

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/mehy

Highly expressed ACE-2 receptors during pregnancy: A protective factor for SARS-COV-2 infection?

Ernesto Antonio Figueiro-Filho^{a,*}, Sebastian R. Hobson^a, Dan Farine^a, Mark H. Yudin^b

future novel therapeutics.

^a Mount Sinai Hospital, Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada ^b Saint Michael's Hospital, Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada

ARTICLE INFO	S U M M A R Y		
Keywords: COVID-19 Pregnancy ACE-2 SARS-CoV-2 Hypothesis	While previous viral pandemics showed that pregnancy was a risk factor for susceptibility and adverse outcomes, current evidence is conflicting whether SARS-CoV-2 infection during pregnancy is more severe than in the general population, with relatively low maternal and fetal/neonatal mortality rates. SARS-CoV-2 is known to enter host cells via the ACE-2 receptors, competitively occupying their binding sites. In theory, viral invasion can lead to a reduction in available ACE-2 receptors and consequently an unbalanced regulation between the ACE-AngII-AT1 axis and the ACE-2-Ang-(1-7)-MAS axis, thus enhancing pathological vasoconstriction, fibrosis, inflammation and thrombotic processes. We hypothesize that the normal pregnant state of highly expressed ACE-2 receptors leads to higher Ang-(1-7) levels and consequently more vasodilation and anti-inflammatory response to SARS-COV-2 infection. We suggest that this up-regulation of ACE-2 receptors in human gestation may actually be clinically protective and propose a potential research line to investigate this hypothesis, which may lead to		

Key points

- SARS-CoV-2 is known to enter host cells via the ACE-2 receptors, competitively occupying their binding sites. In theory, viral invasion can lead to a reduction in available ACE-2 receptors and consequently an unbalanced regulation between the ACE-AngII-AT1 axis and the ACE-2-Ang-(1-7)-MAS axis, thus enhancing pathological vasoconstriction, fibrosis, inflammation and thrombotic processes.
- We hypothesize that the normal healthy pregnant state of highly expressed ACE-2 receptors leads to higher Ang-(1-7) levels and consequently more vasodilation and anti-inflammatory response to SARS-COV-2 infection.
- We suggest that this up-regulation of ACE-2 receptors in human gestation may actually be clinically protective and propose a potential research line to investigate this hypothesis, which may lead to future novel therapeutics.

Introduction

Initial reports of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had suggested that pregnancy negatively impacted on the clinical course of infection [1–3]. Conversely, current evidence is conflicting whether SARS-CoV-2 infection during pregnancy is more severe than in the general population [3–5], with relatively low maternal and fetal/ neonatal mortality rates [3–5].

Previous viral outbreaks [1,6] demonstrated detrimental effects on perinatal and maternal outcomes. Rejection of fetal tissues is mitigated by elevation of humoral responses and suppression of cell-mediated immunity throughout pregnancy [7]. These changes are referred to as the T-helper lymphocyte type-1-type-2-type17 (Th1/Th2/Th17) and regulatory T cell (Treg) paradigm [8], and impact directly on the response to viral infections [7,9]. Curiously, SARS-CoV-2 has not, thus far, demonstrated the same pregnancy related adverse effects [4,10,11], rather than those associated to preterm deliveries [12].

Both the immune system and the renin-angiotensin system (RAS) play particularly important roles in mediating SARS-CoV-2 virus entry into human cells [13]. The efficient binding of the SARS-CoV-2 spike (S) viral envelope protein to the angiotensin converting enzyme-2 (ACE-2) receptor, and the transmembrane protease serine 2 (TMPRSS2) for S protein priming, are necessary steps to facilitate the successful viral entry to host cell [14,15].

* Corresponding author at: Mount Sinai Hospital, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Toronto, 600 University Avenue, Toronto, ON M5G 1X5, Canada.

https://doi.org/10.1016/j.mehy.2021.110641

Received 5 February 2021; Received in revised form 25 May 2021; Accepted 4 July 2021 Available online 6 July 2021 0306-9877/© 2021 Elsevier Ltd. All rights reserved.

E-mail address: eafigueiro@gmail.com (E.A. Figueiro-Filho).

It was described that, in individuals with COVID-19, severe multiorgan involvement is related to pathobiological immune alterations, rather than to direct viral response [16]. Inflammatory changes were extensively observed in post-mortem organs of patients that succumbed to severe COVID-19 illness [16]. These organ tissues share common local RAS-autocrine pathways that may have been affected by the immuneinflammatory interaction between SARS-CoV-2 and ACE-2 receptors [13,16].

ACE-2 and Ang-(1-7) expression during pregnancy

The most important role of the ACE-2 membrane-bound enzyme, is the cleavage of angiotensin I or II (Ang I or Ang II) to angiotensin1-7 [Ang-(1-7)] [13,17]. This branch of the RAS cascade has an important counter-regulatory effect on the vasoconstrictor, pro-inflammatory and pro-thrombotic activity of the ACE-AngII-AT1 axis. Ultimately, the ACE-2-Ang-(1-7)-MAS axis results in vasodilatation, natriuresis, antiinflammatory and anti-thrombotic effects [13,18–21] (Fig. 1).

Animal and human studies before the SARS-CoV-2 pandemic have demonstrated that ACE-2 and Ang-(1-7) expression are enhanced during normal pregnancy [18,19,22,23], resulting in increased vasodilation, and a reduction in fibrosis, inflammation, thrombosis and pulmonary damage [13,20,21]. In theory, SARS-CoV-2 viral invasion can induce a relative reduction in unbound ACE-2 receptors and subsequent unbalanced dysregulation between the ACE-AngII-AT1 axis and the ACE-2-Ang-(1-7)-MAS axis, thus contributing to an environment of progressive vasoconstriction, fibrosis, inflammation and thrombo-embolic processes [13]. (Fig. 1).

Comorbidities that are known to be associated with ACE-2 deficiency include older age, diabetes, cardiovascular disease and hypertension [13]. Individuals with these conditions also represent those that are more likely to be infected with SARS-CoV-2 and develop more severe complications of COVID-19 both in the general population and also during pregnancy [5,24,25]. In pregnancies with preeclampsia (PE), plasma ACE-2, Ang-(1-7) levels and ACE-2 activity are lower compared with normotensive pregnant women [22], resulting in the opposite biological consequences of vasoconstriction, inflammation and pro-thrombotic effects [26]. Others have previously described the similar clinical phenotypes of preeclampsia and severe COVID-19 infection during pregnancy [26].

The relationship between the downregulation of ACE-2 receptors in individuals with a reduced baseline ACE-2 phenotype and its effect on worsening SARS-CoV-2 infection, compared to those individuals with normal baseline or enhanced ACE-2 phenotype was previously explored by Verdecchia et al., at early stages of the COVID-19 pandemic [13]. This proposed physiological pathway [13] was the basis for the rationale hereby presented.

Placental and fetal expression of ACE-2 and Ang-(1-7)

Strong expression of ACE-2 receptors in trophoblastic human cells is demonstrated throughout pregnancy, supporting a receptor-mediated mechanism leading to SARS-CoV-2 placental infection [27]. Low levels of ACE-2 and TMPRSS2 have been identified in extra villous trophoblast (EVT) cells at 8 weeks' gestation, whereas ACE-2 and TMPRSS2 placental expression was significantly increased in EVT at 24 weeks' gestation [28]. These results suggest that the placental expression of ACE-2 and TMPRSS2 at the maternal-fetal interface may increase as pregnancy advances [28]. Furthermore, syncytiotrophoblastic ACE-2 expression may regulate Ang-(1-7) release into maternal circulation,

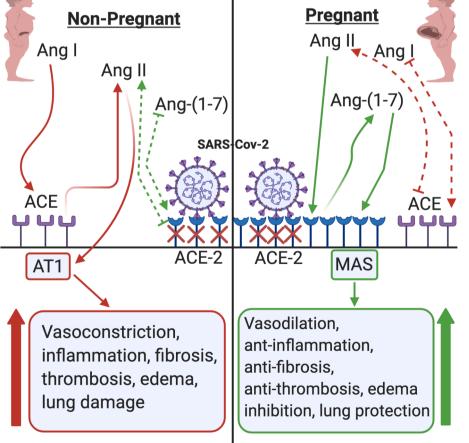


Fig. 1. Angiotensin converting enzyme (ACE) metabolizes angiotensin I (Ang I) to angiotensin II (Ang II) which interacts with AT1 receptors. Angiotensin converting enzyme 2 (ACE-2) contra-regulates Ang II by generating angiotensin 1-7 [(Ang- (1-7)], which then interacts to MAS receptors. During pregnancy, the enhanced expression of ACE-2 leads to vasodilation, less inflammation, less fibrosis, anti-thrombosis, edema inhibition and consequently lung protection. In non-enhanced ACE-2 phenotypes (non-pregnant), when entering cells, SARS-CoV-2 downregulates the expression of ACE-2 (represented by "X"), thus leading to ACE-AngII-AT1 overactivation predisposing to increased vasoconstriction, inflammation, fibrosis, edema and lung damage. Created with Bio-Render.com.

thus promoting maternal vasodilation [29].

Even before the COVID-19 pandemic, animal studies demonstrated that ACE-2 and Ang-(1-7) are highly expressed on the fetal side of the placenta [30], whereas human and animal studies demonstrated that the maternal side has low expression of ACE-2 and Ang-(1-7) [30,31]. While a recent study reported that ACE-2 receptor expression is negligible on the chorioamniotic membranes in the human placenta [32], other authors described intense signal positivity for SARS-CoV-2 in syncytio-trophoblast lining the chorionic villi (with RNA *in situ* hybridization) [33]. Moreover, fetal vascular malperfusion, intervillous space inflammatory infiltrates, increased villous stromal macrophages and increased inflammatory platelet aggregates were observed on the fetal sides of the same human placentas [33].

Irregular expression of ACE-2 and TMPRSS2 have been described in 19 SARS-CoV-2 infected placentas [34]. The authors concluded that the human placenta is capable of being infected, although the polarized expression of ACE-2 towards the fetal compartment and the scarce expression of TMPRSS2 in trophoblast, remote from maternal blood, may justify the rarity of vertical transmission of COVID-19 [34]. ACE-2 is abundantly present in the heart, lungs, intestine, kidneys, and fetal tissues [35]. In live fetuses, ACE-2 receptors are involved in myocardium growth, lung and brain development [35]. These findings suggest that a potential Placental Barrier against COVID-19 is possible [36].

ACE-2 receptors in Pregnancy: Protective against COVID-19?

Contrary to what was previously inferred [35], and based on the physiological interactions between SARS-CoV-2 and ACE-2 receptors [13,15], along with previous evidence that ACE-2 and Ang-(1-7) levels are enhanced during pregnancy [18,19,22], it is possible to hypothesize that:

- in normal healthy pregnancies, highly expressed ACE-2 receptors
 [23] lead to higher Ang-(1-7) levels [19] and consequently more vasodilation and anti-inflammatory response to SARS-CoV-2 infection. We suggest that the up-regulation of ACE-2 receptors in pregnancy may be protective against severe COVID-19 disease.
- 2) the gestational Th1-Th2 immune shift [7], known as a potential contributor to the severity of viral infections during pregnancy [9], are counter-regulated by the enhanced pregnancy-induced ACE-2-Ang-(1-7) expression [18,22], which may explain the observed improved outcomes of COVID-19 during pregnancy, when compared to previous viral outbreaks in pregnant women.
- 3) the irregular and unbalanced expression of ACE-2/TMPRSS2 in human placentas [29–34], mostly expressed to the fetal [27,29,30] side but negligible to maternal side [32,34] also play a protective role on vertical transmission of SARS-CoV-2.
- 4) down-regulation of ACE-2 receptors induced by SARS-CoV-2 cell entry may be detrimental to those with pre-existing ACE-2 deficiencies in pregnancy, explaining the poor outcomes of pregnancies with co-morbidities [25].

Conclusion

We propose to test the hypothesis described above with a casecontrol design using: a) Non-COVID-19 Control Group (normal, lowrisk pregnant women, non-COVID-19 infected, with term deliveries); b) COVID-19 Case Group – Asymptomatic/Symptomatic (pregnant women, COVID-19 infected, without preeclampsia, with term deliveries). Optionally, the investigation could be extended with these groups: c) Non-COVID-19 with Preeclampsia Control Group (pregnant women with preeclampsia, non-COVID-19 infected, with term deliveries); d) COVID-19 with Preeclampsia Case Group – Asymptomatic/ Symptomatic (pregnant women, COVID-19 infected, with preeclampsia, with term deliveries).

Table 1 describes the potential maternal, placental, fetal and

Table 1

Proposed research investigations to explore the Hypothesis.

Maternal Tests (blood /swabs)	Placental Tests (pathology)	Fetal Tests (cord blood)	Neonatal Tests (blood /swabs)
Plasma ACE-2 levels	Expression of ACE-2	Plasma ACE-2 levels	Plasma ACE-2 levels
ACE-2 Activity Assay	Expression of TMPRSS2	ACE-2 Activity Assay	ACE-2 Activity Assay
Plasma Ang-(1-7) levels	Immunohistochemistry for SARS-CoV-2 S-Protein	Plasma Ang-(1-7) levels	Plasma Ang-(1-7) levels
Nasopharyngeal SARS-CoV-2 swab	Immunohistochemistry for SARS-CoV-2 N- Protein	Anti- SARS- CoV-2 IgG, IgM, IgA serology	Nasopharyngeal SARS-CoV-2 Swabs
Anti-SARS-CoV-2 IgG, IgM, IgA serology			Anti-SARS-CoV-2 IgG, IgM, IgA serology

TMPRSS2: Transmembrane protease serine 2.

neonatal investigations to explore the hypothesis. Each of these tests have been previously described [22,32,33,37], attesting to feasibility. The idea of performing these tests upon the different proposed groups, would allow the comparison of ACE-2/TMPRSS2 and Ang-(1-7) expression along the different compartments of the gravid cycle. The dichotomy of the exposed groups in symptomatic and asymptomatic is extremely important to confirm/rule-out the hypothesis described. Additionally, the investigations could be extended to preeclamptic women to test the confounding factor of overlapping clinical phenotypes in COVID-19 and preeclampsia [26].

It has already been demonstrated that, *in-vitro*, recombinant human soluble ACE-2 significantly blocks SARS-COV-2 in the early stages of cellular infection [38]. If the proposed hypotheses are confirmed, a future potential therapeutic use of soluble recombinant ACE-2, angiotensin1-7 and angiotensin II type 1 receptor blockers might be beneficial in treating severe COVID-19 infections [39].

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Schwartz DA, Graham AL. Potential Maternal and Infant Outcomes from (Wuhan) Coronavirus 2019-nCoV Infecting Pregnant Women: Lessons from SARS, MERS, and Other Human Coronavirus Infections. Viruses. 2020;12.
- [2] Trocado V, Silvestre-Machado J, Azevedo L, Miranda A, Nogueira-Silva C. Pregnancy and COVID-19: a systematic review of maternal, obstetric and neonatal outcomes. J Matern Fetal Neonatal Med. 2020;1–13.
- [3] Ellington S, Strid P, Tong VT, Woodworth K, Galang RR, Zambrano LD, et al. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status - United States, January 22-June 7, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(25):769–75.
- [4] Khalil A, Kalafat E, Benlioglu C, O'Brien P, Morris E, Draycott T, et al. SARS-CoV-2 infection in pregnancy: A systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine. 2020;25:100446. https://doi.org/ 10.1016/j.eclinm.2020.100446.
- [5] Figueiro-Filho EA, Yudin M, Farine D. COVID-19 during pregnancy: an overview of maternal characteristics, clinical symptoms, maternal and neonatal outcomes of 10,996 cases described in 15 countries. J Perinat Med. 2020;48:900-11.
- [6] Fell DB, Platt RW, Basso O, Wilson K, Kaufman JS, Buckeridge DL, et al. The Relationship Between 2009 Pandemic H1N1 Influenza During Pregnancy and Preterm Birth: A Population-based Cohort Study. Epidemiology. 2018;29(1): 107–16.
- [7] Förger F, Villiger PM. Immunological adaptations in pregnancy that modulate rheumatoid arthritis disease activity. Nat Rev Rheumatol. 2020;16(2):113–22.

E.A. Figueiro-Filho et al.

- [9] Littauer EQ, Esser ES, Antao OQ, Vassilieva EV, Compans RW, Skountzou I, et al. H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLoS Pathog. 2017;13(11): e1006757.
- [10] Di Mascio D, Khalil A, Saccone G, et al. Outcome of Coronavirus spectrum infections (SARS, MERS, COVID 1–19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2020;2:100107.
- [11] Knight M, Bunch K, Vousden N, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study. BMJ. 2020;369:m2107.
- [12] Gurol-Urganci I, Jardine JE, Carroll F, Draycott T, Dunn G, Fremeaux A, et al. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection at the time of birth in England: national cohort study. Am J Obstet Gynecol 2021. https://doi.org/10.1016/j.ajog.2021.05.016.
- [13] Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20.
- [14] Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;181 (2):281–292.e6.
- [15] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020;181(2):271–280.e8.
- [16] Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020;1(7):e290–9.
- [17] Gubbi S, Nazari MA, Taieb D, Klubo-Gwiezdzinska J, Pacak K. Catecholamine physiology and its implications in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(12):978–86.
- [18] Brosnihan KB, Neves LAA, Joyner J, Averill DB, Chappell MC, Sarao R, et al. Enhanced renal immunocytochemical expression of ANG-(1–7) and ACE2 during pregnancy. Hypertension 2003;42(4):749–53.
- [19] Brosnihan KB, Neves LAA, Anton L, Joyner J, Valdes G, Merrill DC. Enhanced expression of Ang-(1–7) during pregnancy. Braz J Med Biol Res. 2004;37(8): 1255–62.
- [20] Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACEangiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res. 2009;32(7):533–6.
- [21] Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). Physiol Rev. 2018;98(1):505–53.
- [22] Tamanna S, Clifton VL, Rae K, van Helden DF, Lumbers ER, Pringle KG. Angiotensin Converting Enzyme 2 (ACE2) in Pregnancy: Preeclampsia and Small for Gestational Age. Front Physiol. 2020;11. 590787.
- [23] Levy A, Yagil Y, Bursztyn M, Barkalifa R, Scharf S, Yagil C. ACE2 expression and activity are enhanced during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1953–61.

- [24] Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020;323(13):1239. https://doi.org/10.1001/jama.2020.2648.
- [25] DeBolt CA, Bianco A, Limaye MA, et al. Pregnant women with severe or critical COVID-19 have increased composite morbidity compared to non-pregnant matched controls. Am J Obstet Gynecol 2020.
- [26] Rolnik DL. Can COVID-19 in pregnancy cause preeclampsia? BJOG. 2020.
- [27] Gengler C, Dubruc E, Favre G, Greub G, de Leval L, Baud D. SARS-CoV-2 ACEreceptor detection in the placenta throughout pregnancy. Clin Microbiol Infect 2021;27(3):489–90.
- [28] Li M, Chen L, Zhang J, Xiong C, Li X, Chan RWY. The SARS-CoV-2 receptor ACE2 expression of maternal-fetal interface and fetal organs by single-cell transcriptome study. PLoS ONE 2020;15(4):e0230295.
- [29] Pringle KG, Tadros MA, Callister RJ, Lumbers ER. The expression and localization of the human placental prorenin/renin-angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta 2011;32(12):956–62.
- [30] Valdés G, Neves LAA, Anton L, Corthorn J, Chacón C, Germain AM, et al. Distribution of angiotensin-(1–7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta 2006;27(2-3):200–7.
- [31] Ghadhanfar E, Alsalem A, Al-Kandari S, Naser J, Babiker F, Al-Bader M. The role of ACE2, angiotensin-(1–7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reproductive Biology and Endocrinology. 2017;15: 1–9.
- [32] Pique-Regi R, Romero R, Tarca AL, et al. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2? Elife. 2020;9.
- [33] Schwartz DA, Thomas KM. Characterizing COVID-19 maternal-fetal transmission and placental infection using comprehensive molecular pathology. EBioMedicine. 2020;60:102983. https://doi.org/10.1016/j.ebiom.2020.102983.
- [34] Hecht JL, Quade B, Deshpande V, Mino-Kenudson M, Ting DT, Desai N, et al. SARS-CoV-2 can infect the placenta and is not associated with specific placental histopathology: a series of 19 placentas from COVID-19-positive mothers. Mod Pathol. 2020;33(11):2092–103.
- [35] Dhaundiyal A, Kumari P, Jawalekar SS, Chauhan G, Kalra S, Navik U. Is highly expressed ACE 2 in pregnant women "a curse" in times of COVID-19 pandemic? Life Sci. 2021;264:118676. https://doi.org/10.1016/j.lfs.2020.118676.
- [36] Komine-Aizawa S, Takada K, Hayakawa S. Placental barrier against COVID-19. Placenta 2020;99:45–9.
- [37] Crovetto F, Crispi F, Llurba E, Figueras F, Gómez-Roig MD, Gratacós E. Seroprevalence and presentation of SARS-CoV-2 in pregnancy. Lancet (London, England). 2020;396(10250):530–1.
- [38] Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020;181(4):905–913.e7.
- [39] Turk C, Turk S, Malkan UY, Haznedaroglu IC. Three critical clinicobiological phases of the human SARS-associated coronavirus infections. Eur Rev Med Pharmacol Sci. 2020;24:8606–20.

Medical Hypotheses 153 (2021) 110641