
Original Article

Automated Intensity Modulated Radiation
Therapy Treatment Planning for Cervical
Cancer Based on Convolution Neural Network

Chen Jihong, PhD1 , Bai Penggang, MSc1, Zhang Xiuchun, BSc1,
Chen Kaiqiang, MSc1, Chen Wenjuan, MD, PhD1, Dai Yitao, BSc1,
Qian Jiewei, MSc2, Quan Kerun, MSc2, Zhong Jing, MD, PhD3,
and Wu Tianming, PhD4

Abstract
Purpose: To develop and evaluate an automatic intensity-modulated radiation therapy (IMRT) program for cervical cancer, including
a Convolution Neural Network (CNN)-based prediction model and an automated optimization strategy. Methods: A CNN deep
learning model was trained to predict a patient-specify set of IMRT objectives based on overlap volume histograms (OVH) and
high-quality plan of previous patients. A total of 140 cervical cancer patients were enrolled in this study, including 100 patients in
the training set, 20 patients in the validation set and 20 patients in the testing set. The input of this model was OVH data and the
output were values of IMRT plan objectives. For patients in the testing set, the set of planning objectives were predicted by the
CNN model and used to automatically generate IMRT plans. Meanwhile, manual plans of these patients were generated by 1
beginner planner and 1 senior planner respectively. Finally, dose distribution, dosimetric parameters and planning time were
analyzed. In addition, the 3 types of plans were blinded compared and ranked by an experienced oncologist. Results: There were
almost nostatistically differences among these 3 types of plans in target coverage anddoseconformity.Dosehomogeneity were slightly
decreased while the average dose and parameters for most organs-at-risk (OARs) were decreased in automatic plans. Especially in
comparison with manual plans by the beginner planner, V40 of bladder and rectum decreased 6.3% and 12.3%, while mean dose of
rectum and marrow were 1.1 Gy and 1.8 Gy lower with automatic plans (either P < 0.017). In the blinded comparison, automatic plans
were chosen as best plan in 14 cases. Conclusions: For cervical cancer, automatic IMRT plans optimized from the CNN generated
objectives have superior dose sparing without compromising of target dose. It significantly reduced the planning time.

Keywords
cervical cancer, deep learning, automatic plan, intensity-modulated radiation therapy

Abbreviations
3DCRT, 3-dimensional conformal radiotherapy; AP, automatic planning; CNN, Convolution Neural Network; CTV, clinical target
volume; DMPO, direct machine parameter optimization; DVH, dose-volume histogram; EBRT, external beam radiotherapy
treatment; IMRT, intensity-modulated radiation therapy; KBP, knowledge-based planning; OARs, organs at risk; OVH, overlap
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Introduction

IMRT has been widely used for cervical cancer external

beam radiotherapy treatment (EBRT).1,2 Compared to the

3-dimensional (3D) conformal radiotherapy (3DCRT), IMRT

generally improves the target coverage and organs-at-risk

(OARs) dose sparing.3,4 However, obtaining an optimal IMRT

plan was a demanding and time-consuming task, due to the

irregular shapes of the target volumes and surrounding OARs.5

Plan quality usually highly depends on the individual planner’s

skill and experience, and it may vary between treatment cen-

ters.6 Many IMRT plans clinically acceptable could still be

further optimized, which could potentially improve treatment

outcomes.

Automatic planning is one promising solution to consis-

tently producing high quality clinical treatment plans effi-

ciently regardness of planner skills and experiences.7-26 Since

Xing et al demonstrated a significant improvement in inverse

planning efficiency from an iterative algorithm for automati-

cally selecting the importance factors,7 many commercial soft-

wares (AutoPlan in Pinnacle,11,15 RapidPlan in

Eclipse12,14,19,20 and Multi-Criteria Optimization in RaySta-

tion13,16) and in-house systems8,9,17 have been developed for

automatic planning, continuously improving the quality and

consistency of treatment plans. Recent developments and

breakthroughs in machine learning have found many applica-

tions in medicine27-29 and radiotherapy, such as toxicity pre-

diction,30 automatic segmentation31 and quality assurance.32

Novel machine learning based dose-volume histogram (DVH)

prediciton33 and 3D dose distribution prediction21-24,34 have

attracted more and more attention for developing better auto-

matic planning techniques. Ma et al developed a support vector

regression (SVR) model for DVH prediction for prostate cancer

patients.25 A voxel-based dose prediction and dose mimicking

method were proposed to generate complete treatment plans

without user interaction.21 Similarly, Mardani et al proposed a

dose prediction model based on the convolutional neural net-

work (CNN), which can be used to derive contour-to-dose

relation map.18 DoseNet22 and ResNet23 also demonstrated

success for 3D dose distribution prediction.

The CNN is a deep learning algorithm capable of extracting

nonlinear higher-order features from input data through a hier-

archial learning process.35 Although useful in 3D spatial dose

prediction,21-24 CNN models were often difficult for clinic

implementation due to the technical complexities in training

networks to directly map pateint anatomy represented by the

raw CT image and structure contour data to ideal dose distribu-

tions. The conversion from 3D spatial dose prediction to clini-

cally deliverable plans was also challenging.24-26 As a result,

previous results were hardly reproducible and rarely readily

applicable in a standard clinic settings. On the other hand, DVH

prediction was relatively simple and easier to achieve since the

DVH itself is an intrinsic generalization of the relationship

between patient anatomy and dose distribution. With the

improved feature extraction provided by CNN, DVH predic-

tions from patient anatomy represented by target and OAR data

alone can be theoretically more accurate.36 Currently, fast and

effective predictions of patient specific IMRT optimization

objectives by deep learning methods were very limited. None-

theless, if the patient specific IMRT objectives were success-

fully predicted, we could obtain clinical deliverable plans by

one simple TPS optimization in any commercial system. In

addition, rare attempts have been made to explore the benefit

of automatic IMRT planning for planners with different plan-

ning experiences.19 This study developed an automatic IMRT

planning workflow based on a novel CNN based DVH predic-

tion model. Overlap volume histograms (OVH), which char-

acterize the spatial information of the target volume and

OARs,37 were used as the input for a CNN deep learning pre-

diction model. IMRT plan objectives from the model outputs

were subsequently applied to automatically generate plans

fully driven by the inherent Pinnacle3 scripting technology. The

feasibility and the efficacy of the automatic planning (AP)

workflow were evaluated by comparing dosimetry against the

corresponding manual plans from a veteran planner and a

novice.

Material and Methods

A CNN-based deep learning model was trained to predict the

specify patient dependent IMRT objectives for cervical cancer.

The automatic plans were generated based on these predicted

objectives. The flowchart of the automatic planning program

was shown in Figure 1.

Patient Data and Treatment Planning

140 cervical cancer patients treated with IMRT from 2018 to

2019 in our institution were selected for this study. They were

immobilized in the supine position by a thermoplastic mask.

Planning CTs were performed with a Brilliance CT (Big Bore,

Philips Medical Systems Inc., Cleveland, OH, USA) and the

slice thickness was 5 mm.

The clinical target volume (CTV) and OARs including blad-

der, rectum, bowel, bilateral femoral heads and marrow were

delineated by an attending oncologist. The prescription was

48.6 Gy (1.8 Gy per fraction) to the planning target volume

(PTV) generated by 1 cm uniform expansion from the CTV.

Additional contours were made: (1) PTV-0.3, shrinkage from

PTV by 3 mm; (2) Def1 and Def2, the 5mm-wide-ring at 0.5 cm

and 1 cm distance from PTV; (3) Def3, the external contour

excluding the PTV expanded by 1.5 cm.

All IMRT plans were designed in the Pinnacle3 treatment

planning system (TPS) (version 9.2, Philips Radiation Oncol-

ogy Systems, Madison, WI) for an Elekta Synergy accelerator.

Equally spaced 7 coplanar 6 MV photon beams were employed

and optimized with direct machine parameter optimization

(DMPO) for all IMRT plans. The maximum number of seg-

ments, minimum segment area and minimum segment MUs

were set to 70, 8 cm2, and 8, respectively.

120 patients were randomly chosen to build the model.

IMRT expert plans were generated by a planner with 10þ years
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experience. The planning began with the preset function objec-

tives (Table 1). 15 parameters (marked with “X”) were adjus-

table by the planner, who iteratively improved the plan quality

until the OAR doses were as low as possible without compro-

mising target coverage of PTV.

The Prediction Model Using CNN Deep Learning

The OVH(r) for an OAR is defined as the overlap volume ratio

of the OAR with the PTV extended or contracted with a margin

of r in mm. In this study, OVHs for 7 OARs including bladder,

rectum, bowel, femoral_L, femoral_R, marrow_L and mar-

row_R were extracted on TPS, with a distance from -2 cm to

3 cm and a step-size of 1 mm. Thus, 51 OVH were calculated

for each OAR, and a total of 357 (7 � 51) input values was

obtained for each patient. For supervised learning, the final

values of 15 parameters form expert plans were used as the

training data output values.

The same 120 patients were randomly shuffled into training

and validation sets (100/20). As shown in Figure 2, the CNN

model contained 2 convolution layers, 2 activation (ReLU)

layers, 2 max pooling layers and 2 fully connected layers.38

The specifications of these layers were given in Table 2. A

robust optimizer called Adam was applied in the model with

a learning rate of 0.005.39 The batch-size was set to 20 and

iteration times to 10000. The mean square error (MSE) loss

function was applied to ensure stable learning. The CNN model

were realized by Tensorflow with Spyder (version 3.31).40 It

was trained on a personal computer with an Intel(R) Core(TM)

i5–7200U 2.5 GHz CPU and 4 GB of RAM. The whole training

time was about 40 mins.

Table 1. IMRT Objectives Set for the Expert Plans.

ROI Type Target (Gy) Volume (%) Weight a

PTV MaxDose 52.5 50

UniformDose 50.5 90

MinDose 49.0 90

PTV-0.3 MinDose 49.5 70

Rectum MaxDVH X 50 70

MaxDVH X 70 40

MaxEUD X 1 1

Bladder MaxDVH X 50 60

MaxEUD X 1 1

Femoral_L MaxDVH X 5 50

MaxEUD X 1 1

Femoral_R MaxDVH X 5 50

MaxEUD X 1 1

Marrow_L MaxDVH X 40 30

MaxEUD X 1 1

Marrow_L MaxDVH X 40 30

MaxEUD X 1 1

Bowel MaxDVH X 40 40

MaxEUD X 1 1

Def1 MaxDose 44.0 30

Def2 MaxDose 39.5 30

Def3 MaxDose 33.5 30

X represents adjustable value.

Figure 1. Flowchart showing the proposed automatic planning program. CXCA represented cervical cancer.
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Automatic Planning and Manual Planning for Patients
in Test Dataset

Patient-specific IMRT objectives set derived from CNN model

were used to generate automatic plans (shorten by AP) for the

remaining 20 patients in the test date set. 80 maximum itera-

tions were allowed and no more additional adjustments were

made once the AP completed.

Meanwhile, manually optimized plans for the same patients

were generated by a beginner planner (MP1, <1 year experi-

ence) and a senior planner (MP2, >5years experience). Basic

optimization parameters of the manual plans were the same as

those AP as shown in section 2.B. However, planners were

allowed to generate additional contours, freely set all objec-

tives and make multiple iterations as many as deemed

necessary.

Plan Evaluation and Statistical Analysis

For quantitative comparisons, the 3 sets of plans (AP, MP1 and

MP2) were normalized such that 95% volume of PTV would

receive the prescription dose. The average DVH for the PTV

and all delineated OARs were calculated and analyzed for the

3 sets.

PTV dose corresponding to 2% of volume (D2) and 98% of

volume (D98), mean dose (Dmean), conformity index (CI ¼
(Vprescription in PTV /VPTV)*(Vprescription in PTV/Vprescription)) and

homogeneity index ((HI¼ (D2-D98)/Dprescription)) were all eval-

uated. For bladder, rectum and bowel, V30, V40, V45 and Dmean

were evaluated . For marrow and femoral (combined by bilat-

eral marrow and femoral), Dmean was analyzed. The average

planning duration and monitor unit (MU) per fraction were also

included for comparison.

Shapiro-Wilk tests were performed for all relevant para-

meters to verify the normal distribution of the differences. The

paired-t test were carried out (between AP and MP1, AP and

MP2, MP1 and MP2) for dosimetric parameters previously

described, planning time and MU. Statistical Package for the

Social Sciences (SPSS 21.0; SPSS Inc., Chicago, IL, USA) was

used to perform these tests and P < 0.017 after the Bonferroni

correction was considered statistically significant.

Furthermore, the plan quality for each patient was evaluated

by another experienced oncologist taking into account the clin-

ical judgements. All AP, MP1 and MP2 plans were blindly

reviewed and rated from best to worst.

Result

Average DVH Curves

Average DVH curves of the PTV and delineated OARs for the

AP, MP1 and MP2 test plans were shown in Figure 3. For the

PTV, AP had a small higher dose than MP1 and MP2 above

50 Gy, while no obvious difference was found below 50 Gy. The

slope of MP1 and MP2 were slighter steeper than that of AP,

indicating slightly better dose homogeneity. For the bladder,

AP resulted in noticeable lower doses in the region from 20 Gy

to 50 Gy. For the rectum, AP had lower doses between 30 Gy

and 45 Gy while similar to both MPs in other regions. For the

bowel, femoral heads and marrows, AP in general showed

lower dose; however, not as noticeable as that of the bladder

and rectum. In addition, MP2 observed a lower dose than MP1

for most OARs, except for the bowel.

Dosimetric Quality Metric Comparison and Analysis

DVH parameters were summarized in Table 3 for quantitative

comparisons. PTV maximum dose D2 and mean dose Dmean

were slightly higher in AP than MP1 and MP2 (P < 0.017),

while the minimum doses D98 were comparable (P > 0.04). The

difference in the target conformity were small for the 3 sets of

plans. However, the target homogeneity of AP was a little

worse than MP1 and MP2 (both P < 0.017).

For OARs, most DVH parameters for AP were lower than or

equal to the 2 manual plan sets. Compared to MP1, for instance,

the V30 and V40 of bladder decreased with 8.7% and 6.3%,

while V40 and V45 of rectum decreased with 12.3% and

Figure 2. Schematic diagram of the CNN architecture.

Table 2. Specification of the CNN Model.

Layer Output Filter Stride Padding

Input (OVH data) 7 � 51

Convolution_1 7 � 51 � 25 2 � 2 1 � 1 SAME

Relu_1 7 � 51 � 25

Max pooling_1 7 � 51 � 25 2 � 2 1 � 1 SAME

Convolution_2 7 � 51 � 50 2 � 2 1 � 1 SAME

Relu_2 7 � 51 � 50

Max pooling_2 7 � 51 � 50 2 � 2 1 � 1 SAME

Fully connected_1 100

Fully connected_2 15
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10.2% respectively. The mean dose of bladder, rectum, bowel,

femoral and marrow were lower in AP by 0.5 Gy, 1.1 Gy, 0.2

Gy, 0.3 Gy and 1.8 Gy respectively. Compared to MP2, AP had

0.8 Gy (P < 0.017) lower mean marrow dose, while the doses

for the other OARs were comparable. For the rest parameters,

AP produced a little better, although most of the results were

not statistically significant (P > 0.017).

By the way, most DVH parameters for OARs were lower for

MP2 than MP1.

Blind Comparison by Oncologist

Blind comparison by an experienced oncologist was performed

for each patient to rank the 3 types of plans. Both DVH and

isodose contributions were carefully examined. The result was

illustrated in Figure 4. In 70% of the cases (14 out of 20

patients), AP was rated the best while MP2 was deemed the

best for the other cases. The MP1 was considered least favor-

able for all patients.

MU and Planning Time Comparison

The average MU of AP and MP was calculated. Average MU

for AP was 772, 4.5% higher than that of MP1 (739) and 9.5%
higher than that of MP2 (705) (both P < 0.017). In practice,

such increases in MU was clinically acceptable in favor of the

improved plan quality.

All APs were completed within only one optimization cycle

while the MPs were iteratively optimized for as many cycles as

needed. The average planning time of AP was 8.5 minutes,

including OVH extracting. In Comparison, the beginner

Figure 3. Average DVHs for AP (black line), MP1 (red line) and MP2 (blue line) in the test set.
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planner and the senior planner spend 33 minutes and 37 min-

utes for the planning process on average, respectively (both

P < 0.017).

Discussion

Automatic treatment planning has been introduced to improve

the plan quality and it was usually implemented based on one

of the 2 general techniques. The first is based on an optimiza-

tion algorithm. It would automatically attempt to generate an

acceptable plan that meet the preset clinical criteria by adjust-

ing optimization parameters.15 The commercial Autoplan from

Pinnacle3 utilizes this approach.11,15 The second approach,

known as the knowledge-based planning (KBP),41 aimed to

predict DVH objectives and/or 3D dose contribution for a new

patient based on generalization from a library of previously

treated patients with similar target and OAR anatomical fea-

tures. RapidPlan in Eclipse12,14,19,20 is an example of this

method. Both techniques could consistently generate high-

quality plans even compared with experienced planners.

In this study, a new automatic IMRT planning program for

cervical cancer patients is developed based on inherent Pinna-

cle3 scripts with the IMRT objectives predictions achieved with

machine learning methods. This approach has shown certain

advantages by recent studies. Patient-specific 3D dose distri-

bution for head-and-neck cancer treatments were successfully

predicted by deep learning technique21-24 then used as guide-

lines for plan optimization. Compared with DVH and 3D dose

distribution prediction, there were few reports for direct pre-

diction of IMRT objectives. In our study, a CNN prediction

model was implemented to perform a prediction of patient-

specific IMRT objectives setting. OVHs that represent PTV-

OAR relationships were extracted and used as the input data for

the CNN model. Using the OVH information greatly reduced

the amount of data needed for CNN such that the model can be

implemented on a standard office PC without the need for GPU

and other cost prohibitive computational resources. The entire

Table 3. Summary of Interested DVH Parameters to the PTV and OARs.

OAR Parameter AP MP1 MP2

P value

A vs M1 A vs M2 M1 vs M2

PTV D2(Gy) 52.8 + 0.6 52.1 + 0.3 52.3 + 0.3 0.00 0.01 0.05

D98(Gy) 47.8 + 0.3 47.9 + 0.1 48.0 + 0.1 0.53 0.04 0.00

Dmean(Gy) 50.8 + 0.3 50.6 + 0.2 50.6 + 0.2 0.00 0.00 0.84

CI 0.882 + 0.010 0.882 + 0.010 0.889 + 0.006 0.78 0.00 0.00

HI 0.102 + 0.017 0.088 + 0.008 0.090 + 0.008 0.00 0.01 0.50

Bladder V30(%) 86.4 + 5.7 95.1 + 3.5 90.3 + 6.1 0.00 0.08 0.01

V40(%) 57.1 + 6.6 63.4 + 9.2 61.6 + 9.0 0.02 0.08 0.52

V45(%) 43.2 + 6.2 45.7 + 7.7 45.6 + 7.4 0.27 0.27 0.96

Dmean(Gy) 42.2 + 1.4 42.6 + 1.4 42.1 + 1.7 0.00 0.00 0.00

Rectum V40(%) 78.4 + 10.2 90.7 + 9.2 83.2 + 9.9 0.00 0.21 0.01

V45(%) 47.2 + 7.4 57.4 + 12.5 50.4 + 6.4 0.01 0.20 0.01

Dmean(Gy) 43.5 + 2.5 44.7 + 2.7 43.8 + 2.9 0.00 0.00 0.00

Bowel V30(%) 29.3 + 10.5 29.5 + 10.4 30.1 + 11.6 0.96 0.81 0.87

V40(%) 15.2 + 6.3 15.2 + 6.1 15.3 + 6.7 0.99 0.96 0.96

V45(%) 10.1 + 4.4 10.2 + 4.4 10.2 + 4.7 0.95 0.95 0.99

Dmean(Gy) 21.0 + 7.1 21.2 + 7.2 21.1 + 7.29 0.19 0.00 0.73

Femoral Dmean(Gy) 30.6 + 3.9 30.8 + 3.9 30.4 + 4.0 0.07 0.35 0.00

Marrow Dmean(Gy) 30.4 + 3.3 32.1 + 3.6 31.2 + 4.0 0.00 0.03 0.00

Figure 4. Blind comparison by an experienced attending radiation oncologist. The Green, yellow and white tiles represented the most,

intermediate and least favorable plan for each patient, respectively.
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training process for our study was less than 1 hour on a Win-

dows PC with a 2.4 GHz CPU and 16G RAM. Patient-specific

set of IMRT objectives were successfully predicted by the

CNN model and used to automatically generate plans based

on scripts in Pinnacle3 TPS. Although only optimized for a

single iteration, the dosimetric quality of such generated plans

were comparable or better than manually created plans from

planners of different experience levels. Compared to manual

plans from the beginner planner, all OARs enjoyed statistically

significant lower doses. In particular, the mean doses for the

rectum and marrow decreased 1.1 Gy and 1.8 Gy respectively.

V40 of bladder decreased by 8.7% and V40 of rectum decreased

with 12.3%. Although the target homogeneity of PTV slightly

decreased and the mean MU increased by 4.5% with AP, con-

sistent with previous study,42,43 it was considered acceptable

for the improvement of plan quality. Compared to manual plans

from senior planners, the AP plan quality was slightly superior

or comparable but most differences were statistically insignif-

icant. However, the consistency of plans optimized with our

approach are expected to be better since the process need little

to none manual interventions. Consequently, the average plan-

ning time was significant reduced.

There is few research that focus on the benefit of automatic

IMRT planning for planners with different planning experi-

ences. In one study, it was shown that the KBP effectively

improved the IMRT plan quality for left-sided breast cancer

against the benchmark of manual plans for less experienced

planners without any manual intervention.19 In our study, it was

demonstrated that the plan quality strongly correlatives with the

planner’s individual experience and skill levels. In most cases,

better OARs were achieved by senior planners while the target

dose parameters were comparable. Our study revealed that clin-

ical acceptable IMRT plans could be suboptimal and should be

be improved further, especially among plans generated by inex-

perienced planners. In such cases, automatic planning could be

particularly beneficial to serve as patient specific tangible plan

quality guidelines. The feasibility of this new automatic pro-

gram was also testified by the result of blind comparison by an

experienced oncologist, 70% of APs were chosen as the best.

However, there were some limitations in this study. First,

OVH may be sufficient for generalizing anatomical features of

cervical cancer patients. This index alone could be inadequate

for the characterization of patients of other sites. Secondly, our

current dataset may not be large enough to include all possible

anatomy that could present in clinic. The robustness of the

CNN model can be questionable for such outliers not “seen”

in the training of our model. Finally, this study only included

IMRT plans. Volumetric modulated arc therapy (VMAT) are

beginning to be widely used in the treatment for cervical can-

cer, a library for VMAT plan would be more representative for

follow-up studies.44

Conclusion

In conclusion, a robust automatic IMRT treatment planning

program for cervical cancer is developed based on a CNN deep

learning model and inherent Pinnacle3 scripts. The results sug-

gested that this automatic program could generate high-quality

IMRT plans consistently. The use of this program will mostly

benefit clinics with planners of entry level experience to

improve plan quality. For senior level planners, the use of this

program may improve planning efficiency.
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