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Abstract: Selecting among alternative scenarios of human evolution is nowadays a common
methodology to investigate the history of our species. This strategy is usually based on computer
simulations of genetic data under different evolutionary scenarios, followed by a fitting of the
simulated data with the real data. A recent trend in the investigation of ancestral evolutionary
processes of modern humans is the application of genetic gradients as a measure of fitting,
since evolutionary processes such as range expansions, range contractions, and population admixture
(among others) can lead to different genetic gradients. In addition, this strategy allows the analysis of
the genetic causes of the observed genetic gradients. Here, we review recent findings on the selection
among alternative scenarios of human evolution based on simulated genetic gradients, including
pros and cons. First, we describe common methodologies to simulate genetic gradients and apply
them to select among alternative scenarios of human evolution. Next, we review previous studies
on the influence of range expansions, population admixture, last glacial period, and migration with
long-distance dispersal on genetic gradients for some regions of the world. Finally, we discuss this
analytical approach, including technical limitations, required improvements, and advice. Although
here we focus on human evolution, this approach could be extended to study other species.

Keywords: human genetic gradients; human evolution; model selection; range expansion; range
contraction; last glacial maximum; long-distance dispersal; allele surfing

1. Introduction

The evolutionary history of our species persists as a hot topic of research due to the curiosity
about our past and the continuous interesting findings from both genetic and archeological data,
despite the fact that these findings are sometimes contradictory e.g., [1–3]. Indeed, knowledge
about human genetic variation may help us to understand the causes and effects of some human
diseases, like those presenting variable behaviour among ethnic groups or populations e.g., [4,5].
Conveniently, the genetic material of current humans still presents signatures of past evolutionary
events, allowing us to investigate aspects about our origins. However, the interpretation of these
findings is not always straightforward, because different evolutionary processes can lead to similar
results. A clear example is the interpretation of the genetic gradients (clines) of modern humans by
Cavalli-Sforza et al. [6–8]. These gradients were initially explained as genetic signatures of specific
migrations. For example, Cavalli-Sforza et al. interpreted the European southeast–northwest (SE-NW)
gradient of genetic variation as the result of the demic diffusion of early Neolithic farmers during
their expansion from the Near East [9,10]. Posterior studies suggested that such genetic gradients
could be caused or influenced by other processes such as range contractions or population admixture,
i.e., hence, not necessarily attributed to a particular range expansion [11–15]. Interestingly, applying
spatially-explicit computer simulations, François et al. [12] and Arenas et al. [14] showed that genetic
gradients can present a direction perpendicular to the direction of the expansion as a consequence
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of allele surfing [16,17], where mutations occurring on the wave of advance of the range expansion
generate highly-differentiated genetic sectors aligned perpendicular to the direction of the expansion.
Allele surfing is more detectable in recent expansions of small populations and under low migration
rates, where sectors were not yet removed through homogenization [17]. Genetic gradients can also
present the direction of the range expansion if the genetic signatures of allele surfing are lower than
the genetic signatures of other genetic processes, such as isolation by distance (IBD). For example,
Branco et al. [18] recently studied the influence of different evolutionary scenarios on American genetic
gradients of modern humans through extensive spatially-explicit computer simulations. They found
that at the continental level, the genetic gradient presented a direction following that of the range
expansion under any studied evolutionary scenario (see Section 3), which was explained as IBD
(similarly to the interpretations by Cavalli-Sforza et al. [7]), but this gradient varied when studied
in smaller geographic regions, suggesting that the influence of different genetic processes on genetic
gradients can vary with the geographic features of the landscape.

Since recent studies showed that genetic gradients can vary with different evolutionary processes,
one can perform a selection among alternative evolutionary scenarios with data simulated under
each scenario, followed by a fitting between simulated and real data based on genetic gradients.
This strategy is not new in population genetics; for instance, the approximate Bayesian computation
(ABC) approach [19,20] is frequently used to evaluate alternative scenarios of human evolution
e.g., [21–25]. A goal of ABC is that it provides a quantitative evaluation of the fitting between real
and simulated data; however, on the other hand, it usually requires a huge number of computer
simulations (from many thousands to millions, although they can run in parallel) to obtain results with
an acceptable level of accuracy and precision. Concerning the analyses based on a comparison between
real and simulated genetic gradients, the most recent studies only required hundreds of simulations to
identify the best fitting scenario, but these comparisons were mainly qualitative (direction of genetic
gradients).

Here, we review the application of genetic gradients simulated under spatially-explicit computer
simulations to distinguish between alternative evolutionary scenarios of modern humans by their
fitting with real genetic gradients. First, we present the commonly-used methodologies to perform
this selection among alternative scenarios, including the simulation of genetic data and estimation
of genetic gradients. Next, we describe previous studies applying this approach to investigate the
influence of human range expansions, range contractions followed by range re-expansions (processes
that can be induced by glacial periods), population admixture and migration with long-distance
dispersal, among others, on genetic gradients of some regions of the world, and to perform a selection
among alternative evolutionary scenarios. Finally, we discuss advantages and limitations of those
studies, and we provide recommendations based on our experience.

2. Simulation of Genetic Gradients

The simulation of genetic gradients usually consists of two main steps, namely: the simulation of
genetic data under a given evolutionary scenario, and the estimation of the genetic gradient from the
simulated data. Next, we describe the most frequently-used methodologies to perform both steps.

2.1. Simulation of Genetic Data under Diverse Evolutionary Scenarios of Human Evolution

A variety of approaches exist to simulate genetic data in population genetics, and they can be
roughly classified in two types concerning the kind of simulation: (i) simulation of the evolutionary
history of a sample, and (ii) simulation of genetic data upon a given evolutionary history.

Concerning the simulation of the evolutionary history of a sample, a number of approaches
have been developed. The most commonly-used approaches are the coalescent [26], the birth-death
approach [27], and the forward-time approach [28]. Basically, the coalescent simulates the evolutionary
history of a sample of alleles from the present to the past until their most recent common ancestor
(MRCA). The birth-death approach simulates the evolution of a sample considering birth and death
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rates, which drive the amount of variability (branching) in the simulated history. By contrast,
the forward-time approach simulates the evolution of a whole population from the past to the
present. Despite the fact that the forward-time approach incorporates more evolutionary processes
than the other approaches (i.e., interactions among individuals e.g., [29], population admixture
e.g., [30], complex selection e.g., [29,31], and complex migration models e.g., [30,32,33]), computer
simulations performed under this approach are computationally-intensive because of the simulation
of many individuals (although progress is being made in this respect e.g., [34]). The simulation of
the evolutionary history under a birth-death approach is much faster (similarly to the coalescent)
but requires prior knowledge about birth and death rates. The coalescent is possibly the most
commonly-implemented approach to be applied in population genetics (including studies on
human evolution e.g., [23,35]), probably because of its rapid computation, its similarity with
population genetics processes by modeling evolution based on the population size, and because
it is capable of taking into account additional evolutionary processes such as demographics [36],
recombination [37,38], population structure and migration [39–41], or selection e.g., [42–45]. Indeed,
because of its rapid simulation and realistic population genetics modeling, the coalescent is a
very useful approach when extensive simulations are required, for example in studies based on
ABC or Bayesian approaches. For further details about approaches and frameworks to simulate
evolutionary histories, we recommend the following reviews [46–48]. Interestingly, the forward-time
and coalescent approaches were combined into the simulator SPLATCHE, allowing a rapid simulation
of the evolutionary history of a sample accounting for evolutionary processes acting at the whole
population level [49,50]. Basically, this framework simulates a spatial and temporal evolution of the
whole population followed by the reconstruction of the evolutionary history of a given sample that is
embedded in the previously-simulated population [50]; further details are shown later. This technical
innovation made this framework well established in population genetics studies of terrestrial species,
including humans [51].

Once the evolutionary history of the sample is simulated (i.e., a simulated phylogenetic tree), it is
possible to simulate molecular evolution upon such evolutionary history to obtain genetic sequences
for all the internal and tip nodes (note that the set of simulated sequences of the tip nodes can compose
a multiple sequence alignment) [46,52,53]. The traditional procedure is based on the following two
steps: First, a genetic sequence (random or devised by the researcher) must be assigned to the MRCA
node. Second, the MRCA sequence is evolved, from the past to the present, over the evolutionary
history to obtain a sequence for every internal and tip (sample) node (an illustrative example is
presented in the following subsection). The number of simulated substitutions depends on the branch
length, while the type of simulated substitutions depends on the specified substitution model of
evolution [46,52,54].

Spatially-Explicit Computer Simulations

It is known that the consideration of a 2-dimensional (2D) landscape with its particular geography
may result in simulations which are more realistic than those obtained with models of a lower number
of dimensions [28,55]. This is because the real processes are often influenced by spatial constraints
that may also vary over time, leading to the need for spatially-explicit models of evolution [56,57].
Despite some computer simulators implementing spatially-explicit models [49,50,58–60], unfortunately,
several of them are not available to the public (i.e., the tool developed by Rendine et al. [61] applied to
simulate an European Paleolithic and Neolithic expansion with admixture and the tool developed by
Rasteiro et al. [30] applied to simulate human sex-biased migration). Other spatially-explicit computer
simulators (i.e., KERNELPOP [59], IBDSim [60] and CDMetaPOP [62]) have not been yet widely applied
to the study of human evolution, but they are potentially applicable for that purpose (see [28,51]
for comparisons among different Spatially-explicit computer simulators). Next, the spatially-explicit
computer simulator SPLATCHE [50] and its second version SPLATCHE2 [49] have been largely used
to study human evolution, perhaps because of their variety of implemented capabilities and their
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graphical user interface. Hence, hereafter we focus on this simulator, which is the simulator used in
the studies presented in the following sections of this review.

Spatially-explicit computer simulations with SPLATCHE2 require a 2D landscape/map, which,
for various regions of the world, can be imported from a Geographical Information System (GIS) [63].
This map can be split into a grid of small areas (demes) with a given deme size. SPLATCHE2 simulates
samples of genetic data by three main steps (Figure 1): (i) A forward-in-time simulation of the
evolutionary history of the entire population accounting for spatial and demographic information
(Figure 1A). Here, a deme must be chosen as a point of origin to start an expansion over the space and
time. Next, migration events occur towards neighboring demes under the 2D stepping-stone migration
model [64]. Each deme can be modeled with particular environmental conditions such as a particular
carrying capacity (a measure of the resources available in the deme) and friction (capacity to move
through the deme), and these parameters can vary over time to mimic periods with different resources.
Next, the variation of the population size over time for each deme depends on the population growth
rate and the specific environmental parameters of the deme. Indeed, the number of migration events
from each deme depends on the migration rate and population size of the deme [50]. The simulation
occurs during a user-specified number of generations that should be higher than the time to the MRCA
(TMRCA) of the sample. An illustrative example of simulation of spatial and temporal expansion of
European modern humans is shown in the Figure 2. The next steps consist of: (ii) the application of
the coalescent to reconstruct the evolutionary history of a sample (which is embedded in the history
of the entire population) (Figure 1B) and, (iii) a simulation of molecular (sequence) evolution over
the evolutionary history of the sample to obtain genetic data for the sample (Figure 1C). SPLATCHE2
can simulate genetic sequences with diverse molecular markers, including DNA, single nucleotide
polymorphism (SNP), and short tandem repeat (STR).
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 Figure 1. Illustrative example of a spatially-explicit simulation of a range expansion according
to a 2-dimensional (2D) stepping-stone migration model [64], followed by the reconstruction of
the evolutionary history of the sample and the simulation of genetic data. (A): Population range
expansion, from the past to the present. It starts from the upper-left deme (origin), and migrants
are sent to neighboring demes. Colonized demes (gray) can send/receive individuals to/from the
neighboring demes, while non-colonized demes (white) can only receive individuals. We included a
region representing a sea that cannot be colonized (blue), constituting a spatial barrier to migration.
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(B): Reconstruction of the evolutionary history of a sample of 7 individuals (present). Going backwards
in time, coalescence (green) and migration (orange) events occur until the most recent common ancestor
(MRCA) of the sample is reached, which does not necessarily correspond to the origin (time and
place) of the range expansion. (C): Simulation of genetic data for the sample. A random sequence
(for simplicity, in this example, it is just 1 nucleotide, (A)) is evolved forward in time, incorporating
substitutions along branches (violet), until reaching the sample (present). At the end of the simulation,
a multiple sequence alignment is obtained by combining all the sequences of the sample. Note that
the spatial barrier can affect the shape of the evolutionary history of the sample, and consequently,
the genetic information of the sample.
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Figure 2. Illustrative example of the simulation of spatial and temporal expansion, contraction,
and re-expansion of Paleolithic Europeans. The figure presents snapshots obtained with the program
SPLATCHE2 for an example of: (A) simulation of a Paleolithic range expansion over Europe,
(B) simulation of a Paleolithic range contraction towards the Iberian Peninsula induced by the last
glacial maximum (LGM), and (C) simulation of a Paleolithic range re-expansion from the Iberian
Peninsula after the LGM. To perform this simulation, we applied settings similar to those specified
in [14]. Note that the time moves from the left to the right and the range expansion starts from the
bottom-right corner of Europe (Middle East). Snapshots are taken each 50 generations. White demes
indicate empty regions and black demes indicate colonized regions. Note that after this Paleolithic
expansion, contraction and re-expansion, a Neolithic expansion (also from the Middle East) could be
simulated with or without admixture with Paleolithic populations.

2.2. Estimation of Genetic Gradients in Studies of Human Evolution

Nowadays, several approaches allow the estimation of a genetic gradient from a dataset of genetic
sequences. The traditionally-applied method to estimate genetic gradients is the principal component
analysis (PCA). PCA identifies orthogonal axes (principal components, PCs) where objects show the
highest variance of the information present in the original data. In population genetics, PCs provide
an acceptable approximation of the covariance pattern among individuals of a given dataset [12].
They were largely used to study human evolution by Cavalli-Sforza [65], with the estimation of
genetic gradients of European populations from allele-frequency data, and posteriorly used to estimate
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genetic gradients for other worldwide human populations [6,7]. Nowadays, PCA remains a very
useful and powerful technique to estimate genetic gradients [11,66] because it properly summarizes
information present in large genetic data [67,68]. Recent studies that used PCA to obtain genetic
gradients [12,14,18] applied the “prcomp” function of the R software environment. Indeed, the studies
by Arenas et al. [14] and Branco et al. [18], which performed a high number of computer simulations
per analyzed evolutionary scenario, estimated a genetic gradient for each simulated dataset. Next,
they connected the geographical centroids of the positive and negative coordinates for every gradient
to obtain a line representing the direction of the gradient. Finally, in order to summarize all the
simulated genetic gradients obtained from each evolutionary scenario, they computed the median of
the lines (slope and intercept) of the simulated gradients per scenario.

Recently, more complex methods have been developed to estimate genetic gradients and
population structures for a given landscape [69–71]. These methods apply the Bayesian approach
to infer genetic variation by modeling genetic distances between populations as a function of their
geographic distance e.g., [72–74]. A limitation of these methodologies is that they may require long
computer times to obtain convergence among MCMC chains, and, from our experience (unpublished),
can generate artifacts when inferring genetic gradients in non-sampled regions (extrapolation of a
genetic gradient). Rapid estimation with PCA is convenient for studies based on a high number of
genetic datasets, like those presented in the following sections of this review involving many computer
simulations. We believe that comprehensive comparisons of performance among the new Bayesian
methods, and also including the PCA methods, should be investigated (for example by computer
simulations).

3. Selecting among Alternative Scenarios of Population Admixture through Simulated
Genetic Gradients

The European settlement by Paleolithic and Neolithic populations has been generally proposed
with little admixture, yet studies still disagree. The estimated level of admixture varied with the
applied genetic marker and the type of analyses performed, with Neolithic contributions below
25% [75], near 50% [76], and above 50% [9,77,78]. Assuming that the level of admixture could
affect genetic gradients, a few studies investigated the amount of admixture by fitting genetic
gradients simulated under different levels of admixture with the observed (real) genetic gradients
obtained by Cavalli-Sforza et al. [6,7]. The gradients found by Cavalli-Sforza et al. present a SE-NW
orientation, and were originally interpreted by these authors as a consequence of a demic diffusion
process of Neolithic farmers from the Near East [6–8,79]. A first study exploring the influence of
Paleolithic-Neolithic admixture through spatially-explicit computer simulations was performed by
Currat and Excoffier [78]. They always found a gradient with a direction following the Neolithic
expansion (SE-NW). Later, François et al. [12] repeated the study analyzing several levels of admixture.
Under a high proportion (>20%) of Neolithic ancestry, they found a genetic gradient with a SW-NE
direction, which is perpendicular to the direction of the range expansion from the Middle East.
This gradient was interpreted as a consequence of allele surfing (see Introduction). Under lower
levels of Neolithic ancestry, the gradient presented a direction following the direction of the range
expansion (fitting with the gradient obtained from real data by Cavalli-Sforza et al.); this gradient was
interpreted as a Paleolithic introgression along the direction of the Neolithic expansion. However,
François et al. [12] only performed 10 simulations per studied evolutionary scenario and ignored
some evolutionary processes such as range contractions induced by the last glacial maximum (LGM)
period (Section 4). In a posterior study, Arenas et al. [14] repeated the analyses with more sophisticated
evolutionary scenarios (including a variety of levels of Paleolithic-Neolithic admixture and range
contractions modeling the effect of the LGM, as discussed in Section 4), and increased to 100 the
number of simulations per studied evolutionary scenario. They verified that under high levels of
Neolithic ancestry (>20%), the genetic gradients follow a direction perpendicular to the direction of
the range expansion (allele surfing). By contrast, under low levels of Neolithic ancestry, the genetic
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gradient followed the direction of the range expansion. However, they also found that the LGM could
also affect the genetic gradients, leading to a more complex system that we present in Section 4.

The genetic gradient in the Americas based on real data follows the direction of the expansion
(NW-SE) from Bering [6,7,80]. A similar gradient was also obtained from the analysis of the geographic
distribution of linguistic families and subfamilies in this continent [7]. Recently, we and coauthors tried
to investigate the level of admixture between the first Amerindian populations by applying computer
simulations spatially [18]. We simulated two hypothetical Amerindian expansions from current Alaska:
the first at 18 thousand years ago (kya) (ending the LGM) [81] and the second at 11 kya (beginning the
Holocene) [82]. We investigated several levels of admixture between both populations, including a
100% and 0% contribution of the second population to the final genetic pool. We also simulated other
evolutionary scenarios such as ice-sheets derived from the LGM and migration with long-distance
dispersal (LDD) events; these are presented in Sections 4 and 5. The main finding was a simulated
genetic gradient with a NW-SE direction throughout the entire continent, which was very similar to
the genetic gradient obtained from real data. Importantly, we found that this genetic gradient was
invariable with the level of population admixture. We interpreted this gradient as a consequence of IBD
caused by the long NW-SE distance of the American continent, and where allele surfing could exist but
in a lower extent. That result was for the analysis of the entire continent. Next, we separately analyzed
North America to find, for any level of admixture, a gradient with direction NE-SW, perpendicular to
the direction of the expansion, that we interpreted as a consequence of allele surfing. This gradient
did not fit with the gradients derived from real data. However, as indicated above, we simulated
additional evolutionary scenarios (LGM and LDD) to find that the gradient derived from real data in
North America can be obtained only if those scenarios are considered (Sections 4 and 5). The findings
suggested that genetic processes such as allele surfing, serial founder events, or IBD, which drive the
direction of genetic gradients, can differ among the regions of a landscape.

4. Selecting among Alternative Scenarios of Presence and Absence of the Last Glacial Period
through Simulated Genetic Gradients

A factor that has been frequently ignored in interpretations of the SE-NW European genetic
gradient is the last ice age that occurred at 29–13 kya [83]. During that period, European hunter-gatherer
populations probably migrated towards the south through a range contraction, and next, re-expand
north to recolonize the areas after the glacial period [84]. Arenas et al. [14] evaluated the influence of the
last glacial period on the direction of the European genetic gradient. They performed spatially-explicit
computer simulations under the following evolutionary scenarios: (i) absence of the last glacial period,
(ii) presence of the last glacial period through the modeling of a range contraction towards all Southern
Europe, followed by a period of time at refugia in all Southern Europe and a posterior re-expansion
to recolonize the north and, (iii) presence of the last glacial period through the modeling of a range
contraction towards only the Iberian Peninsula, followed by a period of time at refugia in only the
Iberian Peninsula and a posterior re-expansion to recolonize the north (Figure 2). Note that the
scenarios (ii) and (iii) present a different direction of range re-expansion: a re-expansion with direction
S-N in (ii) and a re-expansion with direction SW-NE in (iii). The range contractions were simulated by a
series of progressive contraction events during which demes located in the most northern areas became
uninhabitable by setting its carrying capacity to zero [85,86]. In addition, the range contraction was
simulated accounting for isotropic and anisotropic migration; the latter was designed to mimic humans
who were aware about the glacial period, and that promotes a higher migration towards the south [84].
They found that both range re-expansions produced genetic gradients perpendicular to their direction:
the re-expansion S-N led to a genetic gradient with direction E-W and the re-expansion SW-NE led to a
genetic gradient with direction NW-SE), but only if the Paleolithic contribution to the final genetic pool
was large enough (>80%). It is expected that the last glacial period affects genetic gradients only for
large Paleolithic ancestry, because this period occurred during the Paleolithic. The simulated gradients
were interpreted as a consequence of allele surfing derived from the range re-expansion, probably
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because this expansion was recent. Altogether, Arenas et al. [14] found two evolutionary scenarios
that fitted better with the real genetic gradients: (i) a scenario based on a large Paleolithic ancestry
(>95%) and absence of any range contraction, and (ii) a scenario with some Paleolithic ancestry that
considered a range contraction towards the Iberian Peninsula caused by the last ice period. In contrast,
pure Neolithic expansions (without admixture and without genetic signatures from the last ice period)
produced genetic gradients that did not fit with the genetic gradients estimated from real data.

Branco et al. [18] studied the influence of ice sheets caused by the last glacial period on the genetic
gradients of the entire American continent and North America. It is known that as a consequence of
the last glacial period, North America presented two large ice sheets (Laurentide and Cordilleran)
that could have affected the entry and settlement of the first modern humans in this continent [87,88].
Concerning the entry to the Americas, two main routes have been proposed (and highly discussed):
a coastal route through the North Pacific coastline, and an inland route (ice-free corridor) at the
eastern side of the Rocky Mountains [89–91]. Indeed, the ice sheets could lead to temporary ice-free
refugia in southern regions of North America and posterior expansions to colonize northern regions
after melting [92]. In Branco et al. [18], we simulated the colonization of the entire continent and
North America considering and ignoring ice sheets derived from the LGM [87]. Following previous
works, scenarios with ice sheets were simulated by specifying carrying capacity of the demes covered
by ice to zero [85] from 18 kya to 10 kya, a period that considers the duration of ice sheets, frozen
grounds, and subsequent inundations [89]. Indeed, the coastal and inland corridors of entry into the
Americas were simulated allowing a north to south passage without ice of 1–2 demes (100–200 km)
width. At the entire continental level, we found that considering or ignoring the last glacial period
does not alter the NW-SE genetic gradient, which was similar to that obtained from real data [6,7,80].
However, in North America, we found that the simulated genetic gradient in absence of the LGM
presents a NE-SW direction (which does not fit with the real genetic gradient), while in presence of
the LGM it presents a NW-SE direction (similar to the real genetic gradient). We concluded that at
the continental level the NW-SE genetic gradient (which was invariable with population admixture
and presence/absence of ice sheets) was mainly caused by a strong IBD, probably favored by the long
north-south distance of this continent. However, in North America, the ice sheets must be considered
to obtain the NW-SE gradient observed from real data. In addition, we also found that migration,
including a proportion of long-distance dispersal (LDD) events, favors the simulation of the NW-SE
genetic gradient (Section 5.3). Again, these findings suggest that the genetic processes driving the
direction of genetic gradients can differ among regions of a landscape.

5. Selecting among Alternative Scenarios of Other Evolutionary Processes through Simulated
Genetic Gradients

In addition to population admixture and the last glacial period, some other processes were
investigated for testing their influence on genetic gradients. In this Section, we also briefly present the
application of PC2 and PC3 to identify genetically isolated regions.

5.1. Influence of a Paleolithic Expansion from the Iberian Peninsula on the European Genetic Gradient

François et al. [12] investigated a European Paleolithic expansion from the Iberian Peninsula
(instead of from the Middle East) followed by a Neolithic expansion from the Middle East. They found
that if the simulated Paleolithic ancestry is large (>80%), scenarios with Paleolithic expansion from the
Iberian Peninsula lead to genetic gradients similar to those from scenarios with Paleolithic expansion
from the Middle East, suggesting that the origin of the Paleolithic expansion does not alter the SE-NW
genetic gradient. Because of this, they concluded that the real genetic gradient (SE-NW) was caused by
a Paleolithic introgression along the direction of Neolithic expansion instead of just by a Paleolithic
range expansion from the Middle East.
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5.2. Influence of Varying Evolutionary Parameters on Genetic Gradients

Arenas et al. [14] investigated the influence of several evolutionary parameters on European
genetic gradients. They found that the genetic gradients were invariable to realistic changes of the
ancestral population size, growth rate, and the carrying capacity of Neolithic populations (similar
findings were found for American genetic gradients [18]). The only parameter that altered the gradient
generated by the Neolithic population was the simulated number of generations. If the number
of generations of the simulated Neolithic population is similar to the number of generations of the
simulated Paleolithic population (both expansions starting at 40 kya), then the Neolithic population
generates a gradient similar to that from the Paleolithic population, supporting the hypothesis that
allele surfing could be the cause of the Neolithic genetic gradient (if the expansion is not recent, genetic
sectors are lost by homogenization).

5.3. Influence of Long-Distance Dispersal on Genetic Gradients

Some studies suggested that the expansion of modern humans throughout the world could
present LDD events, for example traveling by boats [93]. Actually, a recent study on the colonization of
Eurasia by modern humans found that evolutionary scenarios based on LDD better fitted real data than
evolutionary scenarios ignoring LDD [21]. Considering this aspect, in the study of American genetic
gradients by Branco et al. [18], we investigated the influence of a proportion of migration through LDD
on the genetic gradients. We performed spatially-explicit computer simulations under the LDD model
developed by Ray and Excoffier [32], following a LDD distribution estimated from human data [94],
a LDD proportion of 5% [21,33], and considering 1,000 km as a maximum distance of dispersal per
generation [21]. We found that considering or ignoring LDD does not alter the NW-SE genetic gradient
simulated along the entire continent (which is similar to the real genetic gradient [6,7,80]). This again
supported the interpretation of strong genetic signatures caused by IBD along the entire American
continent. However, in the specific analysis of North America, LDD generated the NW-SE genetic
gradient (similar to the real gradient) if there is any genetic contribution from the first (more ancestral)
population. This suggested that LDD events that occurred from the first population promoted a
homogenization of genetic diversity [33] leading to the gradient that follows the longest geographic
distance (an scenario of IBD), while LDD events in only the second expansion would require more
time to obtain such homogenization. These findings suggest that LDD events could have occurred in
the Americas from the first expansion, explaining the rapid colonization of this continent; this is in
agreement with the presence of LDD in previous expansions throughout Eurasia [21].

5.4. Evolutionary Information from the Second and Third Principal Components

The first few PCs from a PCA are often used to explore the structure and variance of the data.
In the analysis of a genetic sample, the first PC (PC1) map provides a spatial genetic gradient and the
following PC maps (especially PC2 and PC3 because the amount of information of the original data is
reduced by increasing the PC number) indicates genetically isolated regions. PC2 and PC3 maps were
estimated in analyses of European populations [12,14] to highlight Scandinavia and the British Islands
as genetically-isolated regions. Concerning the Americas, the inferred PC2 maps showed several
regions with genetic isolation: Alaska, the Labrador Peninsula, Central America and Patagonia [18].
All these estimations were in agreement with the findings from real data [6,7,80] and the genetic
isolation was mainly explained as a consequence of geographic isolation.

6. Conclusions and Future Prospects

Comparisons between simulated and real genetic gradients showed that spatially-explicit
computer simulations provide good approximations of real processes and can be used to perform
selection among alternative evolutionary scenarios. However, so far all the studies testing alternative
scenarios of human evolution through simulated genetic gradients only performed qualitative
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comparisons with real genetic gradients [12,14,18,78]. In those studies, the fitting between simulated
and real gradients was performed just by a visual inspection of their overlapping, and we believe that it
is likely that future studies could present situations requiring a quantitative evaluation. As previously
indicated, Arenas et al. [14] and Branco et al. [18] performed a high number of computer simulations
per studied evolutionary scenario; for each simulated dataset, they estimated a genetic gradient and
obtained its direction by connecting the geographical centroids (positive and negative coordinates) to
finally compute the median among all the simulated gradients of the evolutionary scenario. We believe
that future studies could estimate, in addition to the median, the variance of the simulated gradient for
each scenario, and these statistics could be used to perform a quantitative fitting between simulated
and real genetic gradients (i.e., with ABC).

Another important aspect in this strategy, as in any analytical strategy based on computer
simulations, is that the computer simulations should be as realistic as possible.

The studies discussed in previous sections analyzed genetic gradients of modern humans,
ignoring some geographical barriers such as rivers and mountain ranges. We believe that these
assumptions may not cause relevant biases when investigating large world regions (as done in such
studies), but they could be crucial when investigating small regions. Moreover, the simulations should
consider not only the current geographic landscape, but also its evolution from the beginning of the
simulated evolutionary history (i.e., accounting for past vegetation maps [95]). Of course, some studies
considered the last ice period [14,18], but still, the avalaible resources may vary over time at any region
of the landscape, and it was found that a temporal variation of environmental heterogeneity can induce
a loss of genetic diversity within demes and increase the population differentiation among demes [96],
which we believe could also affect genetic gradients.

Another way to generate more realistic computer simulations is by improving the modeling of
human evolution. The aforementioned studies performed computer simulations based on evolutionary
parameters (i.e., time and population size at the onset of the expansions, population growth rate,
migration rate, LDD proportion, mutation rate, etc) estimated in previous works. However, the real
processes were probably more complex, presenting multiple expansion waves and admixtures
(e.g., in Europe the Roman and muslim expansions [97,98], or in the Americas, the admixture with
non-American populations after the European contact [99,100]), complex demographics, where the
population growth rate can vary over time (i.e., caused by population bottlenecks [101]), variation of
migration rates over time (which could depend on the lifestyle and technology; for example it was
found that Neolithic populations did not expand more rapidly than Paleolithic populations [102],
perhaps because of their more sedentary lifestyle, or, as another example, the expansion throughout
the Americas was faster than previous expansions throughout other regions [103]), or spatial and
temporal selection [104]. Moreover, serial/longitudinal sampling should also be implemented in
spatially-explicit computer simulators to analyse the increasing quantity of available ancient genetic
data e.g., [105]. In all, the researcher is often forced to identify and apply only those parameters and
capabilities implemented in the simulator that could better mimic a desired evolutionary scenario.
Hopefully these complex processes will be incorporated into current and future spatially-explicit
computer simulators.

In summary, simulated genetic gradients can be useful to perform selections among alternative
evolutionary scenarios of modern humans, and we believe that they could also be applied to study
other species with similar migration patterns. It is clear that the methods used so far can be improved,
especially with more realistic computer simulations (based on high resolution maps and more realistic
environmental and evolutionary conditions), and with the application of robust statistical methods for
quantitatively evaluating the fitting between simulated and real genetic gradients. We believe that the
application of genetic gradients for testing among alternative scenarios will increase in interest and
use in the coming years.
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