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Abstract
We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-
apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer
progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin
A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate
cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45
weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle
controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated
mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis
revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-
catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous
findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily
administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate
cancer in a mouse model with strong potential for translation to human disease.
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Introduction
Activated protein kinase B/AKT plays a central role in regulating
downstream signaling pathways that control various cellular
processes, such as proliferation, survival, cell cycle progression and
epithelial–mesenchymal transition (EMT) [1–3]. Aberrant activation
of AKT leads to tumorigenesis, drug resistance and metastasis.
Therefore, AKT has become an important therapeutic target for
various types of cancer, including prostate cancer (CaP) [4–6].
Despite advances in early detection and an improved understanding
of the molecular mechanism of CaP, the mortality associated with
CaP in the US remains high [7]. Genetically engineered mouse
models (GEMMs) have been generated to recapitulate many of the
key aspects of prostate tumor development [8,9]. Conditional
knockout GEMMs, in which tumor-associated genes are selectively
inactivated in the cancer-bearing tissue of interest using Cre-LoxP
recombination, are important tools for gaining mechanistic insights
into cancer and for evaluating the efficacy of cancer therapeutics in
clinically relevant models [10]. These GEMMs include a conditional
phosphatase and tensin homologue (PTEN) tumor suppressor
gene-deficient GEMM of the prostate, which is actively being
studied as a context-specific model for evaluating the chemopreven-
tion of CaP [4,5].

The inactivation of the PTEN gene is one of the most frequently
detected genetic alterations in CaP [3,11–14]. This inactivation often
activates the oncogenic function of AKT in CaP [15–17]. Clinically,
the inactivation of PTEN is associated with prostate tumor growth
patterns, such as invasive ductal carcinoma (IDC), that are predictive
of high-grade invasive and aggressive disease [18–21]. PTEN loss is
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also observed in 45% of high-grade prostatic intraepithelial neoplasias
(HG-PIN), which are a precursor lesion of adenocarcinoma, and in
70% of advanced CaP cases [22]. Therefore, the inhibition of AKT
survival signaling and its downstream effectors represents a potential
therapeutic strategy for the treatment of CaP. A number of small
molecule inhibitors of AKT are being developed and tested in clinical
trials. Orally bioavailable synthetic alkyl-lysophospholipid agents,
such as edelfosine, miltefosine and perifosine, were shown to inhibit
AKT signaling pathways in epithelial carcinoma [23]. Similarly, a
number of pan-AKT inhibitors (AZD5363, GSK2110183 and
GDC-0068) have been shown to inhibit AKT signaling, resulting
in growth inhibition in preclinical models [24–26]. Very recently, the
Ziergelbauer group demonstrated that the small molecule inhibitor
BAY1125976 effectively suppresses AKT1 and AKT2 activation,
resulting in tumor growth inhibition in a panel of breast cancer cell
lines [27]. These studies highlight the importance of AKT as a
therapeutic target in many cancer types, including CaP.

Naturally occurring phytonutrients with chemopreventive properties
are under investigation as dietary supplements to reduce the incidence of
CaP development and retard the progression of CaP beyond typically
asymptomatic benign prostate hyperplasia (BPH) [28]. Previous studies
demonstrated the chemopreventive action of a number of natural products
with pharmacological activity against numerous targets that drive key CaP
initiation and maintenance pathways [29–34]. Furthermore, some
evidence indicates that natural products may inhibit tumor recurrence
by targeting key modulators of cancer stem cell renewal [35]. Clinically,
chemoprevention may be desirable, as the utility of PSA screening as a
diagnostic marker for CaP has been challenged and may be a contributing
factor to overtreatment of the disease [36,37]. Hence, chemoprevention
approaches that use natural products to prevent CaP may offer a safer
alternative to more aggressive strategies for inhibiting cancer progression
and reducing mortality by suppressing prosurvival signaling.

Withaferin A (WA) is a small molecule phytonutrient derived from the
herbal plant Withania somnifera that is used extensively in Asian and
African traditional medicine to treat various ailments [38]. Recent studies
in our laboratory demonstrated the therapeutic efficacy of WA against
CaP in mouse models of the disease [39–41]. In the present study, our
objective was to evaluate the efficacy ofWA chemoprevention in the Pten
conditional knockout mouse Pten-loxp/loxp:PB-Cre4+ (Pten-KO) model,
since AKT serves as the primary target for PTEN-mediated signaling. By
using a Pten-KO in which AKT signaling is activated constitutively,
downstream processes that mimic tumor development and the
progression of key stages of human CaP can be used to demonstrate
the chemopreventive action of WA.
Material and Methods

Chemicals and Antibodies
For the in vivo mouse studies, WA (N99%, HPLC) was purchased

from Nucleus Biopharma (King of Prussia, PA, USA). Primary
monoclonal antibodies specific for AKT, phosphor-AKT (ser473),
Par-4, FOXO3a, β-Catenin, and N-cadherin were purchased from
Cell Signaling (Danvers, MA, USA).

Ptenloxp/loxp:PB-Cre4 (Pten-KO) Mice
Prostate-specific Pten conditional knockout mice [(Pten-loxp/

loxp:PB-Cre4+) (Pten-KO)] were procured from Jackson Laboratories
(Bar Harbor, ME, USA). The study was approved by the University
of Louisville Institutional Animal Care and Use Committee and the
methods were carried out in accordance with the approved guidelines.
All of the mice were between 5 and 6 weeks of age when received. The
mice were divided into three groups: (i) a control group (n = 14),
which was subjected to oral gavage with sesame seed oil, (ii) a second
group, which was subjected to oral gavage with WA (3 mg/kg
group (n = 18), and (iii) a final group, which receivedWA at a dose of
5 mg/kg (n = 18) over the course of 45 weeks. Mice were euthanized
periodically by CO2 exsanguination after 10, 20, 30, 40 and 45 weeks
of oral treatment. The mice were dissected, and all major organs
(prostate, bladder, seminal vesicles liver, lungs, kidneys, heart, and
spleen) were collected and examined for gross pathological
abnormalities. The body weights of all mice were recorded weekly.
The genitourinary organs were weighed at the time of euthanasia, and
the tissue was stored at - 80 °C for RNA, and immunohistochemical
analyses.

Histology and Immunohistochemistry
For histopathological examination, prostate tumors and organ

tissues were sectioned and processed for hematoxylin and eosin
(H&E) staining, as described previously [41]. All stained slides were
examined by a board-certified pathologist. For immunohistochemical
analysis, the prostate tissue was fixed in 10% buffered formalin and
processed as described previously [41]. Expression of specific proteins
in tissue samples was visualized using specific antibodies that were
obtained from Cell Signaling (Danvers, MA, USA) and targeted
AKT, phosphor-AKT (ser473), Par-4, FOXO3a, β-Catenin, and
N-cadherin.

Statistical Analysis
All reported values are expressed as the mean ± standard deviation

(SD). To calculate the statistical significance of differences between the
treatment and control groups, an unpaired Student's t-test was used at a
statistical significance of P b .05. All statistical calculations were
performed using the Graph Pad Prism Software (La Jolla, CA, USA).
Results

Withaferin-a Inhibits Prostate Tumor Growth and Metastasis
in Pten-KO Mice

Dietary administration of WA to the mice was initiated at 5–6
weeks of age. H&E sections of prostate tissue from mice that were
euthanized at the onset of dosing exhibited epithelial hyperplastic
lesions that were characterized by an increase in glandular tissue
in comparison with age-matched wild-type C57BL/6 control mice
(n = 3, data not shown). The development of CaP was followed over
the course of 45 weeks of WA treatment by euthanizing mice after 10,
20, 30, 40 and 45 weeks of treatment. The body weights were
measured weekly for all mice, and no significant changes in body
weight were observed between the control and treatment groups
(Figure 1A). The genitourinary organs of euthanized mice were
resected and weighed, and all tumors were examined. Gross
pathological examination revealed well-formed prostate tumors after
10–15 weeks in the control mice. In addition, no significant
differences in metastasis or toxicity caused by WA treatment were
found in any organs. Daily dietary WA administration for 10–15
weeks resulted in a significant (P = .0199) dose-dependent reduction
of the genitourinary apparatus weight and the prostate weight
(~2.58 ± 0.71 mg and ~1.73 ± 0.71 mg for the 3 mg/kg and 5 mg/kg
doses, respectively) in comparison to the control group (2.89 ± 1.31)



Figure 1. A, Dose effect and tolerance of PTEN-KOmice to oral dietaryWA treatment.Micewere fedwith different doses ofWA (vehicle only, 3
mg/kg, and 5 mg/kg), and the mean body weight was recorded weekly over 45 weeks. The error bars represent the standard deviation of the
reported average at each time point. B, Representative genitourinary apparatuses of PTEN-KOmice that received vehicle (top) or 5mg/kg ofWA
were excised at various time points from the start of treatment (6–8 weeks) to study termination (40–45 weeks). C, Mean weight of the
genitourinary apparatus of PTEN-KO mice by treatment group. The error bars show the standard deviation of the mean.
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(Figure 1B). WA inhibited tumor growth in a dose-dependent manner from
the inceptionof detectable tumors (10weeks) to the study endpoint (Figure 1C).

Pathological Implications of WA Treatment in Pten-KO Mice
Histopathological classification and scoring of Pten-KO tumors in

the treatment and control groups were performed by H&E staining.
Tumor growth patterns were classified as hyperplasia, low-grade PIN,
high-grade PIN, and carcinoma (high- and low-grade). Representative
micrographs of H&E-stained sections of control and WA mouse
prostates are shown in Figure 2. In general, microscopic examination
of the prostate tissues revealed more differentiated tumors in the
Figure 2. Representative micrographs of H&E-stained and sectioned p
mg/kg of WA (bottom). The tissues were excised at various time po
(40–45 weeks). Representative micrographs of H&E-stained and sectio
mg/kg of WA (bottom).
WA-treated group than the control group. Control mice exhibited
diffuse high-grade PIN at 10–15 weeks that developed into
adenocarcinoma at 20–25 weeks of age. The mice treated with 5
mg/kg of WA exhibited low-grade PIN lesions (Figure 2). At 30
weeks, WA-treated mice exhibited lower levels of high-grade PIN and
invasive adenocarcinoma. In addition, WA-treated tumors showed
more necrosis than the control group, suggesting that generalized
anti-tumor activity may promote the destruction of tumor cells in
nutrient-deprived regions. Most importantly, the WA–treated mice
organs showed no signs of metastasis, whereas the control group mice
showed metastatic lesions in the lungs (Figure 2).
rostate tissues from PTEN-KO mice that received vehicle (top) or 5
ints from the start of treatment (6–8 weeks) to study termination
ned lung tissue from PTEN-KOmice that received vehicle (top) or 5



Figure 3. Representative immunohistochemical micrographs of sectioned prostate tissues from PTEN-KOmice that received vehicle (top)
or WA (bottom). The tissues were stained with anti-pAKT and excised at indicated time points.
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WA Inhibits Tumor Development by Inhibiting AKT and
Restoring Par4 Function in PTEN-KO Mice

In the Pten-KO model, the conditional inactivation of Pten results
in the activation of AKT signaling via AKT phosphorylation, which
in turn triggers a cascade of events that are associated with
tumor development. Hence, we analyzed the expression levels of
pAKT(Ser473) and AKT in vehicle- and WA-treated tumors.
Immunohistochemical analysis of the control group mice showed
that pAKT was present after 6–8 weeks and persisted through the
Figure 4. Representative immunohistochemical micrographs of sectio
or WA (bottom). The tissues were stained with anti-AKT and excised
study endpoint at 44 weeks. Conversely, pAKT expression was
reduced in mice receiving WA after only 10–12 weeks of treatment
(Figure 3). Continued WA treatment resulted in a further reduction
of pAKT expression until the termination of the study. Similarly, total
AKT levels remained high in prostate tumors from control mice
throughout the study, but decreased in WA-treated mice after 20
weeks of treatment (Figure 4).

Activated AKT is known to inhibit the pro-apoptotic function of
Par-4 in CaP. We recently demonstrated that the inhibition of AKT
ned prostate tissues from PTEN-KOmice that received vehicle (top)
at indicated time points.



Figure 5. Representative immunohistochemical micrographs of sectioned prostate tissues from PTEN-KOmice that received vehicle (top)
or WA (bottom). The tissues were stained with anti-FOXO3A and excised at indicated time points.
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activation facilitates the FOXO3a-mediated activation of Par-4 in
preclinical models of CaP (41). Hence, we probed the mechanism of
tumor development inhibition in WA-treated mice by analyzing
Par-4 and FOXO3a expression. WA treatment resulted in a 2- to
3-fold increase of Par-4 levels in comparison to age-matched control
mice that were fed vehicle alone (Figure 6). WA treatment resulted in
nascent Par-4 expression at 10 weeks that persisted until 45 weeks,
whereas very low levels of Par-4 were detected in control mice at the
Figure 6. Representative immunohistochemical micrographs of sectio
or WA (bottom). The tissues were stained with anti-Par-4 and excise
25–35-week time point, suggesting that Par-4 was inhibited by
activated AKT signaling. Immunostaining of FOXO3a revealed
higher expression levels in the nuclear and perinuclear regions of
WA-treated mouse prostate tumor sections than in matched controls
(Figure 5). Taken together, the immunohistochemistry expression
profiles observed in PTEN-KO mice suggest that WA treatment
suppresses tumor development by reactivating FOXO3a/Par-4
function through the down-regulation of AKT activation.
ned prostate tissues from PTEN-KOmice that received vehicle (top)
d at indicated time points.



Figure 7. Representative immunohistochemical micrographs of sectioned prostate tissues from PTEN-KOmice that received vehicle (top)
or WA (bottom). The tissues were stained with β-catenin and excised at indicated time points.
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WA Inhibits AKT-Mediated EMT in Prostate Tumors
Prostate tissue sections were immunostained for β-catenin and

N-cadherin, which serve as markers of stromal involvement associated
with the AKT-mediated activation of EMT as a precursor to prostate
tumor metastasis. The nuclear localization and expression of
β-catenin in the stroma were reduced at 30 weeks in WA-treated
mice in comparison to matched controls, which showed higher
expression in the nucleus (Figure 7). N-cadherin functions in the
trans-endothelial migration of CaP cells. We observed that no
Figure 8. Representative immunohistochemical micrographs of sectio
or WA (bottom). The tissues were stained with anti-N-Cadherin and e
significant difference in N-cadherin expression in both control and
WA-treated mice at all stages of tumor development (Figure 8).
Correlating our findings concerning activated AKT expression
profiles with the EMT markers supports the conclusion that WA
exerts AKT pathway inhibition. IHC analysis of control tumors
revealed higher expression of the mesenchymal marker β-Catenin.
WA treatment resulted in a moderate reduction of β-Catenin
expression. Similar findings were noted in N-cadherin immuno-
stained slides.
ned prostate tissues from PTEN-KOmice that received vehicle (top)
xcised at indicated time points.
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Discussion
In this study, we evaluated the efficacy of WA as a chemopreventive
agent against CaP in a prostate-specific Pten-KO pre-clinical mouse
model (Pten-loxp/loxp:PB-Cre4+). The Pten-KO model was chosen as
a surrogate to parallel the prostate specific biallelic loss of the Pten
tumor suppressor gene that is associated with carcinogenesis and the
progression of prostate cancer in humans. Despite the genetic basis of
this approach, the translational value of Pten-KO cannot be assumed
and had to be validated in terms of its ability to reliably recapitulate
the key phases of human prostate cancer progression that are
responsive to our chemopreventive approach. Through this process,
our GEM can help validate the cellular pathways and targets of WA
and inform the selection of biomarkers that could be used
prospectively in clinical trials evaluating the performance of WA.
Our histological analysis of prostate tumor morphology in the

Pten-KO identified a growth pattern characterized by progression
from hyperplasia, through PIN, subsequent invasive ductal carcinoma
(IDC), and adenocarcinoma to an undifferentiated carcinoma
phenotype. Epithelial hyperplasia in the Pten-KO mice was focal,
with small areas of nuclear atypia and cribiform changes that often
characterize murine prostate tumors. In the absence of the
chemopreventive intervention, CaP progressed from early-phase
HG-PIN to invasive adenocarcinoma and metastatic dissemination
of the disease due to Pten loss in the prostate epithelium of Pten-KO
mice. A recent characterization of the PSA-Cre/Pten-LoxP/Loxp
prostate GEMM by Korsten et al. suggested that two distinct tumor
development phenotypes represented by adenocarcinoma/intraductal
carcinoma and carcinosarcoma are involved [42]. Each phenotype is
characterized by a distinct evolutionary pattern and expression
markers that define its characteristics. In our study, perhaps due to the
tumor growth cutoff (7–8 mo), we did not observe the late onset
carcinosarcoma tumor phenotype. Furthermore, the Pten-KO
carcinosarcomas described in the Korsten study exhibited high
expression of the mesenchyme/stroma markers Snail and Fibronectin
in late-stage CaP (N10 mo mice), and expression of these markers was
associated with prostate tumor metastasis.
In the Pten-KO GEMM, the conditional inactivation of Pten

results in constitutive activation of PI3K-AKT signaling via the
phosphorylation of AKT (pAKT). pAKT triggers a cascade of events,
which modulate processes associated with tumor development and
progression, such as cell survival, proliferation, the cell cycle, the
inhibition of apoptosis, angiogenesis, migration and invasion, leading
to EMT and metastasis. AKT serves as the primary target for
PTEN-mediated signaling. In this study, we first determined whether
AKT is phosphorylated in the prostate tissue of this Pten-KO model.
Our evaluation of the effect of WA on CaP development and

progression in Pten-KO sheds light on the role of AKT signaling in
metastatic processes, such as EMT, as Pten deletion and mutations
are frequently observed in metastatic prostate tumors. Our results
demonstrate that dietary intake of WA delayed HG-PIN formation
and abrogated the progression of Pten-deficient tumors to adenocar-
cinoma. Metastasis to the lungs developed in the untreated Pten-KO
mice but not in WA-treated mice. Importantly, at the tested doses of
WA, chemopreventive activity was observed without any toxicity to
the mice or organs, as confirmed by histopathological examination of
the typical metastatic sites for prostate tumor cells, including the
bladder, liver, lungs, and lymph nodes.
Ultimately, the utility of Pten-KO lies in its translational value for

human CaP. Anatomical, physiological and dietary differences
between mice and humans can influence tumor development.
Structurally, the mouse prostate is a multilobe gland, whereas the
human prostate is a single-lobe gland, raising the possibility of
differences in tumor growth. In addition, tumor-initiating cells can
vary in mice and humans, and it is important that murine prostate
malignancy originates within the epithelial cells of the prostate in
order to progress to PIN as the precursor lesion to adenocarcinoma.
Histological analysis of tumor development in our Pten-KO mice
confirmed early PIN development in the prostate epithelium that
progressed to invasive adenocarcinoma and metastatic disease,
thereby validating our model.

We previously reported on the chemopreventive effects of WA
treatment in several mouse models of CaP, including DU-145 ectopic
xenografts in nude mice [43] and prostate carcinogenesis in TRAMP
mice [41]. In the TRAMP model, AKT and AR are expressed
constitutively in the mouse prostate relative to non-transgenic mice.
TRAMP mice spontaneously develop autochthonous prostate tumors
at puberty and closely simulate the pathogenic features of human CaP
[44]. The oral administration of WA in TRAMP mice was effective in
reducing the tumor burden in comparison to vehicle-treated mice. At
the molecular level, WA inhibited AKT activation and promoted
FOXO3a/Par-4-induced cell death [41]. We showed that the
pro-apoptotic Par-4 protein is a critical downstream target of the
PI3K/AKT signaling pathway whose activity is restored by WA
treatment. Par-4 activation was correlated with an anticancer effect
against CRPC cells. In cell culture models of CRPC (AR null cell
lines), Par-4 expression was correlated with favorable outcomes in
pre-clinical functional assays, including reduced proliferation,
increased apoptosis and the suppression of cell cycle progression.
Our results of WA treatment in the Pten-KO mice corroborated our
findings in the TRAMP of CaP. As observed with the TRAMP
model, the Pten-KO demonstrated the existence of a correlation
between Par-4 down-regulation and the inhibitory effects of WA on
AKT phosphorylation. Thus, the chemopreventive activity of WA has
been demonstrated in several independent models of CaP with
alterations in the PI3K/AKT pathway. In the context of the clinic,
these findings suggest that CaP patients harboring tumors with
mutations that activate the AKT signaling cascade may benefit most
from dietary WA treatment.

The prostate-specific conditional Pten-KO mouse model is also a
useful model for studying the mechanism of resistance to androgen
ablation therapy, as the tumor initiating oncogenic event is not
androgen-dependent. AKT has also been implicated in late-stage
dysregulation of androgen receptor (AR) signaling during the
progression of CaP to a castration-resistant phenotype [43,45,46].
As most human CaP respond to androgen deprivation, the tumor
should be androgen-dependent and respond to castration. Although
we did not investigate the role of androgen ablation in the current
study, future studies may examine the impact of combined WA
treatment and androgen withdrawal in Pten-KO mice to determine
whether androgen deprivation in combination with WA treatment
can further reduce tumor burden in this mouse model of CaP.

The dietary phytonutrient WA exhibited potent chemopreventive
activity in the treatment of a mouse prostate cancer model harboring
Pten deletions. A delay of prostate tumor progression was
demonstrated to occur via the inhibition of the PI3K/AKT pathway
by WA. The AKT-regulated proapoptotic proteins Par-4 and
FOXO3A were up-regulated in Pten-KO mice treated with WA.
Our findings suggest that WA may have clinical therapeutic benefits
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for prostate cancer patients harboring AKT-activating mutations,
such as PTEN deletion.
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