2-minute intervals in data summation by using 
DeLong ’s test in the pROC package of R version 3.6.0. 
The statistical significance level was less than 0.05 in 
two-sided tests.

RESULTS

Sleep Features in ICR Mouse Measured by Video 
Analysis

Total sleep duration by the video analysis was 30,884 ± 
3,747.1 seconds on average (8 hours 34 minutes 44.9 sec-
onds) (95% Confidence Interval [CI], 27,418−34,329). 
The mean of sleeping time in the light phase was 26,523 ± 
1,767.9 seconds (7 hours 22 minutes 3.3 seconds) (95% 
CI, 24,888−28,158) while that of the dark phase was 
43,606±3,563.3 seconds (1 hour 12 minutes 40.6 sec-
onds) (95% CI, 1,065.0−7,656.1). 

Initial ROC Analyses for Predicting Sleep-wake State 
before Data Processing

When the cut-off score to predict sleep-wake states was 
set at 1 in the initial ROC curve analysis before data proc-
essing, the analysis showed acceptable sensitivity (0.615), 
specificity (0.936), PPV (0.945), NPV (0.575), accuracy 
(0.730), and AUC (0.785) (Table 1). 

Comparison of the AUC Values according to the 
Durations according to Data Processing

As shown in Figure 2 and Table 1, in simulations using 
both averaging and summing data, the AUC values for 
prediction of sleep-wake state were calculated according 
to the 1-hour durations of data processing. In the initial 
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Fig. 2. Prediction of an infrared locomotor detector on the sleep-wake state according to the duration of data process such as data averaging (A) and 
data summation (B). (A) Red line shows the predicted values of area under the curve (AUC) after data processing using data averaging with the raw 
data measured by an infrared locomotor detector. As the duration of data process increases, the AUC values increase steeply within 200 seconds and 
hit a plateau after approximately 600 seconds. (B) Blue line indicates the predicted AUC values after data processing using data summation. The 
graph in data summation was identical to (A) in data averaging. 

state before the simulations, the AUC value was 0.785. 
The predicted AUC values between data averaging and 
summation were identical. As the duration of data proc-
essing increase, the AUC values gradually increased in 
both methods of data processing. When using data sum-
mation, the values of AUC increased sharply before the 
100-second duration then reached to a plateau around 
0.94 after the 300-second duration (Figs. 2, 3). In addi-
tion, the AUC values calculated that were within the 
10-minute duration showed relatively small oscillations 
compared to those after the 10-minute duration. 

Comparative graphs of ways of different data process-
ing were shown in Figure 3. When using moving average, 
it showed similar pattern like data summation before 
50-second duration. The maximal value around 120 sec-
ond was observed then the AUC value was slightly de-
creased around to 0.86 after the 200-second duration. 
The method from the definition of sleep state by Pack et al. 
showed an increase to 0.8 with 10-second duration then a 
gradual descent to around 0.5 was observed. Combina-
tion method using the data summation after moving aver-
age with 120-second leading showed a slight increase of 
AUC value up to 0.94 which was almost identical to data 
summation after the 200-second duration.

Comparison of the ROC Analyses according to Data 
Summation

The ROC characteristics for predicting sleep-wake 

states showed an improvement after data summation for 
10 minutes (Table 1 and Figs. 4, 5). The initial AUC value 
was 0.785, it increased gradually to 0.942 by the 10-minute 
data summation (Table 1 and Figs. 4, 5). At the 10-minute 
data processing, the ROC curve analysis showed im-
proved sensitivity (0.889), specificity (0.901), PPV (0.954), 
NPV (0.778) and accuracy (0.893) in data summation 
(Table 1).

As seen in Table 1, when DeLong ’s tests were per-
formed, all AUC values after the 2-minute duration of data 
summation were significantly higher than initial values (p ＜ 
0.001). In contrast, the AUC values of 2-minute and 4-mi-
nute data summation were significantly lower than the 
AUC value of the 10-minute data summation (2-minute, p ＜ 
0.001; 4-minute p  = 0.018). There were no significant dif-
ferences between the AUC values of 6-minute and 
10-minute data summation (6-minute vs. 10-minute, p  = 
0.293; 8-minute vs. 10-minute, p  = 0.631). 

DISCUSSION

This study investigated the prediction power of loco-
motor activities measured by infrared detectors on the 
sleep-wake states in ICR mice. We found that infrared mo-
tion detectors could predict acceptable sleep-wake states 
in ICR mice. Furthermore, simple data processing proce-
dures such as data averaging and summation excellently 
improved the predictive power. The optimal duration of 
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Fig. 3. Comparison of the prediction power on sleep-wake state by four methods of data processing. Data summation (A), moving average (B), 
tolerance (C) and data summation after moving average with a 120 second leading (D). (A) Data summation shows an initial increase, a plateau after 
100 seconds and flatness around 0.91 after 300 seconds. (B) Moving average initially presents a similar pattern like data summation. There is a 
maximal value around 120 seconds and a slight decrease around to 0.86 after 200 seconds. (C) Permission indicates an initial increase up to 0.8 
around 10 seconds and then gradual descent to around 0.5. (D) Combination method means to use the data summation after moving average with 
120 second leading. Combination method shows a slight increase of the area under the curve (AUC) value up to 0.94. 

data processing might be around 8 to 10 minutes, based 
on the results of simulations of AUC and DeLong ’s test. 
This device might be one of the useful measurements of 
sleep-wake states in ICR mice. In this study, the total sleep 
time was estimated to be approximately 8.5 hours despite 
the differences according to the preprocessing methods. 
One comprehensive review reported that total sleep times 
ranged from 6.2 to 14.9 hours in mice and from 13.2 to 
15.3 hours in rats [31]. Total sleep time could be influ-
enced by various factors such as light conditions, genetic 
strains and ages [31-33]. If there was a longer light period, 
nocturnal animals slept more [31]. In addition, it is possi-
ble to have different genetic strains between short and 
long sleepers [33]. Furthermore, mice and rats during 

peri-adolescent period show shorter sleep time compared 
to matured rodents [32,34]. In this study, short sleeping of 
ICR mice at the peri-adolescent period (5−6 weeks old) 
was similar to previous findings [31-33].

The infrared motion detector (Mlog system; Biobserv 
Inc.) was used in this study to measure locomotor activ-
ities for each second. Even though it is a high-throughput 
device, the AUC value using the raw data from Mlog sys-
tem before data processing might be just acceptable [35]. 
After data processing, the AUC for prediction of sleep- 
wake states in ICR mice maximally increased up to 0.942. 
The results of this study were similar to those of a previous 
validation study with C57BL/6J mice [24]. Also, these re-
sults were in lines with those when other devices to meas-
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Fig. 4. Comparison of the prediction power on sleep-wake state by 
four methods of data processing. Data summation (blue line), moving 
average (margenta line), tolerance (cyan line) and data summation 
after a 120-second leading moving average (red line). Data summa-
tion (blue line) shows an initial increase before 100-second, a plateau 
around 0.94 after 300 seconds. Moving average (margenta line) 
initially displays a similar pattern like data summation and the 
maximal area under the curve (AUC) value is observed around the 
120 seconds. Then, the AUC value slightly decreased to around 0.86 
after the 200 seconds. Permission way (cyan line) presents the initial 
increase up to 0.8 around in 10 seconds and then gradual descent to 
around 0.5 is observed. Combination way (red line) using the data 
summation after the 120-second leading moving average shows a 
slight increase of the AUC value up to 0.94 almost identical to data 
summation after the 200 second durations. 

Fig. 5. Comparison of the receive operating characteristic (ROC) 
curve according to the durations of data processing. The ROC curves 
and optimal cut-off points using data summation according to the 
durations of data processing (original 1 second, 2 minutes, 4 minutes, 
6 minutes, 8 minutes, 10 minutes) are described. As the durations of 
data summation increases, the area under the curve values are in-
creased as well. The optimal cut-off points according to the durations 
of data summation are represented as circles.

ure locomotor activities were used. In a study of video 
analysis with C57BL/6 mice, it showed high correlation 
(correlation coefficient 0.94) and excellent sensitivity 
(95%) between EEG/EMG and digital video analysis [13]. 
Another study that monitored infrared beam breaks in 
C57BL/6J mice reported a concordance rate of 92% be-
tween EEG and infrared beam measurements [12]. In ad-
dition, one study using a single Polyvinylidine Difluoride 
sensor on the cage floor to detect motion pressure showed 
a high classification rate (94%) for predicting sleep-wake 
states in C57BL/6J mice [36]. Therefore, locomotor activ-
ities measured by infrared detectors could be helpful to 
predict the sleep-wake states like other devices. 

In this study, the four methods of data processing were 
simulated. The results of simulation using data averaging 
were identical to those of data summation, though we 
simply expected that these two ways could make a differ-
ent prediction. However, due to the differences in calcu-
lation processes, the interpretability of optimal cut-off val-
ue may differ. That is, in case of data summation, the 
cut-off value would be integers, meanwhile the cut-off 

value of the data average must be real numbers that are in 
decimals. Thus, the cut-off value of data summation would 
be easy to interpret the implication. The moving averag-
ing way is widely used in analysis of time series data [37]. 
In this study, this way also showed an acceptable AUC 
value approximately 0.9 on the prediction of sleep-wake 
state around 120-second duration. When observing the 
results of simulation, the optimal range might be wider 
from 60-second to 300-second duration. Interestingly, the 
AUC value when using moving average were almost 
maintained without huge variations within 10-miniutue 
duration. Thus, this way might be an alternative method 
in order to stably analyze the data after removing un-
necessary noise. 

Meanwhile, the way to consider the duration of im-
mobility showed relatively a low prediction power except 
the initial 10-second duration. In previous studies, they 
used an algorithm that considered immobility longer than 
40 seconds as sleep state [12,13,23]. This algorithm is 
likely to adapt the characteristics of sleep continuity. 
Conceptually, this algorithm is similar to moving average. 
However, when the value shows immobility less than the 
criteria of duration, the data cannot be considered as 
sleep state despite the immobility like sleep. Thus, if the 
rest-activity cycles is destabilized without sustaining 
sleep-wake cycles, the predictive power of this method 
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could decrease [38]. The previous studies indicated the 
difference between younger and older aged animals 
[12,23]. When using this way, it needs to be considered 
that the optimal duration to make decision on the criteria 
of immobility might be different under the physical con-
ditions or in strains or species. 

We also simulated the combination method to use data 
summation after 120-second leading moving average that 
showed the maximal predictive power. Interestingly, the 
results of the combination method became similar to 
those of the simple data summation. Data summation is a 
simple algorithm but can reflect total trends during a spe-
cific interval. Since the moving average was conceptually 
similar to simple data summation, it is possible that com-
bining these methods may not show improved results. 
After all, the reason that data processing can improve the 
prediction power of an infrared locomotion detector on 
sleep-wake states would be based on the basic concept. 
Total trends during specific intervals would be better for 
making predictions on sleep-wake states than immobility 
at a specific time point. In case of immobility due to sleep, 
because a sleep state tends to last more than several mi-
nutes, it is likely that the animals did not move for a few 
minutes. In contrast, without any motion in the wake 
state, even during periods of low activity, it is likely to 
move a little within minutes. It is possible that a simple da-
ta processing algorithm has an important role on the bio-
logical link between locomotor activities and sleep-wake 
cycles. Therefore, this method might have a crucial role in 
making locomotor activity predictions effectively in 
sleep-wake states.

There are some limitations in this study. Firstly, the 
number of animal used in this study was small to general-
ize these findings, although the sample size was similar or 
larger than previous studies [12,13,24,36]. Secondly, we 
did not use EEG to evaluate sleep-wake status. Studies in-
vestigating sleep-wake cycles normally use both EEG 
analysis and video analysis to increase accuracy [25,26], 
but our research evaluated sleep-wake cycles only by vid-
eo analysis. However, considering the high agreement 
rate between EEG and video analysis in previous research, 
it is assumable that video analysis alone could accurately 
evaluate sleep-wake cycles [12]. Furthermore, because 
free movements are essential based on the purpose of this 
study, we put more weight on free locomotion than 
precision. Thirdly, this study did not compare the effec-

tiveness among other complex algorithms of data process-
ing like machine learning. Also, we did not adapt algo-
rithms to predict detailed sleep parameters, such as sleep 
onset, sleep offset and sleep fragmentation. In the future 
research, in order to use infrared locomotor detectors effi-
ciently, these various algorithms to improve prediction 
powers are needed to be employed. Fourthly, this study 
only used ICR mouse in peri-adolescent period. These re-
sults were limited to peri-adolescent ICR mice. However, 
given that various sleep patterns in peri-adolescent mice 
compared to matured adult mice [32], these results might 
be potentially extended into adult ICR mice that show rel-
atively stable sleep-wake patterns. The prediction powers 
of locomotor activities measured by an infrared motion 
detector on sleep-wake states in various ages, different 
strains of mouse or other species such as rat are necessary. 
Fifthly, this study was performed only in healthy animals. 
In order to confirm these findings, the future studies are 
needed in animal models such as depression, hyper-
locomotion or insomnia.

Despite these limitations, this study showed signifi-
cance that locomotor activities measured by an infrared 
motion detector in home cages can predict sleep-wake 
states in ICR mice. Furthermore, simple data summation 
satisfactorily improved the predictive power of locomotor 
activities on sleep-wake states. Therefore, infrared loco-
motion detectors and data processing methods might be 
useful in animal research on sleep-wake states or circa-
dian rhythms. Given that similarity of actigraphy in hu-
man research, the extension of these findings into human 
research could be meaningful for appropriate preprocess-
ing of behavioral data that collected longitudinally. 
Furthermore, translational research on sleep-wake circa-
dian rhythm using locomotion or gross movement might 
be facilitated. 

An infrared locomotion detector predicted effectively 
sleep-wake states in ICR mice. After the optimal data 
processing, the prediction power was improved, and this 
infrared locomotion detector has advantages that can 
measure free movements of animals in their home cages 
without any restrictions longitudinally. Thus, this device 
could be one of useful measurement tools in animal re-
search with longitudinal observations on sleep-wake cy-
cles or circadian sleep-wake rhythms. 
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