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Šlechtitelů 31, CZ-78371 Olomouc, Czech Republic; kapustova@ueb.cas.cz (V.K.); tulpova@ueb.cas.cz (Z.T.);
toegelova@ueb.cas.cz (H.T.); karafiatova@ueb.cas.cz (M.K.); hribova@ueb.cas.cz (E.H.);
dolezel@ueb.cas.cz (J.D.)

2 Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31,
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Abstract: Reference genomes of important cereals, including barley, emmer wheat and bread wheat,
were released recently. Their comparison with genome size estimates obtained by flow cytometry
indicated that the assemblies represent not more than 88–98% of the complete genome. This work
is aimed at identifying the missing parts in two cereal genomes and proposing techniques to make
the assemblies more complete. We focused on tandemly organised repetitive sequences, known to
be underrepresented in genome assemblies generated from short-read sequence data. Our study
found arrays of three tandem repeats with unit sizes of 1242 to 2726 bp present in the bread wheat
reference genome generated from short reads. However, this and another wheat genome assembly
employing long PacBio reads failed in integrating correctly the 2726-bp repeat in the pseudomolecule
context. This suggests that tandem repeats of this size, frequently incorporated in unassigned
scaffolds, may contribute to shrinking of pseudomolecules without reducing size of the entire
assembly. We demonstrate how this missing information may be added to the pseudomolecules
with the aid of nanopore sequencing of individual BAC clones and optical mapping. Using the latter
technique, we identified and localised a 470-kb long array of 45S ribosomal DNA absent from the
reference genome of barley.
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1. Introduction

Small grain cereals, such as bread wheat, durum wheat, barley and rye are crucial crops for
the European population and most of them are grown worldwide. Despite their socio-economic
importance, reference genomes of these cereals were only recently generated [1–5], which can be
attributed to their high genome complexities, ranging from ~5 Gb for barley to ~16 Gb for bread
wheat [6], and enormous proportion of repetitive DNA (85–90%). These assemblies are characterized
by high contiguity and low proportion of internal gaps. However, a comparison of assembly lengths
with genome-size estimates obtained by flow cytometry indicated that the reference genomes of barley,
wild emmer wheat, bread wheat and rye represented no more than 98%, 88%, 90% and 90% of the
estimated genome sizes, respectively [6]. This gives rise to an obvious question as to what the missing
part of the reference genomes is, and stimulates efforts towards complementing it.

Low-copy genome regions are known to be a relatively easy target for genome assemblers and
were found well represented even in early cereal genome sequences that were based on low-coverage
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Roche/454 data [7–9] or Illumina pair-end reads only [10]. On the contrary, large regions of repeats
are known to pose a challenge and result in gaps, mis-assemblies and collapsed tandem repeats in a
majority of genome sequences [11]. Dispersed repeats, represented by various types of transposable
elements, have been largely resolved in the recent assemblies thanks to the combination of pair-end
and mate-pair Illumina reads and sophisticated assembling algorithms [1,3] or implementation of
long-read PacBio data [12].

On the other hand, tandem repeats organized as arrays of multiple units (microsatellites,
macrosatellites and centromeric satellite repeats) tend to collapse in assemblies into fewer copies.
Consequently, they are under-represented in reference genomes and pose a significant source of gaps
and assembling errors in de novo assemblies, including that of humans [11]. The repeat-associated
gaps are abundant in heterochromatic regions, making it impossible to completely assemble these
genome parts. This usually results in genome assemblies missing a majority of (peri)centromeric
regions and secondary constrictions [11,13]. To resolve the copy numbers, it is essential to use reads
longer than the total array length. To some extent, this can be sorted out by using long-read DNA
sequencing technologies, such as PacBio or nanopore sequencing, which produce reads of tens and
up to hundreds kilobases, respectively. Nevertheless, only short arrays of simpler repeats, such as 5S
rRNA multigene loci spanning over several kilobases, can be tackled by these approaches [14]. Arrays
spanning over hundreds to thousands kilobases and consisting of units that are several kilobases long,
such as loci coding for 45S rRNA, cannot be resolved by any of the current sequencing technologies.

This shortage can be compensated for by other approaches that facilitate identification, positioning
and characterization of long arrays of tandem repeats, such as in situ hybridisation, application of
dedicated bioinformatics tools, and optical mapping. The initial methods to investigating distribution
of tandem repeats in cereal genomes included in situ hybridisation (ISH) [15–17] and fluorescence in
situ hybridisation (FISH) [18,19]. Although the cytogenetic techniques provided first insights into
the genome evolution [20] and facilitated chromosome identification and construction of molecular
karyotypes [16,19,21], they did not provide information at the DNA sequence level. This could
be obtained by application of dedicated bioinformatics tools, such as RepeatExplorer [22,23]. This
computational pipeline utilizes a graph-based sequence clustering algorithm to de-novo assemble
tandem repeats from raw next-generation sequencing data, without the need of a reference database of
known elements. It has been used to identify and characterize repetitive elements in several complex
plant genomes, including that of rye [24].

Optical mapping in nanochannel arrays, also known as Bionano genome (BNG) mapping, is a
high-throughput long-read technology that generates genome maps of a short sequence motif—the
recognition site of an enzyme used for labelling [25]. It has been used to support and validate
physical-map and genome assemblies of several complex cereal genomes [2,3,26–28]. The ability of
optical mapping to size gaps, cover some types of tandem DNA repeats [26] and identify misassemblies
due to collapsed duplicated sequences [29] makes this technology a promising tool for identifying and
characterizing missing parts of genome assemblies.

In this study, we identified three new tandem repeats specific for the short arm of wheat
chromosome 7D (7DS) and interrogated their representation in recently published bread wheat
assemblies, including (i) Triticum 3.1 [12], which combines short Illumina and long PacBio reads, (ii)
IWGSC RefSeq v1.0 [3], which is based on short reads only, and (iii) Illumina assemblies of physical
map-ordered 7DS-specific BAC clones [30]. While these assemblies comprised of arrays of all three
repeats, they failed in unravelling organization of a repeat with unit size of 2726 bp, whose genome
arrangement could only be resolved after adding information from nanopore sequencing of two BAC
clones bearing arrays of this repeat and by using an optical map (OM) of the wheat 7DS arm [26]
as a reference. Besides, we employed an OM of barley cv. Morex [31] to investigate a minor 45S
rDNA locus in barley chromosome 1H, which was identified by in situ hybridisation in various barley
cultivars [32,33] and underrepresented in the ’Morex’ BAC-by-BAC genome assembly [2]. Thus, we
demonstrated that optical mapping is a suitable tool to identify the missing parts of the assemblies,
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and, in some cases, can reveal overall organization of the repeat array. Targeted long-read nanopore
sequencing was confirmed as a promising approach to complementing the missing sequences to the
genome assemblies.

2. Results and Discussion

2.1. Chromosome-Specific Tandem Repeats in Wheat

Using RepeatExplorer pipeline to cluster Illumina raw data from flow-sorted wheat chromosome
arm 7DS, we identified four tandem repeats with monomer lengths ranging from 1167 bp to 2726 bp
(Table 1, File S1).

Table 1. Monomer sizes and distribution of identified tandem repeats.

Tandem Repeat Monomer Size Distribution

TaeCsTr163 1390 bp 7D subtelomere

TaeCsTr230 1242 bp 7D subtelomere

TaeCsTr99 2726 bp 7D subtelomere

TaeCsTr111 1167 bp All chromosomes
Dispersed

Cytogenetic mapping revealed that three of the repeats, TaeCsTr163, TaeCsTr230 and TaeCsTr99,
provided unique FISH signals specific for subtelomeric region of wheat 7DS chromosome arm (Figure 1;
Figure S1). A probe derived from the TaeCsTr111 sequence provided dispersed hybridization signals
on multiple chromosomes, predominantly in pericentromeric and subtelomeric regions (Figure S1).
The clustered hybridization signals obtained with three probes are supportive of the tandem organisation
of these repeats. Application of RepeatExplorer on raw data obtained from flow-sorted chromosomes
thus proved a suitable approach to identify chromosome-specific tandem repeats. The tool worked
efficiently, despite using DNA amplified by multiple displacement amplification, which is known to
introduce a quantitative amplification bias [34].
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To assess the representation of the tandem repeats in the recently published wheat reference 
genome, we performed blastn search on IWGSC RefSeq v1.0 assembly [3]. Out of the three repeats 
assigned specifically to the 7DS arm, only two, TaeCsTr163 and TaeCsTr230, could be reliably 
identified in the IWGSC RefSeqv1.0 assembly of the 7D chromosome. Using blastn search, we found 
a cluster of 39 complete and several incomplete units of the TaeCsTr163 repeat, partially tandemly 
organised, that spanned over 260 kb in the interval of 49.08–49.34 Mb of the 7D pseudomolecule. The 
TaeCsTr230 repeat was identified as an array of ten complete and three incomplete units located in 
the interval of 33.254–33.27 Mb of the 7D pseudomolecule (Figure S2). Considering the entire 7DS 
arm length of 338 Mb [3], the positions of both repeats in the assembly are in agreement with their 
cytogenetic locations. On the contrary, we failed to find a significant blastn hit in the 7D 

Figure 1. FISH on metaphase 7D chromosomes of bread wheat cv. Chinese Spring with probes for
GAA microsatellite (green) and three tandem repeats (red). (A) TaeCsTr163, (B) TaeCsTr230 and (C)
TaeCsTr99 repeats localized in subtelomeric region of the 7DS chromosome arm. 7D chromosomes
were identified based on the GAA hybridization signal on the 7DL arm. The chromosomes were
counterstained by DAPI (blue).

To assess the representation of the tandem repeats in the recently published wheat reference
genome, we performed blastn search on IWGSC RefSeq v1.0 assembly [3]. Out of the three repeats
assigned specifically to the 7DS arm, only two, TaeCsTr163 and TaeCsTr230, could be reliably identified
in the IWGSC RefSeqv1.0 assembly of the 7D chromosome. Using blastn search, we found a cluster of
39 complete and several incomplete units of the TaeCsTr163 repeat, partially tandemly organised, that
spanned over 260 kb in the interval of 49.08–49.34 Mb of the 7D pseudomolecule. The TaeCsTr230
repeat was identified as an array of ten complete and three incomplete units located in the interval
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of 33.254–33.27 Mb of the 7D pseudomolecule (Figure S2). Considering the entire 7DS arm length
of 338 Mb [3], the positions of both repeats in the assembly are in agreement with their cytogenetic
locations. On the contrary, we failed to find a significant blastn hit in the 7D pseudomolecule of RefSeq
v1.0 for the repeat TaeCsTr99 that provided the strongest FISH signal on mitotic chromosomes.

Additional search in the unassigned scaffolds (ChrUn) revealed 12 of them containing TaeCsTr99
units (Figure 2A, Figure S3). Scaffold lengths varied from 3 kb to 163 kb, and they comprised from one
to eleven complete TaeCsTr99 units. Altogether, we identified in unassigned scaffolds 36 complete
tandemly organised units totalling 98 kb of length, accompanied by several incomplete units and unit
fragments. Based on a high sequence homology (Figure S3), some of the scaffolds could be overlapping.
Out of the twelve scaffolds, only ChrUn8536 carried an 82.3-kb non-repetitive segment (Figure S4A),
which enabled its positioning in the context of the 7D pseudomolecule utilizing the OM of the 7DS
chromosome arm. OM contig 77 placed the ChrUn8536 to position 14.4 Mb in the 7D pseudomolecule
and revealed an additional 272 kb gap distal of the ChrUn8536 (Figure S5A, Figure 3). The identified
position is consistent with the (sub)telomeric location of the repeat indicated by FISH (Figure 1C).
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Figure 3. Organization of the TaeCsTr99 region. Positions of two TaeCsTr99 arrays (highlighted in
orange and red) and an overall arrangement of the region were obtained by aligning ChrUn8536,
IWGSC RefSeq v1.0 [3] and Triticum 3.1 [12] 7D pseudomolecules (blue bars) and BAC clones of 7DS
physical-map contig 1059 [30] (violet bars) to 7DS optical map [26] (green bars). Numbers at the 7D
pseudomolecules indicate assembly coordinates.

In order to span the entire TaeCsTr99 array, we employed short-read sequence assemblies of
physical-map ordered 7DS BAC clones [30]. TaeCsTr99 was identified in four BAC clones belonging
to 7DS physical-map contig 1059. Clones 104G18 and 30G22 overlap and show sequence homology
with ChrUn8536 (Figure 3). Illumina assemblies of these BAC clones were rather fragmented and did
not allow reconstructing the entire TaeCsTr99 array. Surprisingly, an array of the TaeCsTr99 repeat
was also found in overlapping BAC clones 28N04 and 128K16. The latter could be aligned to the
OM 77 (Figure S5B), but it was separated from the TaeCsTr99 array identified in clones 104G18 and
30G22 by a 225-kb non-repetitive segment (Figure 3, Figures S4 and S5). This suggested the presence
of two separate TaeCsTr99 arrays in a close proximity, which we termed distal (covered by clones
128K16 and 28N04) and proximal (covered by ChrUn8536, 104G18 and 30G22), respectively. The size
of the distal array was deduced from the assembly of BAC clone 28N04, which appeared to comprise
the entire array in one scaffold, and was estimated to be ~44 kb. This array was composed of nine
complete units, four units comprising a 1056-bp deletion and an additional cluster of repeat fragments
spanning over ~6 kb (Figure 2C). The size of the proximal array in ChrUn8536 was 26 kb and this, likely
incomplete array sequence comprised of three complete and three partial units and a ~6-kb cluster of
repeat fragments (Figure 2A). Apparently, the organization of the repeat array in BAC clones 28N04
and 128K16 differed from that in ChrUn8536 (Figure 2, Figure S4A), which supported our hypothesis
of two spatially separated arrays of TaeCsTr99 repeat in 7DS.

We hypothesized that the difficulties in assembling and incorporating of the TaeCsTr99 arrays into
the pseudomolecule could be overcome by employing longer reads, such as those generated by SMRT
sequencing (PacBio technology). To verify this, we explored bread wheat Triticum 3.1 assembly [12]
that combines short-read Illumina and long-read PacBio data to search the 7D pseudomolecule for the
TaeCsTr99 sequence. The blastn search revealed in the position 9.11 - 9.14 Mb a ~30-kb array composed
of 14 incomplete TaeCsTr99 units, 13 of which carried the 1056-bp deletion observed in BAC clone
28N04 (Figure 2). We also observed the ~6-kb cluster of repeat fragments located distal of the array.
Alignment of this region to 7DS OM placed the array to position ~1.2 Mb in OM contig 77 (Figure S5C),
which corresponded to the position of the distal array identified in the short-read assemblies (Figure 3).
On the contrary, we did not find any evidence of the proximal array in the Triticum 3.1 assembly.

To resolve the discrepancies in the location and organization of the TaeCsTr99 arrays identified
in various assemblies, we made use of the long-read platform of Oxford Nanopore Technologies
(ONT) and generated nanopore reads from BAC clones 28N04 and 104G18, which cover the distal
and proximal array, respectively. For each of the clones, we obtained two reads that spanned over
the entire insert and showed a consistent array structure. ONT read 51ef9015 (File S2) of 99,802 bp
covering clone 28N04 confirmed the complex structure of the distal array composed of two sub-arrays
with differently organised units (Figure 2D, Figure S4B). The distally located sub-array, approximately
27 kb in size, comprised of 10 complete units of the TaeCsTr99. The proximal sub-array was of similar
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length and consisted of 12 incomplete units, bearing a distinct deletion between 507 and 1563 bp of
the TaeCsTr99 sequence. The ONT read also confirmed the presence of the adjacent ~6-kb cluster
consisting of TaeCsTr99 fragments, which was less obvious here than in the Illumina BAC assembly
due to the inherent inaccuracy of the nanopore technology (Figure 2C,D). Except for the variation in
the number of units, the overall structure of the distal array looked highly similar in the BAC Illumina
assembly and the ONT read. On the contrary, the corresponding array in whole-genome Triticum 3.1
assembly differed by the absence of the full-length units (Figure 2B). The proximal array was covered
by a 148,009 bp full-length read f24cdcf5 of clone 104G18 (File S2), comprising the entire array that
spanned over ~30kb and had a simple structure, including eight complete and one incomplete unit
and the cluster of repeat fragments (Figure 2E). The total number of TaeCsTr99 units in the ONT reads
covering the distal and the proximal array (18) was smaller than that identified in unassigned scaffolds
(36). This could be due to non-recognized overlaps between the scaffolds, which may have resulted in
overestimating the number of the repeats. Alternatively, we cannot exclude the presence of additional
TaeCsTr99 array(s), missing both in the pseudomolecules and in the 7DS BAC assemblies that might be
located in proximity of the confirmed ones.

The data obtained in our study suggest that tandemly organised repeats with unit size of 1–3 kb
are not the major contributor to the missing part of the wheat IWGSC RefSeq v1.0 assembly as three
of such repeats were well represented in the wheat reference genome obtained from short read data.
Nevertheless, a more detailed analysis of a repeat with unit size of 2726 bp revealed that it was
completely missing from the 7D pseudomolecule and was found in unassigned scaffolds (ChrUn) of the
RefSeq v1.0 only. Thus, we concluded that this type of repeats may cause shrinking of pseudomolecules
without impacting size of the entire assembly. Our results are in line with a finding that 27% centromeric
sequences, identified by association with a centromere-specific histone H3 variant and highly enriched
in centromere-specific repeats, were found in ChrUn of the RefSeq v1.0 [3]. This indicates that advanced
assemblers can to some extent assemble shorter arrays of tandemly organised repeats but integration
of these arrays in the pseudomolecule context may still pose a substantial challenge.

The TaeCsTr99 repeat was also found underrepresented and likely misassembled in the 7D
pseudomolecule of Triticum v3.1, generated from both Illumina and PacBio reads. Moreover, both
tested wheat whole-genome assemblies failed in discriminating two similar arrays located 225 kb
apart, which could only be resolved after nanopore sequencing of BAC clones. This approach was
successful not only because it employed a technology that provides reads exceeding the length of
the whole array, but also because it leveraged the separation of the two arrays into the individually
sequenced BAC clones. Interestingly, the identification of relatively long arrays of tandem repeats
in BAC clones contradicts the finding of [11] that the tandem repeats are underrepresented in BAC
libraries because of their toxicity for bacteria. The organisation of the whole tandem arranged region
was resolved thanks to the application of the OM of the 7DS arm, which provided a reference for
alignment of various sequences and revealed existing gaps and misassemblies. Nevertheless, the
full potential of this genomic resource could not be exploited because none of the repeats analysed
comprised a BspQI site (GCTCTTC) labelled in the 7DS OM. Consequently, the repeat arrays could not
be recognised in the map through a specific labelling pattern, but appeared as longer regions devoid of
labels. This shortage of the method might be overcome by the application of a new approach based on
CRISPR-mediated labelling of specific sequences in the context of the optical map [35], which may
facilitate straightforward mapping and quantifying of any repeat of interest.

2.2. Minor 45S rDNA Locus in Barley Chromosome 1H

Our second target was a minor 45S ribosomal DNA locus in barley chromosome 1H, identified by
in situ hybridisation in various barley cultivars [32,33]. To access this locus, we first reconstructed the
1H-specific rDNA unit from 1H-specific paired-end Illumina reads (File S3). The unit sequence with the
length of 8407 bp was then used to search 1H pseudomolecule of the barley ‘Morex’ reference genome [2].
Fragments of the unit were found between 139.05 Mb and 139.33 Mb of the 1H pseudomolecule, which
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fits well with the cytogenetic location of the rDNA locus at ~60% of the short arm of 1H [32], but we
did not identify a regular rDNA array at this locus. To investigate completeness of the sequence in
this region, we aligned it to available OM of barley cv. Morex [2], which identified OM contig 310
spanning over the region (Figure 4). Central part of the contig 310 did not align to the pseudomolecule
and showed a regular labelling pattern with label spacing of approximately 5 kb. We compared it
with the label pattern predicted for tandemly organised rDNA units. The reconstructed rDNA unit
sequence comprised of three BspQI sites (File S3), but two of them were located just 1133 bp apart,
which is too close for them to be discriminated in optical maps generated on the Bionano Genomics
Irys platform. Thus, the labels associated with the BspQI sites were predicted to generate a composed
pattern alternating ~3.5- and ~4.9-kb units (Figure S6A). This roughly corresponded to the pattern
seen in the OM, with a discrepancy relating to the predicted ~3.5 kb “restriction fragment”, which
was not apparent in the optical map. This fragment covers the intergenic spacer (IGS) that comprises
of two types of shorter tandem repeats with 78- and 135-bp unit length, respectively. It is likely that
these repeats are collapsed in our consensus sequence and their real number is larger, extending the
proposed IGS size by as much as 1.5 kb. This hypothesis was supported by the analysis of several
partial rDNA units found in the 1H pseudomolecule, which were showing for both spacer repeats a
higher number than included in our rDNA consensus sequence. Thus, we suggest that the complete
size of the 1H rDNA unit is ~9.9 kb, which is supported by findings of [36] who identified in barley
ribosomal DNA units of two sizes, 9.9 kb and 9 kb. Co-localisation of the blastn hits for 45S rDNA
with the array in the optical map and the reported cytogenetic position lead us to the conclusion that
the ~470-kb long array comprising ~47 putative rDNA units represents the minor 1H rDNA locus
detected by in situ hybridisation. Our copy number estimate is close to that of [32] who quantified
rRNA genes in the 1H chromosomes by in situ hybridization and proposed 50-100 copies in this locus.
The slight discrepancy could be due to using a different barley cultivar (Morex vs. Sultan).
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bar) indicates that the array represents the 1H rDNA locus. 

Using the optical map, we identified a 470-kb segment that is absent from the Morex 1H 
pseudomolecule. We also performed blastn search for the consensus 45S rDNA sequence in 
chromosomes 5H and 6H, which are known to harbour major barley rDNA loci comprising 
thousands of genes [32,36], and in unassigned scaffolds of the ‘Morex’ assembly [2]. The search failed 
in revealing rDNA arrays in any of the datasets and identified fragments of the rDNA units only. 
This indicates that the missing rDNA loci contribute significantly to the dark matter of the cereal 
genomes.  

3. Materials and Methods 

3.1. De Novo Identification of Wheat Tandem Repeats 

Figure 4. Positioning of the 45S rDNA locus in barley chromosome1H. Alignment of barley ‘Morex’ 1H
pseudomolecule [2] (blue bar) to ‘Morex’ OM contig 310 (green bar) revealed a tandemly organized repeat
with ~5 kb label spacing (highlighted by orange bar) missing in the pseudomolecule. Co-localisation
with a cluster of 45S rDNA fragments in the sequence assembly (highlighted by yellow bar) indicates
that the array represents the 1H rDNA locus.

Using the optical map, we identified a 470-kb segment that is absent from the Morex 1H
pseudomolecule. We also performed blastn search for the consensus 45S rDNA sequence in
chromosomes 5H and 6H, which are known to harbour major barley rDNA loci comprising thousands
of genes [32,36], and in unassigned scaffolds of the ‘Morex’ assembly [2]. The search failed in revealing
rDNA arrays in any of the datasets and identified fragments of the rDNA units only. This indicates
that the missing rDNA loci contribute significantly to the dark matter of the cereal genomes.

3. Materials and Methods

3.1. De Novo Identification of Wheat Tandem Repeats

In order to identify new tandem repeats specific for the short arm of wheat chromosome
7D (7DS), we randomly selected 3.6 million reads obtained by Illumina sequencing
multiple-displacement-amplified (MDA) DNA of flow-sorted 7DS [37]. Raw reads were examined
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and filtered by quality using FastQC and Trimmomatic tool. Repeat identification was performed
employing similarity-based clustering of paired-end (2 × 100 nt) Illumina reads using local installation
of the RepeatExplorer pipeline [23]. The pipeline employs graph representation of read similarities to
find clusters of frequently overlapping reads corresponding to various repetitive elements or their
parts. Putative tandem repeats were identified based on circular topology of their graphs [22] and
tandem structure of contigs assembled from the reads within individual clusters. Sequences of the
assembled contigs were then used to design PCR primers to verify the presence of corresponding
sequences in the wheat genome (Table S1). In addition, the amplified fragments were cloned using the
TOPO-TA Cloning Kit for Sequencing (Invitrogen, Carlsbad, CA, USA), selected clones were verified
by sequencing and used as probes for in situ hybridisation experiments.

3.2. In Situ Hybridisation

For the in situ hybridisation experiment, we employed seeds of Triticum aestivum L., cv. Chinese
Spring, kindly provided by Dr. Pierre Sourdille (INRA, Clermont-Ferrand, France). Seed germination,
cell cycle synchronisation, metaphase accumulation and squash preparations were performed from
wheat root tip meristems according to [38] with minor modifications. Metaphase accumulation
was done by incubating root tips in 2.5 µM amiprophos-methyl for 2h in the dark at 25 ◦C. Inserts
of clones bearing particular repeats were amplified using M13 primers and the PCR products
were labeled by biotin using BioNick™ Labeling System (Invitrogen, Carlsbad, CA, USA). GAA
microsatellite, used for identification of wheat chromosomes, was labelled by digoxigenin. Biotin-
and digoxigenin-labeled probes were detected using streptavidin-Cy3 (Invitrogen, Carlsbad, CA,
USA) and anti-digoxigenin-fluorescein (Roche, Basel, Switzerland), respectively. Chromosomes were
counterstained with 4′,6′-diamidino-2-phenylindole (DAPI) and the preparations were imaged using
Axio Imager Z.2 Zeiss microscope (Zeiss, Oberkochen, Germany) equipped with a CCD camera.

3.3. Reconstruction of Barley 1H rDNA Unit

RepeatExplorer pipeline was used to perform reconstruction of 45S rDNA sequence of barley.
To do this, whole-genome paired-end (2 × 100 nt) Illumina reads of barley (Hordeum vulgare) cv.
Morex (SRR490932) were downloaded from the SRA database, trimmed to quality and used for
graph-based clustering. The resulting barley consensus 45S rDNA sequence was then used as a
guide for reconstruction of a barley 1H chromosome-specific 45S rDNA sequence. This was done
using online version of RepeatExplorer pipeline on the Galaxy platform and applying paired-end
(2 × 100 nt) Illumina reads from flow-sorted 1H chromosome [39] of H. vulgare cv. Morex (SRR490144).
The graph-based clustering resulted in five clusters homologous to the barley consensus 45S rDNA.
The 1H-specific rDNA unit was then assembled manually utilizing the barley consensus 45S rDNA as
a reference.

3.4. Application of Optical Maps

To validate sequences and analyse repeats in wheat 7DS and barley 1H chromosome, we employed
available optical (BNG) maps constructed from 7DS chromosome arm of wheat cv. Chinese Spring [26]
and the whole genome of barley cv. Morex [31], respectively. Both maps were assembled from
single molecule data obtained after labelling molecules at Nt.BspQI nicking sites (motif GCTCTTC).
Comparison of the optical maps with sequences was carried out using the IrysView 2.5.1 software
package (Bionano Genomics, San Diego, CA, USA). For the alignment, cmap files were generated from
fasta files of particular sequences. Query-to-anchor comparison was done with default parameters and
P-value threshold of 1e−10.

3.5. Nanopore Sequencing

To resolve organization of the TaeCsTr99 repeats in the wheat genome, nanopore sequencing
was conducted on 7DS BAC clones TaaCsp7DS028N04 (28N04) and TaaCsp7DS104G18 (104G18) from
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the ‘Chinese Spring’ 7DS arm-specific BAC library [40]. BAC DNA was extracted using alkaline
lysis method followed by phenol-chloroform extraction and ethanol precipitation. Finally, the DNA
was purified by incubating with 1:1 AMPure XP beads (Beckman Coulter, Miami, FL, USA) for
5 min and eluted into 30 µl 10 mM Tris, pH 8.5. Barcoded sequencing libraries were prepared
from 700 ng DNA per BAC clone using Rapid Barcoding Sequencing Kit (SQK-RBK004; Oxford
Nanopore Technologies, Oxford, UK) and sequenced together with additional ten clones on the
MinION platform (Oxford Nanopore Technologies, Oxford, UK). Raw data were basecalled using
Poretools 0.6.0 (https://github.com/arq5x/poretools, accessed on: 30 May 2019), demultiplexed using
Porechop 0.2.3 (https://github.com/rrwick/Porechop, accessed on: 30 May 2019) and size-filtered >10 kb,
which yielded 315 reads ranging from 10,003 to 101,160 bp, and 62 reads ranging from 10,082 to 149,
812 bp for the clone 28N04 and 104G18, respectively. Selected reads of 99,802 bp and 148,009 bp for
28N04 and 104G18, respectively, spanned the entire lengths of the respective clones.

4. Conclusions

Our study on tandem organised DNA repeats with unit sizes of 1.2–2.7 kb suggested that such
repeats might be present in genome assemblies of large cereal genomes even if generated from short-read
data. Nevertheless, they are typically comprised in short sequence contigs or scaffolds and thus may
be difficult to incorporate into the pseudomolecules. We demonstrated that tandem repeats could be
identified by a dedicated bioinformatics tool—RepeatExplorer—on a chromosome-specific basis and
that nanopore sequencing of BAC clones provided a reliable approach to analysing organization of
particular repeat arrays. We showed that an optical map might be useful for anchoring unassigned
repeat-bearing scaffolds and for validating sequence assemblies in the problematic regions. The potential
of the method was confirmed in our attempt to localise and characterise a minor 45S ribosomal DNA
locus, which is missing in the reference genome of barley. Since BAC resources and optical maps are
available for many plant species including major crops, the approaches presented in our study are
widely applicable.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/10/
2483/s1.
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