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Inflammation is a host protection mechanism that eliminates invasive pathogens from the
body. However, chronic inflammation, which occurs repeatedly and continuously over a
long period, can directly damage tissues and cause various inflammatory and
autoimmune diseases. Pattern recognition receptors (PRRs) respond to exogenous
infectious agents called pathogen-associated molecular patterns and endogenous
danger signals called danger-associated molecular patterns. Among PRRs, recent
advancements in studies of the NOD-, LRR- and pyrin domain-containing protein 3
(NLRP3) inflammasome have established its significant contribution to the pathology of
various inflammatory diseases, including metabolic disorders, immune diseases,
cardiovascular diseases, and cancer. The regulation of NLRP3 activation is now
considered to be important for the development of potential therapeutic strategies. To
this end, there is a need to elucidate the regulatory mechanism of NLRP3 inflammasome
activation by multiple signaling pathways, post-translational modifications, and cellular
organelles. In this review, we discuss the intracellular signaling events, post-translational
modifications, small molecules, and phytochemicals participating in the regulation of
NLRP3 inflammasome activation. Understanding how intracellular events and small
molecule inhibitors regulate NLRP3 inflammasome activation will provide crucial
information for elucidating the associated host defense mechanism and the
development of efficient therapeutic strategies for chronic diseases.
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ACTIVATION OF THE NLRP3 INFLAMMASOME

NLRP3 is an intracellular sensor in the NLRP3 inflammasome that recognizes the widest range of
pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns
(DAMPs) among NLRP family members. NLRP3 has three domains: an amino-terminal pyrin
domain (PYD) that binds to ASC, a NACHT domain with ATPase activity, and an LRR domain that
induces autorepression by folding back onto the NACHT domain (1). The ATPase activity of the
NACHT domain in particular has been studied as a therapeutic target for NLRP3-related
diseases (1).

ASC is an adapter protein that acts as a bridge between NLRP3 and caspase-1. ASC is a bipartite
complex consisting of a PYD domain that interacts with NLRP3 and a CARD domain that interacts
org February 2021 | Volume 11 | Article 6182311
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with caspase-1. The PYD domain of ASC is also required for its
self-association as well as its interaction with NLRP3 (2).

Caspase-1 is a cysteine protease that is synthesized as a
zymogen and is capable of processing members of the
interleukin-1 (IL-1) family, such as IL-1b and IL-18 (3). Full-
length caspase-1 has three domains: an amino-terminal CARD, a
central large catalytic domain (p20) and a carboxy-terminal small
catalytic subunit domain (p10) (4). Caspase-1 clusters on the ASC
and is self-cleaving at the linker between p20 and p10, resulting in
a complex of p33 (including CARD and p20) and p10. Caspase-1
remains bound to ASC and exhibits proteolytic activity, while
additional processing between CARD and p20 releases p20 and
p10 from the ASC (5). The released p20–p10 heterotetramer is
unstable in the cell and terminates its protease activity (6).

Canonical NLRP3 inflammasome activation requires a priming
step. The priming step triggers upregulation of NLRP3 and IL-1b
gene as well as post-translational licensing of NLRP3
inflammasome. Priming is initiated by Toll-like receptor (TLR)
activation and cytokines such as TNF and IL-1b. Through this
process, NF-kB, a transcription factor, is activated and
transcriptionally upregulates NLRP3 and pro IL-1b. Moreover,
priming sets up NLRP3 to form inflammasome assembly (7) or
rescues from degradation (8) by licensing the proteins to form the
correct morphology for self-oligomerization and interaction with
ASC, through various post-translational modifications (PTM) to
NLRP3. PTMs include ubiquitylation, deubiquitination,
phosphorylation, and sumoylation of NLRP3 (7). The PTMs of
NLRP3 occur during processes such as priming, activation, and
resolution. Thus, priming signals regulate NLRP3 inflammasome
activation through transcription-dependent pathways and PTMs.

After priming, NLRP3 responds to activating stimuli and
assembles the NLRP3 inflammasome complex. These stimuli are
derived from PAMPs during pathogen infections or DAMPs
released from damaged host cells and include bacterial or viral
pathogens, fungi, ATP, pore-forming toxins, crystalline
substances, nucleic acids, and hyaluronan. The mechanisms of
NLRP3 inflammasome activation that occur in response to
various stimuli include the efflux of potassium, the secretion of
cathepsin into the cytoplasm following lysosome degradation,
the translocation of NLRP3 to the mitochondria, the production
of free radicals in the mitochondria, and the secretion of
mitochondrial DNA or cardiolipin. Once stimulated, NLRP3 is
oligomerized by homotypic interactions in the NACHT domains
(9). Subsequently, oligomerized NLRP3 recruits ASC through
PYD-PYD interactions and creates multiple helical ASC
fi l aments that combine with ASC speck, a s ing le
macromolecule (10). Assembled ASC recruits caspase-1
through CARD-CARD interactions and activates caspase-1
through its self-cleavage (6). Then, the activated NLRP3
inflammasome hydrolyzes inactive pro-caspase-1 to activate
caspase-1, and active caspase-1 then induces the production
and secretion of inflammasome-specific cytokines such as IL-
1b and IL-18 while simultaneously inducing pyroptosis, which is
inflammatory cell death (11).

Pyroptosis is an inflammatory form of lytic programmed cell
death that is activated by NLRP3 inflammasomes. Interestingly, a
Frontiers in Immunology | www.frontiersin.org 2
recent study showed that GSDMD is a crucial mediator of
pyroptosis (12). The amino-terminal cell death domain of
GSDMD (GSDMDN-term) possesses a central short linker region
and a carboxy-terminal autoinhibition domain (13). Caspase-1
cleaves and releases GSDMD from the carboxyl terminus to
overcome intramolecular inhibition, after which GSDMDN-term

combines with phosphatidylinositol phosphates and
phosphatidylserine in the inner leaflet of the cell membrane and
oligomerizes. This oligomer is then inserted into the plasma
membrane to form 10-14 nm pores containing 16 symmetrical
protomers for cell killing (14, 15). Additionally, GSDMDN-term

exhibits bactericidal activities by combining with cardiolipin,
which is present in the internal and external bacterial membranes
(14, 16). Cardiolipin is also present on the internal and external
mitochondrial membranes following NLRP3 activation (17).
However, it is unclear whether GSDMDN-term penetrates the
mitochondria to combine with mitochondrial cardiolipin.

Full activation of the NLRP3 inflammasome is accomplished
by a well-concerted mechanism which includes the priming step
and the activation step (Figure 1). The priming is an essential
prerequisite to induce expression of NLRP3 and pro-form of IL-
1b and IL-18 while the activation step involves an inflammasome
assembly in an organized fashion to make pro-caspase-1
activated. The combination of these two events is expected to
commonly take place when the host is exposed to PAMPs and
DAMPs since PAMPs and DAMPs can activate both priming
and activation steps.
NONCANONICAL AND ALTERNATIVE
PATHWAYS FOR NLRP3 INFLAMMASOME
ACTIVATION

Recently, caspase-4 and -5 in human and caspase-11 in mouse
have been shown to indirectly promote pro-IL-1b or pro-IL-18
activation by inducing NLRP3 inflammasome activation as a
noncanonical NLRP3 activation pathway (18, 19). The
noncanonical pathway is initiated by direct binding of these
caspases to intracellular LPS (iLPS) produced by Gram-negative
bacteria, independent of TLR4, the conventional LPS receptor
(20). Caspase-11 induces extracellular release of ATP, which in
turn activates P2X7 receptor and induces K+ efflux, leading the
activation of NLRP3 inflammasome and production of mature
IL-1b (21). In addition, activated caspase-4, -5, and -11 cleave
gasdermin D (GSDMD), resulting in pyroptosis (13, 16).
Caspase-4, -5, and -11 initiate pyroptosis similarly to caspase-
1, but they do not directly cleave pro-IL-1b or pro-IL-18 (22).

Caspase-8, the apical activator caspase, provides an
alternative pathway of the NLRP3 inflammasome activation,
culminating in IL-1b and IL-18 maturation as well as cell
death (23, 24). Notably, caspase-8-dependent NLRP3 activation
is a species-specific pathway that is present in human and
porcine peripheral blood mononuclear cells (PBMCs), but not
murine cells (25). TLR4 stimulation by PAMPs and/or DAMPs
activates RIPK1-FADD-caspase-8 signaling, which can directly
February 2021 | Volume 11 | Article 618231
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trigger canonical NLRP3 oligomerization and inflammasome
assembly as well as facilitate NF-kB transcription (25). In
addition, RIPK1-FADD-caspase-8 signaling is involved in
TLR3 priming for activation of NLRP3 inflammasome (26).
Blockade of TGF-b activated kinase-1 (TAK1) by the Yersinia
bacteria leads to cleavage of GSDMD RIPK1- and caspase-8-
dependently, promoting the NLRP3 inflammasome activation
and IL-1b secretion as well as cell death (27). In contrast, a
negative role of caspase-8 in regulation of NLRP3 inflammasome
was reported (28). Caspase-8-deficient dendritic cells showed
higher production of IL-1b with enhanced activation of NLRP3
inflammasome, which is dependent on the functions of RIPK1
and RIPK3 (28). Although the exact role of caspase-8 in the
regulation of NLRP3 inflammasome and inflammatory processes
remains to be determined, the studies suggest the possible link
Frontiers in Immunology | www.frontiersin.org 3
between NLRP3 inflammasome, apoptosis, and inflammation
mediated by caspase-8.

Considering complexity of in vivo inflammatory processes,
noncanonical and alternative pathways for the NLRP3
inflammasome activation in addition to canonical pathway
may play differential roles in the pathology of inflammatory
diseases in different context.
INTRACELLULAR EVENTS REGULATING
NLRP3 INFLAMMASOME ACTIVATION

Ion Fluxes
Most NLRP3 stimuli, including ATP, nigericin, and particulate
matter induce K+ efflux (29). The P2X7 receptor, which belongs
FIGURE 1 | NLRP3 inflammasome pathway. Two steps are required for NLRP3 inflammasome activation. The first step is priming, which is triggered by microbial
molecules or endogenous cytokines and is required to induce the expression of pro-interleukin-1b (IL-1b), pro-IL-18, and NLRP3 via the activation of the transcription
factor nuclear factor-kB (NF-kB). The second step is NLRP3 inflammasome activation, which includes canonical and noncanonical activation pathways and is
induced by a number of PAMPs and DAMPs. The canonical activation pathway involves stimulation-mediated activation signals such as ion fluxes, lysosome rupture,
mitochondrial dysfunction, Golgi apparatus disassembly, metabolic stress, and ER stress. Activation of the inflammasome causes caspase-1 activation, leading to
the maturation and release of IL-1b/IL-18 and pyroptosis. The noncanonical activation pathway is mediated by human caspase-4, human caspase-5, and mouse
caspase-11, indirectly promoting the production of pro-IL-1b or pro-IL-18. Receptor-interacting protein kinase 1 (RIPK1), FAS-associated death domain protein
(FADD), and caspase-8 are involved in this pathway by regulating NF-kB activation, leading to NLRP3 inflammasome activation.
February 2021 | Volume 11 | Article 618231
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to the P2X subfamily of ligand-gated ion channels with purine P2
receptors, can be activated by high concentrations of
extracellular ATP, leading to the,NLRP3 inflammasome
activation (30). The P2X7 receptor plays an important role in
mediating the innate immune response by regulating the
expression of pro-inflammatory cytokines of the IL-1 family
(31). After ATP stimulation, P2X7 promotes Ca2+ and Na+ influx
and coordinates with the K+ channel, two-pore domain weakly
inward rectifying K+ channel 2 (TWIK2), which mediates K+

efflux (32). Lowering cytoplasmic K+ concentration was
sufficient to activate the NLRP3 inflammasome (33). Active
caspase-11 led to a decrease of intracellular potassium K+

levels, resulting in the activation of the NLRP3 inflammasome,
suggesting the link between noncanonical and canonical NLRP3
activation pathways (33). K+ efflux is also suggested as the
mechanism for which cytopathogenic RNA viruses such as
vesicular stomatitis virus (VSV) or encephalomyocarditis virus
(EMCV) induce activation of the NLRP3 inflammasome (34).
These cytopathogenic viruses triggered a lytic cell death, which
led to K+ efflux (34).

Na+ influx plays a regulatory role in NLRP3 inflammasome
activation, possibly by regulating stimulus-induced K+ efflux.
Combination of K+ efflux with Na+ influx is considered necessary
for activation of the NLRP3 inflammasome induced by
crystalline and lysosomal destabilization (35). Overactivation of
the epithelial Na+ channel, ENaC, aggravated NLRP3
inflammasome activation by enhancing Na+ influx and
subsequently K+ efflux, culminating in the exacerbated
inflammatory responses in cystic fibrosis (36). High salt
treatment increased production of IL-1b in monocytes and
dendritic cells while treatment with an ENaC inhibitor,
amiloride, blocked IL-1b production in these cells (37).
Similarly, high salt diet to mice induced increased expression
of NLRP3 and pro‐IL-1b in monocytes and dendritic cells
whereas treatment with amiloride, an ENaC inhibitor, to mice
fed high salt diet showed less expression of NLRP3 and pro‐IL-
1b, suggesting an ENaC-dependent activation of NLRP3
inflammasome in response to high salt (37).

The importance of chloride efflux in regulation of NLRP3
inflammasome activation has been noted and the involvement of
the volume regulated anion channel (VRAC) was reported (38,
39). Knockout of LRRC8A, a subunit of VRAC, in macrophages
resulted in significant impairment of ASC oligomerization,
caspase-1 cleavage, and IL-1b processing induced by
hypotonicity, showing the critical role of VRAC in the
regulation of NLRP3 inflammasome activation (40). Chloride
intracellular channels (CLICs) have been reported to regulate
NLRP3 inflammasome activation (41). A nonsteroidal anti-
inflammatory agent inhibited chloride leakage through VRAC
to prevent NLRP3 inflammasome activation (42) and CLIC was
suggested to function as a VRAC activator (43). Various Cl-

channel inhibitors, including 4,4’-diisothiocyano-2,2’stilbene-
disulfonic acid (DIDS) (43), 5-nitro-(3-phenylpropylamino)
benzoic acid (NPPB) (38), flufenamic acid, mefenamic acid
(42), and indanyloxyacetic acid 94 (IAA94) (43), block the
NLRP3 inflammasome but cannot block the NLRC4 or AIM2
Frontiers in Immunology | www.frontiersin.org 4
inflammasomes. CLICs translocate to the plasma membrane and
promote NLRP3-NEK7 interactions, triggering Cl- flux as a
downstream event of mitochondrial dysfunction that regulates
NLRP3 inflammasome activation (43). Cl- efflux can induce ASC
speck formation but does not induce NLRP3 inflammasome
activation without K+ efflux (44). Further studies are needed to
elucidate how Cl- flux coordinates with other ionic events to
trigger NLRP3 inflammasome activation.

Lysosomal Destabilization
Thephagocytosis ofparticulates causes lysosomal rupture, releasing
particulates into the cytoplasm. Lysosomal destabilization was first
revealed as a pathway mediating the activation of NLRP3
inflammasome by amyloid b, a pathogenic misfolded protein
expressed in Alzheimer’s disease (45). The accumulation of
crystals such as b-amyloid, monosodium urate (MSU), silica, and
asbestos, in the cell destabilizes phagosomes and leads to the release
of various components, includingproteases, lipases, cathepsins, and
Ca 2+ in the cytosol, leading toK+ effluxand the inductionofNLRP3
assembly andactivation (46). Inaddition, inPriondisease, the prion
protein (PrP) misfolds induced lysosome destabilization and
NLRP3 inflammasome activation (47). Lysosome rupture and the
release of lysosomal hydrolases, especially cathepsin B, have been
shown to be essential for albumin-induced tubulointerstitial
inflammation (TI) and fibrosis, suggesting that lysosomal damage
is involved in the pathogenesis of chronic kidney disease through
NLRP3 inflammasome act ivat ion (48) . Anti -cancer
chemotherapeutic agents such as gemcitabine and 5-fluorouracil,
induced activation of the NLRP3 inflammasome, which was
dependent on lysosomal permeabilization and the release of
cathepsin B, while this activation in myeloid-derived suppressor
cells blunted their anticancer efficacy (49). In addition to cathepsin
B, multiple cathepsins such as cathepsin L, C, S, and X had been
shown to promote both pro-IL-1b synthesis and NLRP3 activation
in compensatory and independent manners (50, 51). Lysosome
destabilization is linked to ion flux in the process of NLRP3
inflammasome activation (29). The lysosome-destabilizing
agonist, Leu-Leu-O-methyl ester (LLME), induced lysosome
membrane permeabilization, which correlated with K+ efflux and
NLRP3 inflammasome activation in murine dendritic cells (52).
However, extensive lysosome destabilization attenuated NLRP3
inflammasome activation with increase of Ca2+ influx, while it
potentiated necrosis in murine bone marrow-derived dendritic
cells (53).

Lysosomal destabilization-induced activation of the NLRP3
inflammasome is the feature of particulate matter and crystalline,
elucidating the pathological mechanisms of the relevant
inflammatory diseases, including amyloid b with Alzheimer’s
disease, monosodium urate with gout, cholesterol crystalline with
atherosclerosis, silica with silicosis, and asbestos with asbestosis.

Mitochondrial Dysfunction
Cardiolipin (1,3-bis(sn-3’-phosphatidyl)-sn-glycerol), a
phospholipid constituent of the inner mitochondria membrane,
links the mitochondria to the NLRP3 inflammasome activation
(17). During mitochondrial stress, cardiolipin is exposed to the
February 2021 | Volume 11 | Article 618231
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outer membrane, where it serves as a binding site during autophagy
and apoptosis (54). Cardiolipin independently interacts with
NLRP3 and full-length caspase-1, of which event is essential for
inflammasome activation. MAVS is a mitochondrial protein that is
necessary for the post-stimulus activation of the NLRP3
inflammasome by functioning as an adaptor protein in RNA-
sensing pathways associated with RNA virus infections (55, 56).
MAVS promotes NLRP3 inflammasome activation by recruiting
NLRP3 to the mitochondrial outer membrane (55). Although
MAVS is necessary for the RNA virus infection-mediated
activation of the NLRP3 inflammasome, it may be dispensable for
NLRP3 activation by other stimuli. Mitofusin 2 (Mfn 2), which is
present in the outer mitochondrial membrane, endoplasmic
reticulum, and contact sites of mitochondria-associated
membrane, has been reported to be an essential factor for NLRP3
activation during RNA virus infection (57). During viral infection,
Mfn2 forms a complex with MAVS and aids in the localization of
NLRP3 in the mitochondria (57).

Reactive oxygen species (ROS) production was involved in
the activation of NLRP3 inflammasome induced by ATP, MSU
crystal, silica, and asbestos, suggesting mitochondrial ROS as a
critical mediator for the NLRP3 inflammasome activation (58).
Caspase-1 activation and IL-1b production in lipopolysaccharide
(LPS)- and ATP-treated macrophages are dependent on mtROS
generation and mitochondrial membrane permeability transition
(59). The translocation of mitochondrial DNA (mtDNA) to
cytosol was correlated with the activation of caspase-1
activation in LPS- and ATP-treated macrophages (59).
Furthermore, oxidized mtDNA released during programmed
cell death induced by NLRP3 activators such as ATP, bound to
and activated the NLRP3 inflammasome (60). The de novo
synthesis of mtDNA was induced by TLR signals accompanied
with an expression of CMPK2, an enzyme that provides
deoxyribonucleotides for mtDNA synthesis (61). CMPK2-
dependent mtDNA synthesis resulted in the production of
oxidized mtDNA fragments was required for NLRP3
inflammasome activation (61). The role of mtDNA-mediated
activation of NLRP3 inflammasome in the development of
inflammatory diseases is reported with Type 1 Diabetes (62).

These suggest mitochondria as central regulators of NLRP3
inflammasome activation induced by cellular stress, infections,
and the NLRP3 activators, accompanying with mitochondrial
dysfunction to promote the activation of NLRP3 inflammasome.
Golgi Apparatus Disassembly
NLRP3 stimuli have been shown to promote the disassembly of
the trans-Golgi network into vesicles called the dispersed trans-
Golgi network (dTGN) using a cellular reconstitution system.
The phospholipid phosphatidylinositol-4-phosphate of dTGN
recruits NLRP3 and promotes its aggregation, which is essential
for downstream ASC oligomerization and caspase-1 activation
(63). The K+ efflux-dependent stimulus (i.e., nigericin) and K+

efflux-independent stimulus (i.e., imiquimod) aid in the
formation of dTGN and cause NLRP3 aggregation. However,
K+ efflux, is only necessary for the recruitment of NLRP3 and not
Frontiers in Immunology | www.frontiersin.org 5
for dTGN formation (64), indicating that the K+ efflux-
dependent and mitochondria-dependent activation of NLRP3
are two separate pathways that converge at the Golgi
disassembly stage.

Metabolic Stress
Glucose phosphorylation, the first step in glycolysis, is mediated
by hexokinase. During bacterial infection, the decomposition of
the bacterial cell wall component peptidoglycan in lysosomes
releases N-acetylglucosamine (GlcNAc). Hexokinase, which is
located on the mitochondrial membrane, then combines with
GlcNAc and promotes its relocalization in the cytosol. This
GlcNAc-induced hexokinase relocalization promotes NLRP3
inflammasome activation regardless of K+ efflux (65). Although
chemical disruption of glycolysis activates the NLRP3
inflammasome following priming (66), the interpretation of
such observations is complicated, as the inhibition of glycolysis
during priming results in the inhibition of LPS-induced gene
transcription of IL-1b (67).

Saturated fatty acid such as palmitate induced IL-1b secretion in
LPS-treated primary macrophages, suggesting the activation of
NLRP3 inflammasome by saturated fatty acids, of which
mechanism involves the lysosomal rupture and cathepsin B
release (68). Saturated fatty acids-induced activation of the
NLRP3 inflammasome was mediated by intracellular
crystallization accompanied with subsequent lysosomal
dysfunction (69). Similarly, oxidized low-density lipoprotein that
is recognized by scavenger receptor CD36, causes crystallization to
induce the NLRP3 inflammasome activation (70). Oxidized
phosphatidylcholine induced activation of the NLRP3
inflammasome mediated by miROS production and
mitochondrial destabilization (71). In contrast, unsaturated fatty
acids such as oleate and linoleate blocked IL-1b secretion induced
by saturated fatty acids, or NLRP3 inducers such as nigericin, alum,
and MSU in human monocytes/macrophages (72).

These show the link between the NLRP3 inflammasome and
metabolic diseases, suggesting how the metabolic dysfunction
leads to augmented inflammation. The activation of the NLRP3
inflammasome by metabolic stress involves a variety of cellular
stress pathways including ROS production, ion fluxes,
mitochondrial dysfunction, and lysosomal destabilization. The
intracellular events involved in the activation of the NLRP3
inflammasome are interconnected and well-correlated to
accomplish full activation of the NLRP3 inflammasome.

Collectively, despite of efforts to elucidate the upstream events
during NLRP3 activation, a single unifying model has not been
proposed, with the evidence obtained to date involving
pharmacological inhibition rather than genetic approaches. Thus,
it is difficult to analyze the indirect or off-target effects associated
with NLRP3 activation. For example, it is difficult to ascertain
whether mitochondrial dysfunction andmitochondria-derived ROS
(mtROS) are the decisive factors for NLRP3 activation because
other events such as ion flux changes and small organ damage,
occur simultaneously. The intracellular signaling events may be
interconnected or converge to further downstream steps to
maximize NLRP3 inflammasome activation.
February 2021 | Volume 11 | Article 618231
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PTM REGULATION OF THE NLRP3
INFLAMMASOME

Emerging roles have been identified for many intracellular
molecules in regulating NLRP3 inflammasome activation.
Some of the proteins promote NLRP3 inflammasome
activation by binding to the inflammasome components to
promote their PTMs, such as phosphorylation, sumoylation,
and ubiquitination, while some prevent NLRP3 inflammasome
activation via PTM. To manipulate the NLRP3 inflammasome
Frontiers in Immunology | www.frontiersin.org 6
for therapeutic purposes, identifying the intracellular proteins
regulating PTM of the NLRP3 inflammasome and understanding
their mechanisms of action is of crucial importance (Figure 2).

Regulators of Phosphorylation
Phosphorylation of NLRP3 at Ser198 by JNK1 is an essential
prerequisite event that occurs during the priming step, inducing
the self-association of NLRP3 to promote active inflammasome
assembly (73). Phosphorylation by JNK1 promotes NLRP3
deubiquitination, while S194A mutation or JNK inhibition
FIGURE 2 | Post-translational regulation of the NLRP3 inflammasome activation. A schematic diagram of the intracellular proteins that positively and negatively
regulate NLRP3 inflammasome activity.
February 2021 | Volume 11 | Article 618231
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interferes with the interaction of NLRP3 with BRCC3 and
disrupts NLRP3 deubiquitination (73).

Protein kinase D (PKD) is required for NLRP3 inflammasome
activation. PKD phosphorylates human Ser295 (mouse Ser291) in
the NACHT domain of NLRP3 at the Golgi to free NLRP3 from
mitochondria-associated endoplasmic reticulum membranes
(MAMs), resulting in the recruitment of ASC to NLRP3 (74).
Blockade of PKD activity led to the suppression of NLRP3
inflammasome activity in macrophages (74).

NIMA-related kinase 7 (NEK7) is a serine-threonine kinase
that may be a crucial component for NLRP3 inflammasome
activation. NEK7 interacts with NLRP3 to create ASC specks and
induce oligomerization as an essential complex for caspase-1
activation (75). NEK7 can directly bind to NLRP3 protein,
leading to NLRP3 inflammasome assembly due to K+ efflux.
Moreover, chloride intracellular channel (CLIC)-dependent Cl-

efflux can promote NEK7-NLRP3 interactions and subsequent
ASC oligomerization (43). However, it remains unclear how
intracellular Cl- efflux regulates the NEK7-NLRP3 interaction.

Syk and JNK are responsible for the phosphorylation of ASC
in macrophages, with Tyr144 being a putative phosphorylation
site (76). Interestingly, Syk has a cell type-specific role in NLRP3
inflammasome activation, as is not essential for this process in
dendritic cells (76). The phosphorylation of Tyr144 in mouse
ASC was shown to be required for ASC speck formation and
caspase-1 activation in NLRP3 inflammasome activation but
dispensable for the interaction of ASC with NLRP3 (76).

Protein kinase A (PKA) activation by prostaglandin E2 via
the PGE2 receptor E-prostanoid 4 (EP4) leads to inhibitory
phosphorylation of NLRP3 at Ser295 in human NLRP3,
resulting in the suppression of ATPase activity of NLRP3 (77).
In addition, PKA activation by bile acids through the TGR5 bile
acid receptor leads to the phosphorylation of mouse NLRP3 at
Ser 291, culminating in NLRP3 and ubiquitination the blockade
of NLRP3 inflammasome activation (78).

Protein phosphatase (PP2A) participates in NLRP3 activation
by dephosphorylating NLRP3 at Ser5 (79). Ser5 is located in the
NLRP3 PYD-ASC PYD interact ion moti f , and i t s
phosphorylation disrupts the association of NLRP3 and ASC
(79). However, the kinase that phosphorylates Ser5 of NLRP3 has
not been identified.

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is
required for NLRP3 inflammasome activation since PTPN22
knockdown results in decreased IL-1b secretion (80). PTPN22
promotes NLRP3 inflammasome activation by dephosphorylating
Tyr861 in human NLRP3 (80). A Y861C mutation in NLRP3 has
been reported in patients with chronic infantile neurologic
cutaneous and articular syndrome (CINCA), and the Y861F
mutation in NLRP3 has been shown to enhance NLRP3
inflammasome activation compared to wild-type NLRP3 (80).

Src homology 2 (SH2) domain-containing tyrosine phosphatase-
2 (SHP2, encoded by the gene PTPN11) is a negative regulator of
the NLRP3 inflammasome (81). SHP2 deficiency was shown to lead
to excessive NLRP3 inflammasome activation in macrophages and
aggravated peritonitis symptoms in a mouse model (81). SHP2
translocates to the mitochondria in response to NLRP3
Frontiers in Immunology | www.frontiersin.org 7
inflammasome stimulators and binds to and dephosphorylates
adenine nucleotide translocase 1 (ANT1), which plays a role in
controlling mitochondrial permeability transition. SHP2 prevents
the collapse of mitochondrial membrane potential and the
subsequent release of mitochondrial DNA and reactive oxygen
species, thereby suppressing hyperactivation of the NLRP3
inflammasome (81).

Bruton’s tyrosine kinase (BTK) has been reported to be a
positive regulator of the NLRP3 inflammasome (82), as BTK
inhibitors and dysfunctional BTK mutants inhibit NLRP3
inflammasome activation in macrophages, and BTK directly
interacts with ASC and NLRP3, promoting ASC aggregation
(82). The FDA-approved BTK inhibitor ibrutinib was shown to
protect against ischemic brain injury by reducing mature IL-1b
and caspase-1 activation in infiltrating macrophages and
neutrophils in the infarcted area of the ischemic brain (82).
Another study showed that a BTK inhibitor or BTK deficiency
can impair NLRP3 inflammasome activation (83). BTK is
associated with NLRP3 and ASC and promotes ASC speck
formation and caspase-1 cleavage (83), with the BTK inhibitor
ibrutinib shown to be effective in blocking IL-1b secretion in
immune cells derived from Muckle-Wells syndrome patients
(83). In contrast, a recent study showed a negative role of BTK in
regulating NLRP3 inflammasome activity (84), with BTK
deficiency enhancing NLRP3 inflammasome activity in
macrophages (84). BTK binds to NLRP3 during the priming
step of inflammasome activation, preventing NLRP3
inflammasome assembly induced by NLRP3 activators during
the activation phase of inflammasome activation (84). BTK was
shown to block PP2A-mediated dephosphorylation of Ser5 in the
pyrin domain of NLRP3 to inhibit the NLRP3 inflammasome
(84). However, the exact role of BTK in NLRP3 inflammasome
regulation and whether BTK has different roles in different
contexts needs to be further examined.

TGF-b activated kinase-1 (TAK1) has been suggested to
function as a negative regulator to prevent spontaneous
NLRP3 activation (85). TAK1 deficiency was shown to lead to
spontaneous NLRP3 inflammasome activation in macrophages,
suggesting that TAK1 maintains NLRP3 inflammasome
quiescence (85).

p21-activated kinase 1 (PAK1) is involved in caspase-1
activation induced by Helicobacter pylori LPS (86) by
phosphorylating Ser376 in the p10 subunit of caspase-1 (86).

Regulators of Sumoylation
NLRP3 was conjugated with SUMO-2/-3 and sumoylated at
basal state, mediated by interaction between MAPL (also known
as MUL1), a SUMO E3 ligase, and NLRP3 (87). Activating
signals such as nigericin reduced sumoylated NLRP3, possibly
by disrupting NLRP3-MAPL interaction (87). The SUMO E2
ligase, UBC9 interacted with the SUMO consensus motif
surrounding K689 of NLRP3 (87). Deficiency of sentrin-
specific protease 6 (SENP6) and SENP7, which are SUMO de-
conjugating enzymes, reduced NLRP3 inflammasome activation
(87). In contrast, SUMO1-catalyzed sumoylation of NLRP3
Lys204 promoted inflammasome activation whereas SENP3, a
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deSUMOylase, induced NLRP3 deSUMOylation to attenuate
inflammasome activation (88). The precise role of sumoylation
by different enzymes and at different activation steps needs to be
further elucidated.

Regulators of Ubiquitination
Pellino2, an E3 ubiquitin ligase, is required for NLRP3-induced
ASC oligomerization and mature IL-1b production (89). LPS
induces the interaction of Pellino2 with NLRP3 and Pellino2
FHA, and RING domains facilitate NLRP3 activation by
promoting the K63-linked ubiquitination of NLRP3 during the
priming step (89). Pellino2-deficient mice and myeloid cells
show impaired NLRP3 activation in response to Toll-like
receptor priming, NLRP3 stimuli and bacterial challenge (89).

BRCA1-BRCA2 containing complex subunit 3 (BRCC3)
plays a role in NLRP3 inflammasome via deubiquitination of
the LRR domain of NLRP3 by directly binding to ubiquinated
NLRP3 (90). Furthermore, BRCC3 knockdown was shown to
reduce the ATP-induced secretion of mature IL-1b by in
macrophages (91).

Deficiency of tumor necrosis factor alpha-induced protein 3
(TNFAIP3, also known as A20), a deubiquitinating enzyme, was
observed to enhance NLRP3 inflammasome-mediated caspase-1
activation, pyroptosis, and IL-1b secretion in macrophages, while
activation of the NLRC4 and AIM2 inflammasomes was not
affected (92).

The E3 ubiquitin ligase TRIM31 plays a negative regulatory
role in NLRP3 inflammasome activation (93). TRIM31 directly
binds to NLRP3, promoting the K48-linked polyubiquitination
and proteasomal degradation of NLRP3 (93). Furthermore,
TRIM31 deficiency enhances IL-1b secretion in vivo and
aggravates alum-induced peritonitis in mice (93).

FBXL2 interacts with Trp73 in NLRP3 and targets Lys689 in
NLRP3 for ubiquitin ligation, leading to the degradation of
NLRP3 and a reduction in IL-1b and IL-18 secretion in human
inflammatory cells (8).

The E3 ubiquitin ligase MARCH7 is involved in the
ubiquitination and degradation of NLRP3 in neurotransmitter
dopamine-treated macrophages (94). Dopamine negatively
regulates the NLRP3 inflammasome via cyclic adenosine
monophosphate (cAMP), which binds to NLRP3 and promotes
its K48-linked polyubiquitination and degradation through
MARCH7 activity (94). In addition, it was demonstrated that
the LRR domain of NLRP3 is a key region for MARCH7-
mediated ubiquitination and degradation (94).

Ariadne homolog 2 (ARIH2), an E3 ligase, interacts with the
NACHT domain of NLRP3, leading to the K48- and K63-linked
ubiquitination of NLRP3 and downregulation of NLRP3
inflammasome activation (95). ARIH2 deficiency results in
increased NLRP3 inflammasome activation and IL-1b
production, while ARIH2 overexpression inhibits NLRP3
inflammasome activation (95).

TNFR-associated factor 3 (TRAF3) is a direct E3 ubiquitin
ligase for ASC (96), with ASC ubiquitination at Lys174 being
crucial for speck formation and NLRP3 inflammasome
activation. TRAF3 deficiency results in impaired ASC
ubiquitination and cytosolic aggregate formation, resulting in
Frontiers in Immunology | www.frontiersin.org 8
decreased inflammasome responses during RNA virus
infection (96).

HOIL-1L is a component of the linear ubiquitination
assembly complex (LUBAC), which consists of HOIL-1L,
HOIP, and Sharpin. ASC is linearly ubiquitinated by LUBAC,
and HOIL-1L is required for ASC foci formation and NLRP3/
ASC inflammasome assembly (97). Furthermore, HOIL-1L-
deficient macrophages were observed to be impaired in mature
IL-1b secretion upon NLRP3 activation stimuli (97).

Inhibitors of apoptosis proteins (IAPs), such as cIAP1 and
cIAP2, have E3 ubiquitin ligase activity. cIAP1 and cIAP2
interact directly with caspase-1 and are required for
inflammasome assembly and caspase-1 activation, which is
mediated by the K63-linked polyubiquitination of caspase-1 (98).

Collectively, PTMs of the NLRP3 inflammasome show that
the NLRP3 inflammasome activity is regulated by various
signaling components in a complex and elaborated fashion. It
needs to be further elucidated that how each PAMP or DAMP
modulates the activity of PTM-related signaling molecules and
what the interactions between different PTMs are.
SMALL MOLECULES AND
PHYTOCHEMICALS REGULATING THE
NLRP3 INFLAMMASOME ACTIVATION

The NLRP3 inflammasome plays a pivotal role in development
and progress of many common inflammatory diseases (99). The
NLRP3 inflammasome has been implicated in the pathogenesis
of metabolic disorders such as type 2 diabetes (100),
atherosclerosis (101), obesity (102), and gout (103). In
addition, the role of NLRP3 is noted to contribute to the
pathology of central nervous system diseases including
Alzheimer’s disease (104) and Parkinson’s disease (105).
Abnormal activation of the NLRP3 inflammasome is associated
with intestinal cancer and auto-inflammatory diseases such as
keratitis/conjunctivitis (106, 107). Therefore, the discovery of
pharmacological inhibitors targeting NLRP3 inflammasome
components provides a novel strategy for the development of
potential therapeutics in a wide range of human diseases
(Table 1).

Synthetic Small Molecules
Among the synthetic small molecules, CY-09 (108), MCC950
(109), and OLT1177 (110) bind directly to the NATCH domain
of NLRP3 and block NLRP3 ATPase activity. CY-09 is a CFTR
(inh)-172 (C172) analog that inhibits cystic fibrosis
transmembrane conduction regulator (CFTR) channels by
directly interacting with the NLRP3 Walker A motif of NLRP3
NACHT domain and disrupting ATP binding to NLRP3 (108).
CY-09 has shown excellent prophylactic and therapeutic
properties in mouse models of gout, type 2 diabetes, and
Cryopyrin-associated periodic syndrome (CAPS) (108).
MCC950 inhibits both canonical and noncanonical NLRP3,
but not AIM2, NLRC4 or NLRP1 activation, in mouse
macrophages, human monocyte derived macrophages, and
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human peripheral blood mononuclear cells (111). MCC950
treatment was effective to attenuate inflammatory symptoms of
NLRP3-related diseases including experimental autoimmune
encephalomyelitis and CAPS (111). MCC950 directly binds to
the Walker B motif in the NLRP3 NACHT domain, inhibiting
ATPase activity and NLRP3 inflammasome formation (109).
OLT1177 is an active b-sulfonylnitrile compound that has passed
phase 1 clinical trials for the treatment of degenerative arthritis
and is currently being evaluated in phase 2 clinical trials (112).
OLT1177 has been shown to block both standard and
nonstandard NLRP3 inflammasome activation and ATPase
activity by directly binding to NLRP3 (110). Bay 11-7082 binds
to NLRP3 through alkylation of cysteine residues in the NLRP3
ATPase region, thereby blocking NLRP3 inflammasome
function in addition to its inhibition of the kinase activity of
IKKb (113). 3,4-Methylenedioxy-b-nitrostyrene directly binds to
NACHT and LRR domains of NLRP3, blocking its ATPase
activity (114). Tranilast, a tryptophan metabolite analog, binds
to NACHT domain of NLRP3, preventing NLRP3-NLRP3
interaction and alleviating the symptoms of gouty arthritis,
cryopyrin-associated autoinflammatory syndromes, and type 2
diabetes (115). In addition, tranilast increases K63-linked
ubiquitination of NLRP3 (116).

Glyburide (99, 117) inhibits NLRP3 inflammasome activity.
The small molecule 16673-34-0 (118), an intermediate substrate
produced during the synthesis of glyburide and the low-
molecular-weight JC124 (119), generated during the structural
optimization of glyburide, alleviates the side effects of glyburide.

VX-740 (Pralnacasan) (120) and its analog VX-765 (121) are
peptidomimetic inhibitors of caspase-1 and inhibit the
proinflammatory cytokines IL-1b and IL-18.
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G5 (3,5-bis[(4-Nitrophenyl)methylene]-1,1-dioxide,
tetrahydro-4H-thiopyran-4-one), a small molecule inhibitor of
deubiquitination, inhibits NLRP3 inflammasome activation
induced by ATP and nigericin in LPS-primed macrophages
(91). G5 promotes ubiquitination of NLRP3 NACHT and LRR
domains with mixed K63 and K48 ubiquitin chains, resulting in
the blockade of NLRP3 inflammasome activation (91).

As excessive NLRP3 inflammasome activation has been shown
to be closely associated with the pathophysiology of a wide array of
disorders, synthetic small molecules that directly or indirectly
inhibit the NLRP3 inflammasome have been suggested as
promising therapeutic agents (Table 1). The specificity of the
target sites with high potency would be the critical prerequisite
requirement to develop the new NLRP3 inflammasome inhibitors.

Phytochemicals
Phytochemicals are substances synthesized by medicinal plants
and extracted for therapeutic purposes (Katz and Baltz, 2016).
Plants are a preferred therapeutic substance because they are
easily accessible and cost-effective, and there are many
investigations on phytochemicals that modulate the
inflammatory response by regulating specific NLRP3
inflammasome components. Phytochemicals that directly or
indirectly regulate the NLRP3 inflammasome include b-
carotene (122), caffeic acid phenethyl ester (CAPE) (123),
sulforaphane (128), celastrol (124, 125), epigallocatechin-3-
gallate (EGCG) (126), and licochalcone A (127).

b-Carotene binds directly to pyrin domain (PYD) of NLRP3
(122). Molecular modeling and mutation study showed that b‐
carotene interacted with Ala69, Val72, Trp73, Tyr84, and Glu91
in the hydrophobic groove of H5 and H6 (122). b-Carotene
TABLE 1 | Small molecules and phytochemicals regulating the NLRP3 inflammasome activation.

Agents Target Mechanism References

Synthetic small
molecules

3,4-Methylenedioxy-b-
nitrostyrene

NLRP3 NACHT and
LRR domains

Blocks NLRP3 ATPase activity (114)

Bay 11-7082 Kinase activity of IKKb
and
the NLRP3 NATCH
domain

Inhibits the NF-kB pathway and prevents NLRP3 function (113)

CY-09 NLRP3 NATCH domain Directly interacts with NLRP3 and inhibits cystic fibrosis transmembrane
conduction regulator (CFTR) channels

(108)

G5 NLRP3 (indirectly) Inhibits deubiquitination of NLRP3 (91)
Glyburide, 16673-34-0,
JC124

NLRP3 (indirectly) Inhibits ATP sensitive K+ channels downstream of P2X7 and ASC aggregation (117–119)

MCC950 NLRP3 NATCH domain Blocks the ability of NLRP3 to hydrolyzed ATP (109)
OLT1177 NLRP3 NATCH domain Inhibits NLRP3 ATPase activity by directly binding to the NLRP3 ATPase

region.
(110)

Tranilast NLRP3 NATCH domain Prevents NLRP3-NLRP3 interaction and increases K63‐linked ubiquitination of
NLRP3

(115)

VX-740, VX-765 Caspase-1 Inhibits caspase-1 activity (120, 121)

Phytochemicals b-carotene NLRP3 PYD domain Inhibits the NLRP3 inflammasome by directly binding to the pyrin domain (PYD)
of NLRP3

(122)

CAPE ASC PYD domain Blocks NLRP3-ASC interactions by directly binding with ASC (123)
Celastrol NLRP3 (indirectly) Inhibits NLRP3 inflammasome activation induced by ATP, nigericin, and ox-LDL (124, 125)
EGCG NLRP3 (indirectly) Inhibits NLRP3 inflammasome by blocking mitochondrial DNA synthesis and

ROS production
(126)

Licochalcone A NLRP3 (indirectly) Inhibits ASC speck formation and mitochondrial ROS (127)
Sulforaphane NLRP3 (indirectly) Induces autophagy resulting in the suppression of the NLRP3 inflammasome (128)
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inhibits ATP, MSU crystals, and nigericin-induced NLRP3
inflammasome activation in macrophages. In addition, b-
carotene was shown to decrease IL-1b secretion by human
synovial cells isolated from gout patients, demonstrating the
potential inhibitory effect of b-carotene on human gout (122).

CAPE directly binds to PYD of ASC, leading to the disruption
of the NLRP3-ASC association as demonstrated by SPR analysis
and pull-down experiment (123). In a murine gouty arthritis
model, the oral administration of CAPE was shown to attenuate
inflammatory symptoms by inhibiting MSU crystal-induced
caspase-1 activation and IL-1b production in air pouch
exudate and foot tissue (123). To our best knowledge, CAPE is
the only phytochemical known to bind directly to ASC.

Sulforaphane (SFN) regulated upstream signaling pathways
of AMP-activated protein kinase-autophagy axis to suppress the
NLRP3 inflammasome activation. SFN induced autophagosome
formation and p62 degradation in hepatocytes, whereas it
inhibited the activation of mammalian target of rapamycin
(mTOR), a negative regulator of autophagy, suggesting that
SFN promotes autophagy in hepatocytes (128). SFN induced
phosphorylation of AMP-activated protein kinase and
consequent activation of autophagy, resulting in inhibition of
the NLRP3 inflammasome in the liver. Oral administration with
SFN prevented non-alcoholic fatty liver disease symptoms in
mice fed high fat diet by inhibiting the NLRP3 inflammasome in
the liver (128). In addition, SFN can effectively alleviate acute
gouty inflammation by inhibiting NLRP3 inflammasome
activation induced by MSU crystals in in macrophages (129).
The inhibition of NLRP3 inflammasome activation by SFN is
independent of the reactive oxygen species pathway in
macrophages (129). These show that the regulation of
autophagy can be used as a beneficial strategy to prevent the
NLRP3 inflammasome activation.

There are phytochemicals affecting intracellular events of the
NLRP3 inflammasome, including K+ efflux, mitochondrial ROS
production, and mitochondrial DNA release. Celastrol
suppresses the K+ efflux induced by ATP and nigericin in
primary macrophages, resulting in suppression of the NLRP3
inflammasome (124, 125). Celastrol pretreatment reduced the
ability of ATP-stimulated macrophages to promote cancer cell
migration and invasion (124, 125). The inhibitory effects of
licochalcone A and EGCG were mediated through the
regulation of mitochondrial dysfunction. Licochalcone A
blocked mitochondrial ROS generation induced by
Propionibacterium acnes (P. acnes) and rotenone in mouse
primary macrophages (127). Similarly, EGCG prevented
production of ROS induced by NLRP3 activators such as MSU,
ATP, and nigericin and suppressed de novo synthesis of
mitochondrial DNAs induced by MSU in primary mouse
macrophages (126). The specific target molecules or
mechanisms by which these phytochemicals modulate
mitochondrial function remain to be further investigated.

There are a few phytochemicals directly binding to the
NLRP3 inflammasome components while others work
indirectly by modulating upstream signaling pathways of the
NLRP3 inflammasome (Table 1). Elucidating the exact action
Frontiers in Immunology | www.frontiersin.org 10
mechanism by which the phytochemicals exert the inhibitory
activity would provide an important information on specific
targets to be regulated and drug discovery strategies for novel
pharmacological inhibitors.
CONCLUSION

With the lifespan improvements made possible by modern
medical developments, the occurrence of metabolic and age-
related diseases is increasing. Previous studies have
demonstrated that the NLRP3 inflammasome is a key mediator
in the development of various metabolic diseases and host
inflammatory responses. The discoveries of NLRP3
inflammasome modulators, such as NEK7 and GSDMD,
demonstrate significant advances in this field.

The PTM regulation of the NLRP3 inflammasome
components can be potential targets for the development of
specific drugs or inhibitors of the NLRP3 inflammasome.
However, unidentified PTM sites of NLRP3 and PTM-related
enzymes remain, and the correlations and interactions between
the various types of PTMs of the NLRP3 inflammasome
components require further investigation. As research on
NLRP3 activation becomes more important, the targeting of
NLRP3 as a therapeutic strategy for many diseases is rapidly
progressing. The current treatment for NLRP3-related
pathologies is to indirectly or directly inhibit the activation of
the NLRP3 inflammasome using pharmacological inhibitors.
NLRP3 inhibitors function as effective therapeutic agents for
many inflammatory disorders by inhibiting the pro-
inflammatory cytokines IL-1b and IL-18 and maintaining
cellular homeostasis.

In summary, understanding how intracellular proteins,
PTMs, and small molecule inhibitors regulate the NLRP3
inflammasome activation will provide crucial information for
elucidating the host defense mechanisms in response to
pathogen and tissue damage and in constructing effective
therapeutic strategies for chronic diseases.
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