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Abstract

Previous studies have shown that the size of the leftward bias after exposure to rightward

prism-deviation (the prismatic after-effect) depends on the degree of rightward prism-devia-

tion as well as the type of visual feedback receives during exposure to prism-deviation.

In this study, we tested if it was possible to obtain a leftward bias in pointing precision

using two different methods of creating diverted visual input by simulating a rightward prism

diversion of visual input in immersive virtual reality. We compared the results to the leftward

bias in pointing precision obtained after exposure to standard prism goggles deviating visual

input 10 degrees to the right. Twenty healthy participants were subjected to one session of

standard prism adaptation therapy under three different conditions of deviated visual input:

1) created by imitating a 10 degree leftward rotation of the head (VRR), 2) created by imitat-

ing a 2D leftward horizontal displacement of 10 degrees (VRS) and 3) a control condition

using real right-deviating prisms (PCP). The study showed that the simulated prisms in the

VRR and VRS conditions produced deviations in pointing precision of a similar size. How-

ever, exposure to the VRS and VRR conditions both produced larger prismatic after-effects

than the exposure to real prism goggles. This research is important for the development and

use of virtual reality systems in the rehabilitation of neglect after brain injury as it emphasizes

that the adjustment to deviated visual input may be affected positively by the use of immer-

sive virtual reality technology.

Introduction

For more than a century, adaptation to the visual distortion created with prisms has been used

to study experience-based plasticity in the visuomotor system. Stratton [1] found successful

adaptation to a 180-degree deviation and since then, adaptations to other large and small

prism-deviations have been used to test learning and adaptation in the perceptual and motor

systems (e.g. [2–5]). In healthy subjects, the exposure to prism-deviation followed by removal
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of the prisms produces a prismatic after-effect, a deviation in pointing accuracy in the opposite

direction to the prism-deviation [6]. The size of the after-effect correlates with the degree of

distortion induced by prism goggles; the larger the deviation, the larger the size [7]. A surpris-

ing issue regarding the after-effect is that it does not equal the prismatic deviation. Usually, the

after-effect produced is about 40% of the prism-deviation [3]; the reason for this is still an

unresolved mystery.

Visuomotor adaptation to deviation of visual input based on trial-by trial visual error feed-

back is categorized as sensory-motor adaptation allowing the brain to modify existing motor

patterns as needed [8]. The adaptation itself is theorized to be the sum of three separate error

correction mechanisms: postural control, recalibration and strategic remapping [3]. Postural

control is the active, conscious control of the limb movement once you have detected that tar-

gets are not being reached correctly. In other words, you consciously override the internal

movement programme forcing your limb further towards the intended target. Recalibration is

the recoding of spatially coded movement commands and strategic realignment is the process

keeping the internal proprioceptive maps up to date on body position and size in relation to

the outer world [9]. It has been demonstrated that the after-effect is an additive effect com-

prised of the effect of recalibration and strategic alignment [4, 10–12].

How and when feedback is provided during prism exposure affects adaptation. The size

and composition of the after-effect depend to a certain degree upon whether or not the sub-

jects are allowed to see the actual movement of the extremity during prism exposure [6, 13]. In

pointing tasks, visual access to the full arm movement during exposure (concurrent access)

produce less after-effect than access to only the terminal part of the movement towards a target

(terminal exposure) [14–16]. The nature of the task being performed during exposure may

also affect the size and type of adaptation and consequently the after-effect [17].

One of the unresolved questions is how the nature of terminal feedback during prism expo-

sure influences the adaptation. Does seeing an actual finger during terminal exposure produce

larger after-effects than seeing a representation of a finger like an image or a symbol?

In 2009, we developed a 2D PC version of the Prism Adaptation Therapy outlined by Frassi-

netti et al. [18] for experimental purposes. As we converted the paper-and-pencil therapy into

advanced technology, we made changes to the way the subjects received feedback on pointing

precision during the exposure phase. The original intent was to reduce the movement of physi-

cal equipment. Instead of seeing the position of their physical finger in relation to the fixed tar-

get (direct feedback) during exposure to prism-deviation, two conditions were tested. In the

first, an “X” was shown on the terminal next to the fixed target (indirect feedback) and in the

second the physical finger was shown [19]. Seeing ones finger directly produced larger after-

effects than indirect feedback such as symbols [19].

In 2017, we developed an immersive virtual reality version of the PAT training in which we

simulate prism-deviation. Knowing that visuomotor adaptation might be sensitive to changes

in feedback, we initiated a study to verify if the immersive version of PAT in which the virtual

positions of virtual fingers are being used as feedback would produce similar or different size

after-effects in healthy subjects before testing the VR PAT injured subjects. Part of the study

compared the after-effect produced by two different methods of simulating prism-deviation, a

rotating and a skewing of visual input. This paper reports the results.

Purpose

The purpose of this study was to test 1) if it is possible to produce a prismatic after-effect using

simulated prism-deviation in immersive virtual reality, 2) whether the after-effect produced by

simulated prisms in immersed virtual reality are smaller than the after-effect produced by

Simulated prism exposure
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prism goggles and 3) if there would be any difference in after-effect between the two types of

simulated prism-deviation methods available in Unity.

Finally, the study also evaluated the potential benefits and drawbacks of using a virtual ver-

sion of PAT.

Theory

Virtual reality and the prismatic after-effect. Virtual reality (VR) is ‘an artificial envi-

ronment which is experienced through sensory stimuli (such as sights and sounds) provided

by a computer and in which one’s actions partially determine what happens in the environ-

ment’ [20]. This definition covers a range of methods to simulate and interact with a simulated

world from a 2D presentation on a PC monitor to a total immersive visual, auditory and tactile

environment [21, 22].

Recently, immersive virtual reality technology has become a resource in of cognitive reha-

bilitation as a challenging but safe and controlled training environment [23–25]. Immersive

VR has proven to be a useful and constructive tool for assessment of cognitive deficits in exec-

utive functions [26] as well as skills such as driving [27] or shopping [28].

When immersed in a virtual world, the subject will usually be wearing a helmet or goggles

covering the eyes and will have what seems like a direct interaction with the environment or

objects through an avatar. Studies have shown that the brain easily adapts to virtual representa-

tions of arms and hands [29]. However, a very recent study has shown that different compo-

nents of visuomotor adaptation are affected by conventional motor training and immersive

virtual reality motor training despite similar surface behaviour [30]. As in the real world, the

after-effect is large when using terminal exposure as opposed to concurrent exposure when

adapting to a throwing task [31]. Deliberate misalignment of viewed hand position in

immersed virtual reality produce no performance deviation but less after-effect [32]. Func-

tional imaging studies of prism adaptation have demonstrated that manipulation of visual

feedback of hand position in virtual reality may affect which brain areas being involved in the

adaptation [33, 34].

Visuomotor adaptation is used in brain injury therapy to ameliorate the effects of unilateral

neglect [2, 35], one of the more common deficits after brain injury to the right hemisphere

[36]. Neglect is a syndrome commonly defined as a failure to explore, respond to or orient

towards stimuli commonly presented in the left side of space [37]. Evidence supports the idea

that visuomotor effects of unilateral neglect can be ameliorated by Prism Adaptation Therapy

(PAT) [18, 35, 38, 39].

One common research paradigm used for testing prismatic adaptation consists of three

steps. The first step is a pre-exposure/baseline step to measure the visuomotor accuracy of the

subject (without prism goggles), usually established either by letting the subjects point out the

subjective midline repeatedly (e.g. [35]) or by letting the subjects point to targets with the

movement of their arm and hand disguised beneath a non-transparent barrier (blinded) [6,

18].

The second step is to expose the subjects to a visual distortion induced by prism goggles.

Although subjects are fully aware of the fact that they are receiving distorted visual input, parts

of the visuomotor system are not able to adjust to this knowledge. The result is that, initially,

healthy subjects will tend to point off-target in the opposite direction of the prism-deviation at

a distance depending on the prism displacement and direction [2]. At the end of each trial in

the exposure step, subjects will receive feedback on pointing precision and gradually adapt to

the prismatic change. As a result, the target precision will increase. Usually, subjects are able to

adjust within a few trials, initially through conscious control (by forcing the hand to move

Simulated prism exposure
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further to the left than what seems natural) and after a while through more automated control

[40]. As the motor control mechanism changes from conscious control to a level of more auto-

mated control, overcompensation can be observed for a brief period of time, causing a point-

ing deviation to the left of the target [10].

The third step is basically similar to the first step. Visual input is restored to normal by

removing the prism goggles and the blinded pointing precision is re-measured.

Material and methods

Twenty healthy subjects, 13 females of an average age of 25.9 (5.5) and 7 males of an average

age of 28.3 (3.1) were tested under three different prism adaptation conditions: 1) a virtually

simulated prism-deviation using virtual reality ROTATE (abbreviation VRR), 2) a virtually

simulated prism-deviation using virtual reality SKEW (abbreviation VRS), and 3) prism-devia-

tion using a standard set of prism goggles and PC (abbreviation PCP). All subjects were tested

in all three conditions but assigned to one of four different sequences through randomisation

to avoid learning effects. The four sequences were VRR-VRS-PCP, VRS-VRR- PCP,

PCP-VRR-VRS and PCP-VRS-VRR. Subjects had a break of at least 10 minutes between each

condition for adequate mental recovery.

In each of the three prism conditions, the participant completed 5 steps (Table 1).

In Table 1, the column ‘Feedback’ specifies whether the fingertip (virtual or real) would be

visible right before hitting the target. ‘Trial’ indicates the number of pointing trials in total for

the particular phase. The ‘Pre-test’ step includes the number of sample trials both with and

without visible fingertip. The ‘Reset’ step was inserted to ensure that each subject left the test

with a normalised visuomotor system. This was subsequently verified and confirmed through

inspection of the captured raw data.

Ethics

Subjects were provided with oral and written information before beginning the study about

their rights, the purpose of the study and about the fact that they might experience temporary

dizziness during the testing. They then signed written consent forms. All subjects went

through a reset task to avoid any temporary deviation effects from the tests. The work was

approved by the local ethical committee at the Department of Psychology.

Equipment used

The PCP condition. The computer-based prism adaptation setup consisted of a PC, a

touchscreen, a specially constructed wooden screen, prism goggles and a plastic tip to put on

the subjects’ fingertip to increase pointing precision and protect the touch screen surface. The

PC was a standard PC with Windows 7 installed. The attached touch screen was a 22” (477

mm wide) touch-sensitive TFT LCD monitor (DT220TSR5U) with a response time� 5ms.

Table 1. The 5 steps of each condition.

Step Feedback # of trials

1. Pre-test No & Yes 9

2. Baseline (pre-exposure) No 30

3. Exposure Yes 90

4. Post-test (post-exposure) No 60

5. Reset Yes 30

https://doi.org/10.1371/journal.pone.0217074.t001
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The touch technology was a 5-wire, analogue resistive type with a touch resolution of 4096 x

4096 and a screen resolution of 1680 x 1050 pixels with a refresh rate of 75 Hz.

The software programme used in the PCP condition was developed for a previous study by

one of the authors, Inge Wilms [19]. Targets would appear at one of three different positions

in the upper part of the touchscreen, one at the centre of the screen and one on each side of the

centre at a distance of 528 pixels (= 14.5 degrees) (Fig 1). Along the same horizontal axis in a

pseudo-random order controlled by an algorithm ensuring that each target was presented an

equal number of times. The target would remain visible until the subject had responded. The

programme recorded detailed information regarding accuracy of the subject’s pointing posi-

tion throughout the session.

Only the top part of the touchscreen was visible to the subjects. A wooden screen in front of

the touchscreen was used to reduce and control the subjects’ visibility of their arm movements

and the touch area. The screen had a sliding top which was adjusted to the various arm lengths

of the subjects. The touchscreen issued a beeping sound when touched, indicating to the sub-

ject that the pointing was recorded. The programme ignored any accidental repeated touches.

The prism goggles in this study were constructed using a standard pair of goggles with a

large viewing area and lining them with Fresnel prisms.

The virtual reality conditions (VRR and VRS). The HTC VIVE VR headset and control-

ler were used in the study. A programme simulation of the PC environment was written in C#

interfacing with Unity and SteamVR to interact with the graphics, the headset and the control-

ler. This programme was developed by two of the authors (Ramos and Hørning). Data about

the position of the targets and the touching precision were recorded in a log file on the PC. To

record the precise position of the subject’s fingertip, the subject placed their fingertip on the

‘menu’ button on the controller.

Fig 1. The PCP control session setup. The red line is the target.

https://doi.org/10.1371/journal.pone.0217074.g001
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Only a graphic representation of a fingertip was visible to the subjects in the simulated envi-

ronment, along with a white wall on which the targets were presented. A virtual black

box concealed the virtual arm movements. In the exposure and reset tasks, the black box was

positioned approximately 3 cm from the white wall, making the fingertip visible. In the VR

conditions, the fingertip was programmed to be visible right below the top of the virtual black

box regardless of where the subject pointed in the vertical plane. The HTC VIVE controller

was programmed to rumble slightly when the white wall was touched in the VR simulation.

This provided the subjects with an impression of actually hitting the target (Fig 2).

Local-to-world matrix

Each object in a virtual world scene has a unique Local-to-World (LtW) matrix. The matrices

are used to place and scale objects according to their position in the virtual world (VW). The

camera in the VW is also represented by an LtW matrix but with the exception that the camera

is assumed to be able to move as the centre object, causing all other objects to scale and reposi-

tion accordingly when the camera moves around.

The field of view from the perspective of the camera is termed the viewing frustum (VF)

and specifies the boundaries of the objects in view. It has the shape of a frustum extending

from the camera and consists of a near-plane and a far-plane. When a scene is being trans-

posed from a 3D plane to a 2D plane for presentation, it is done using the VF. Objects very

close and very far away are omitted for display. By changing aspects of the VF, it is possible to

obtain different visual point-of-views. Changes in the VF were used in this study to simulate

prism goggles in the following two different manners.

The prism simulations

With the SKEW prism simulation, the near and far planes were both skewed to the left by 10

degrees (Fig 3).

Fig 2. The VRx session setup. The red line is the target. The subjects would see the visual world in a head mounted device.

https://doi.org/10.1371/journal.pone.0217074.g002
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With the ROTATE prism simulation, the frustum was rotated around the camera axis to

the left (Fig 4).

Statistics

A Linear Mixed Model (LMM) analysis was conducted using SPSS version 25.0 was used to

analyse data using the following scripts:

MIXED Deviation by Condition Location Subject with PreAvg

/METHOD = REML

/PRINT = Solution

/FIXED Condition Location Condition�Location PreAvg

/RANDOM Subject Condition�Subject Subject�Location Condition�Location�Subject | Cov-

type(VC)

/REPEATED TrialNo | Subject(Subject�Condition) COVTYPE(AR1)

/EMMEANS Tables(Condition) COMPARE(Condition) ADJ(BONFERRONI)

/EMMEANS Tables(Location) COMPARE(Location) ADJ(BONFERRONI)

Fig 3. SKEW option. The near- and far-planes were skewed to the same side to simulate a 10-degree prism-deviation. Red line

indicates the skewing.

https://doi.org/10.1371/journal.pone.0217074.g003
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/EMMEANS Tables(Condition�Location) COMPARE(Condition) ADJ(BONFERRONI).

Metrics

Data were captured in different metrics but were converted to deviations in degrees to allow

comparison across conditions as well as across studies. In the conversion to degrees, the dis-

tance from touch position to target position in cm (a) along with arm length in cm (b) was

used to calculate the angle of deviation in degrees (tan-1(a/b)�π).

Outliers and adjustments

Data was inspected for extreme data. For the PCP condition, a total of 95 trials with 0 ms

response time distributed randomly across all subjects were excluded as being artefacts of a

bouncing finger.

Across subjects, seven trials which deviated above 3 SD from mean were excluded from the

analysis in all three conditions. No subjects were excluded. In the PCP condition, the total per-

centages of excluded trial for the PRE and POST steps were 0.33%, and 1.25%. In the VRS con-

dition, the percentages were 0.33% and 0% and in the VRR condition 0%, and 0%.

After completing the study, we discovered that the PCP condition had been conducted with

an 8.70-degree prism-deviation and the virtual reality conditions with a 10-degree prism-devi-

ation. It has been shown that there is a linear relationship between the degrees of prism-devia-

tion and produced after-effect [7, 41] when doing similar tasks. We therefore decided to do a

mathematical transformation of the results for the PCP condition from 8.70 degrees to 10

degrees to align the results for comparison and statistical analysis. In addition, we converted

the transformed results to degrees and compared the results with data from a previous study

using the same PC paradigm [See 19]. The mean and SD were similar in size between the old

Fig 4. ROTATE option. The frustum was rotated to the left. The red line indicates the rotation.

https://doi.org/10.1371/journal.pone.0217074.g004
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study and the transformed data. All data presented in the results section of the paper for the

PCP condition is therefore post transformation data.

Results

All scores are presented in degrees and are calculated as the difference from the centre of the

displayed target to the actual pointing position. A negative value indicates a leftward pointing

position and a positive value a rightward position relative to the centre of the target.

Starting with a visual inspection (Fig 5), the mean deviations at pre and post showed a dif-

ference in after-effect between the three conditions. Further visual inspection of the data at

subject level showed variation at both intercept and slope. For that reason, a LMM random

slope and intercept model was used to test the difference between the three conditions. A Bon-

ferroni correction was done to adjust for the repeated trial measures at condition and location

level.

Two models were tested, one with pre exposure performance as a covariate and one with-

out. The reason for this is that there are good theoretical reasons for inspecting both results. In

the first case, it may be argued that subjects may have a prior lack of precision due to some

invariant factors. If this is the case, it is necessary to adjust the resulting after-effect for any pre

exposure deviations. However, it may also be argued that the 90 trial training during the expo-

sure phase is adjusting the visuomotor system using live feedback. The exposure step itself is a

reset of prior deviations and the resulting after-effect is therefore the pure deviation. The

results from the two models were reasonable similar so only the results from the best fitting

model, which included Pre exposure performance as covariate, is presented here. A post hoc

Bonferroni adjustment was done to correct for repeated measures on trial and condition.

Fig 5. The slope for each condition from pre to post exposure in degrees.

https://doi.org/10.1371/journal.pone.0217074.g005
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The analysis showed a fixed effect of condition F (2, 36.9) = 12.295, p<.005, location F(2,

37.4) = 15.1, p<.005, Pre F(1, 136.1) = 24.9, p<.005 but not the interaction condition�location

F(4, 76.8) = 2.23, p = .068. Estimating marginal means with a pairwise comparison as part of

the mixed model (Table 2) showed that the after-effect produced by the PCP condition devi-

ated significantly from the two virtual reality conditions.

The parameter estimates from the model and the predictive effects is not presented as they

have no relevance to the research questions.

Discussion

The results confirm that it is possible to generate a prismatic after-effect in healthy subjects

using immersive VR technology with simulated prism-deviation. Secondly, contrary to expec-

tation, the after-effect produced with indirect feedback (you do not see your own finger but an

image of a finger) in immersed virtual reality is larger than the after-effect produced by normal

prism goggles (seeing your real finger in physical reality). Finally, the study demonstrated that

there was no difference in the size of the prismatic after-effect between the two types of simu-

lated prism-deviation available in Unity.

One major difference between the PCP and the VRx conditions was the box used to hide

the arm movement. In the virtual reality conditions, the box followed the hand movement in

the vertical plane, ensuring that the subject always saw the fingertip as feedback during the

exposure step. In the PCP condition, the box was stationary, and although the assistants were

monitoring correct behaviour, subjects would at times position their finger incorrectly and not

receive feedback. This potential difference might explain a small part of the positive difference

but probably not all.

Limitations

There is a chance that the linear transformation of the PCP results may not reflect the results

from exposure to a real 10-degree prism-deviation. However, the after-effects measured for

this batch of subjects match the after-effects measured previously on the same paradigm with a

10-degree prism-deviation [See 19], strengthening the assumption that the virtual reality con-

dition does in fact produce larger after-effects than those produced by ordinary prism goggles

in standard conditions. Another theory might be that the subjects were less distracted during

the exposure phase in the virtual reality conditions due to the use of the immersive headset.

The heightened attentional focus might result in faster adaptation. However, a comparison

between the learning curves for the three conditions showed no difference in the number of

trials used to adjust to the deviations. On average, subjects required 7 to 9 trials to be able to

point directly at the target during the exposure phase in all three conditions.

The exposure to indirect feedback may have a hidden influence on the choice and impact on

the internal adaptation mechanisms. A greater after-effect does not in itself indicate the

Table 2. Pairwise comparison of conditions with the after-effect adjusted for deviation prior to exposure.

Conditions Mean Diff. SE df p CI Upper/Lower

PCP VRS -1,120 0,328 37,429 0,005 -1,942 -0,298

VRR -1,588 0,328 37,450 0,000 -2,410 -0,766

VRS PCP 1,120 0,328 37,429 0,005 0,298 1,942

VRR -0,468 0,323 35,985 0,466 -1,278 0,342

VRR PCP 1,588 0,328 37,450 0,000 0,766 2,410

VRS 0,468 0,323 35,985 0,466 -0,342 1,278

https://doi.org/10.1371/journal.pone.0217074.t002
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composition of the adaptation. Further studies are needed to confirm the durability and compo-

sition of the larger effect. It is still not fully understood why the measured after-effect is approxi-

mately 40–50% of the prism-deviation despite flawless pointing precision during exposure [3].

Considerations on the use of immersive VR

The test in the study was intentionally done in a similar fashion to a traditional session of

prism adaptation therapy [35]. Although the VR equipment required initial calibration, the

potential use in PAT is interesting as it may allow for further optimisation of training for sev-

eral reasons. PAT basically depends on the detection of a visuomotor discrepancy. In a physi-

cal environment, it can be difficult to provide correct feedback to the subjects because the

movements of the arm and hand must be hidden up until hitting the target. In our experience,

subjects often fail to keep the hand in a position which allows them to receive terminal feed-

back every time they point to a target. The terminal feedback of the finger is important for the

activation of the correct adaptive mechanisms [6, 15, 16].

In the VR conditions, the flexible frame concealing the arm movement ensured that the

subjects received correct terminal feedback during all exposure trials. Moreover, the VR sys-

tem facilitates tracking of the speed and position of the arm at any time which enables full con-

trol of the timing of the appearance of the target in relation to the arms being fully retracted.

Our current implementation did not provide a speed warning for too slow or fast movement

in this implementation, but it would be easy to verify the speed of the movement online and

provide ample and automatic warnings alerting the subjects to move faster or slower. All three

points are challenges which normally would require constant human supervision during

prism adaptation training.

The subjects did not report any dizziness or nausea during the prism-deviation sessions.

They did, however, comment on the weight of the head mount. Another challenge using the

current virtual reality equipment is the requirement to use the quite heavy controller when

completing the pointing activity. Several subjects had to take small breaks because of fatigue in

their arms. If this type of training is to develop further into a clinical practice, it is necessary to

develop a small unit or glove which tracks the finger position of the subjects. A final challenge

is the current requirement for a very high-speed graphics unit on the PC despite the fact that

the graphics used in the study were simple. It currently prevents the use of a portable laptop

PC to be used in a clinical setting or for home training.

It still remains to be seen what the adaptation effect will be on real neglect patients and for

more than one session. This will be the next area of research.

Conclusion

We wanted to investigate if it was possible to produce a prismatic after-effect using simulated

prisms in virtual reality. We also wanted to know if the after-effect from simulated prisms

would be smaller or larger than the after-effect produced by normal prism goggles. Finally, we

wanted to compare the effects of two different types of simulated virtual prisms. The results

show that the two types of simulated prism-deviation produce larger after-effects than that

produced by real prism goggles in healthy subjects. The study also showed that the two differ-

ent methods of simulating prism-deviation in virtual reality produce after-effects of equal mag-

nitude in healthy subjects.
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