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Abstract

The precise regulation of numbers and types of neurons through control of cell cycle exit and terminal differentiation is an
essential aspect of neurogenesis. The Hippo signaling pathway has recently been identified as playing a crucial role in
promoting cell cycle exit and terminal differentiation in multiple types of stem cells, including in retinal progenitor cells.
When Hippo signaling is activated, the core Mst1/2 kinases activate the Lats1/2 kinases, which in turn phosphorylate and
inhibit the transcriptional cofactor Yap. During mouse retinogenesis, overexpression of Yap prolongs progenitor cell
proliferation, whereas inhibition of Yap decreases this proliferation and promotes retinal cell differentiation. However, to
date, it remains unknown how the Hippo pathway affects the differentiation of distinct neuronal cell types such as
photoreceptor cells. In this study, we investigated whether Hippo signaling regulates retinogenesis during early zebrafish
development. Knockdown of zebrafish mst2 induced early embryonic defects, including altered retinal pigmentation and
morphogenesis. Similar abnormal retinal phenotypes were observed in zebrafish embryos injected with a constitutively
active form of yap [(yap (5SA)]. Loss of Yap’s TEAD-binding domain, two WW domains, or transcription activation domain
attenuated the retinal abnormalities induced by yap (5SA), indicating that all of these domains contribute to normal retinal
development. Remarkably, yap (5SA)-expressing zebrafish embryos displayed decreased expression of transcription factors
such as otx5 and crx, which orchestrate photoreceptor cell differentiation by activating the expression of rhodopsin and
other photoreceptor cell genes. Co-immunoprecipitation experiments revealed that Rx1 is a novel interacting partner of Yap
that regulates photoreceptor cell differentiation. Our results suggest that Yap suppresses the differentiation of
photoreceptor cells from retinal progenitor cells by repressing Rx1-mediated transactivation of photoreceptor cell genes
during zebrafish retinogenesis.
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Introduction

In the vertebrate embryonic nervous system, multipotent neural

progenitor cells proliferate and differentiate into diverse neuronal

and glial cell types that eventually build up functional neural

circuits such as the retina [1,2]. The retina is a delicate

multilayered neural epithelium composed of six types of neurons

and one major type of glial cell [3]. During the course of retinal

development, retinal progenitor cells (RPCs) either continue to

proliferate or exit mitosis and differentiate into various neuronal

cell types. This process is tightly regulated and ensures that the

proper numbers and types of differentiated cells needed to

assemble a functional retinal circuitry are produced [1,2]. A

fundamental mystery in retinal development has been the identity

of the molecular mechanism controlling the developmental switch

between RPC self-renewal and differentiation. Although rodent

models have provided valuable insights into the molecular basis of

vertebrate retinal development [4], the zebrafish (Danio rerio) is a

good alternative in which to seek the definitive answer to this

question [5,6]. Fertilized zebrafish eggs rapidly develop ex utero into

transparent embryos, facilitating retinal observations and exper-

imental manipulations such as morpholino knockdown and the use

of transgenic technology. In addition, aspects of retinal morpho-

genesis and histology, as well as the molecular components

governing retinal development, are highly conserved between

zebrafish and mammals.

The FGF, Shh, Wnt and Notch signaling pathways have all

been identified as affecting retinal cell proliferation and differen-

tiation [7]. For instance, the Notch pathway normally suppresses

photoreceptor cell production in the mammalian retina, whereas

inhibition of Notch signaling enhances the expression of the Otx2

and Crx genes, which encode transcription factors (TFs) expressed

exclusively in photoreceptor cells [8–10]. Another important

pathway recently shown to be involved in regulating the balance

between RPC maintenance and differentiation is the Hippo

signaling cascade [11]. Hippo signaling plays fundamental roles in

organ size control, stem cell maintenance, and progenitor

differentiation in a variety of tissues, including the central nervous
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system (CNS) [12–14]. When activated by a developmental cue,

the Hippo core Mst1/2 kinases activate the Lats1/2 kinases, which

in turn phosphorylate and negatively regulate the transcriptional

cofactor Yap. Control of Yap in this way modulates the

transcription of many genes required for tissue-specific cell

differentiation [15].

The importance of the Hippo pathway in retinogenesis has been

revealed by studies in mice and zebrafish. For example, gene

knockout mice lacking Sav1, a component of the Hippo pathway,

showed impaired organization of the retinal epithelium during

neurogenesis [16]. In a different study, forced expression of Yap in

the developing mouse retina led to RPC proliferation and

inhibition of retinal differentiation [11]. In zebrafish, knockdown

of Yap decreased progenitor cell populations in the CNS,

including in the eye [17]. These observations suggest that the

Hippo pathway is essential for controlling the balance of self-

renewal and differentiation in developing RPCs. However, the

precise molecular mechanism by which the Hippo pathway

regulates the differentiation of specific types of retinal neurons has

remained obscure. In particular, there is little information on the

target retinal TF(s) activated downstream of the Hippo-Yap

pathway. In this study, we show that the TF Rx1, a novel

interacting partner of Yap, is a missing piece of this puzzle and

contributes to retinal photoreceptor cell differentiation regulated

by the Hippo-Yap pathway. We propose a model in which Yap

regulates the timing of photoreceptor cell differentiation by

suppressing Rx1-mediated transactivation of the otx, crx and

rhodopsin genes.

Results

Mst2 is Required for Early Embryogenesis in Zebrafish
To unravel the role of Hippo signaling in early zebrafish

development, we first examined whether zebrafish mst functions

during early embryogenesis. We performed BLAST searches with

human MST1 and MST2 genes to predict the sequence of

zebrafish mst cDNA and found that the zebrafish has only one mst2

ortholog. The predicted amino acid sequence of the protein

encoded by the zebrafish mst2 gene is approximately 90% identical

to the sequences of the human and mouse Mst2 proteins, and

contains the evolutionarily conserved autophosphorylation site and

SARAH domain that are important for Mst activation (Fig. S1A).

A phylogenetic analysis confirmed that the zebrafish mst2 gene was

clustered with those of several vertebrate species, including teleosts

(Fig. S1B). To determine the functionality of the zebrafish mst2

gene, we performed a morpholino (MO)-mediated loss-of-function

analysis. Zebrafish embryos treated with mst2 MO (mst2 mor-

phants) showed a range of abnormal phenotypes at 52 hours post-

fertilization (hpf), from short body length (SL) to abnormal eye

pigmentation (AP) and abnormal eye morphology (AM) (Fig. 1A

and 1B). RT-PCR analysis confirmed that microinjection of mst2

MO had effectively prevented correct splicing of the targeted pre-

mRNA (Fig. S1C and S1D). These results demonstrate that Mst2

plays a critical role in early zebrafish embryogenesis.

Yap Activity has Important Effects on Early Zebrafish
Development

Since Yap is a key effector molecule downstream of the Hippo

signaling pathway [12,13], we determined whether overexpression

of yap induced morphological phenotypes similar to those observed

in mst2 morphants. The amino acid sequence of the Yap protein in

the small fish medaka is 85% identical to that of the zebrafish Yap

protein and contains the five sites normally phosphorylated by

Lats in vertebrate Yap (Fig. S2A). It is now well established that

the Hippo pathway regulates Yap’s phosphorylation, subcellular

localization, and transcriptional coactivator activity, and that this

control mechanism is evolutionarily conserved among vertebrates

[18]. Some post-translational modifications of Yap, such as its

acetylation, are also highly conserved among vertebrates [19].

These observations gave us confidence that medaka Yap (WT)

would be functionally comparable with zebrafish Yap (WT) in our

experiments. In addition, we generated a constitutively active form

of medaka Yap called Yap (5SA) in which the five sites normally

targeted by Hippo pathway-dependent phosphorylation were

mutated to alanine [20]. Normal zebrafish embryos that were

injected with in vitro-transcribed medaka yap (WT) mRNA were

indistinguishable from EGFP mRNA-injected control embryos

during the first 2 days of development (Fig. 2A). However, by

48 hpf, embryos that had been injected with constitutively active

yap (5SA) mRNA exhibited the same range of abnormal

phenotypes (SL, AP and AM) as seen in the mst2 morphants

(Fig. 2B). These observations indicate that Yap acts downstream of

Mst2 to influence early zebrafish development.

The TEAD-binding, WW and Transcription Activation
Domains of Yap are Required for Normal Zebrafish
Embryogenesis

To define which functional domains of Yap are important for

early zebrafish development, we created a series of yap (5SA)

constructs bearing mutations or deletions inactivating specific Yap

domains (Fig. 3). Injection of yap (5SA) mRNA led to the same

range of developmental defects as presented in Fig. 2B (SL, 19%;

AP+SL, 15%; AM+AP+SL, 42%; normal phenotype, 4%; N = 26).

Similar results were observed for embryos injected with yap (5SA)

mRNA missing its SH3-binding domain [yap (5SA/DSH3)]. In

contrast, expression of a yap (5SA) mRNA with a defect in the

TEAD-binding domain [yap (5SA/TEAD*)] reduced the frequency

of abnormal phenotypes (AP+SL, 11%; normal phenotype, 68%;

N = 19). In addition, the majority of embryos injected with yap

(5SA) mRNA mutated in both the WW1 and WW2 domains [yap

(5SA/WW1*, 2*)] exhibited a normal phenotype (AM+AP+SL,

5%; normal phenotype, 89%; N = 19). Finally, almost all embryos

injected with yap (5SA) mRNA missing its transcription activation

domain [yap (5SA/DTA)] showed a normal phenotype (AM+AP+
SL, 3%; normal phenotype, 97%; N = 31). Taken together, these

observations demonstrate that overexpression of the TEAD-

binding, WW and transcription activation domains of Yap can

alter early zebrafish development, and that these domains are

therefore critical for normal zebrafish morphogenesis.

Yap Activity Plays a Direct Role in Zebrafish
Retinogenesis

Our experiments in Figure 3 showed that injection of yap (5SA)

mRNA caused abnormal retinal development and body axis

malformation. However, it was not clear whether the retinal

abnormality was a primary consequence of Yap hyperactivation or

a secondary effect caused by the failure in body axis formation. To

distinguish between these possibilities, we examined in detail the

timing of the emergence of the SL phenotype in yap (5SA) mRNA-

injected zebrafish embryos. Overexpression of yap (5SA) mRNA

induced no obvious defects during gastrulation or anterior-

posterior axis formation (Fig. S2B), consistent with previous work

[21]. After gastrulation, however, the SL phenotype became

apparent at 18–21 hpf (Fig. S2C), indicating that increased Yap

activity affects the elongation of the body axis during the

segmentation period. To minimize the effects of body axis

malformation, we generated a yap (5SA) construct under the
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control of the zebrafish heat shock-inducible promoter hsp70

[hsp70-EGFP-yap (5SA)] [22], and induced yap (5SA) expression

only after 21 hpf (Fig. 4A). Whereas injection alone of hsp70-

EGFP-yap (5SA) induced no phenotypic alterations, heat shock

applied at 21 hpf after injection of hsp70-EGFP-yap (5SA) gave rise

to abnormal retinal phenotypes (AM and/or AP) (Fig. 4B and 4C).

It is noteworthy that, although many embryos also exhibited the

SL phenotype (AP+SL, 48%; AM+AP+SL, 9%; N = 23), a sizable

proportion showed only an abnormal retinal phenotype (AP, 17%;

N = 23). These results support our hypothesis that Yap activity has

a direct impact on retinal development.

To achieve retina-specific expression of Yap, we generated a

construct containing the upstream region (including the promoter)

of the medaka rx3 gene [rx-EGFP-yap (5SA)]. Injection of this

Figure 1. Mst2 is essential for early zebrafish embryogenesis. (A) Early developmental abnormalities of mst2 morphants. Control or mst2
morpholino (MO) at the indicated dose was injected into zebrafish embryos and phenotypes were analyzed at 52 hpf. Embryos were classified into
five color categories on the basis of their phenotypes: blue, normal embryos; green, short body length (SL); orange, abnormal eye pigmentation (AP)
accompanied by SL; red, abnormal eye morphology (AM) plus AP plus SL; and brown, dead or malformed embryos. Results are presented as the
percentage of the total number of embryos examined (N). (B) Representative control and mst2 morphants at 52 hpf. Embryos were injected with
control MO (13.3 ng) or mst2 MO (13.3 ng). Top panels, lateral views of whole embryos. Middle panels, higher magnification images of the head
regions of the embryos in the top panels. Bottom panels, dorsal views of the head regions of the embryos in the top panels. (The head is at the top of
each panel.) White arrowhead, representative area of AM.
doi:10.1371/journal.pone.0097365.g001
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plasmid into zebrafish embryos resulted in expression of yap (5SA)

preferentially in the retina (Fig. 5A). Expression of rx-EGFP-yap

(5SA) gave rise to abnormal eye phenotypes (AM and/or AP) in

about 60% of injected embryos (AP, 29%; AM+AP, 31%; N = 45),

with no detectable effect on body axis (Fig. 5B and 5C).

Conversely, expression of yap (5SA) variants mutated in both

WW domains [rx-EGFP-yap (5SA/WW1*, 2*)] prevented the

appearance of abnormal eye phenotypes. These data demonstrate

that the two WW domains of Yap mediate activity that directly

affects zebrafish retinogenesis.

Retinal Photoreceptor Genes are Downregulated in yap
(5SA)-expressing Embryos

To conduct a comprehensive survey of transcriptional targets

activated downstream of Hippo-Yap signaling during early

zebrafish development, we employed a microarray approach and

compared genome-wide transcriptomes between yap (WT)- and

yap (5SA)-expressing embryos at three developmental stages (42, 48

and 54 hpf). Gene ontology (GO) analysis revealed that the top

two GO categories for genes showing a .4.0-fold decrease in

expression in yap (5SA)-expressing embryos at each stage were

Figure 2. Forced expression of mRNA encoding constitutively active yap alters early zebrafish embryogenesis. (A) Representative
images of EGFP mRNA-injected (control) or yap (WT) mRNA-injected zebrafish embryos at 52–54 hpf. Top panels, lateral views of whole embryos.
Bottom panels, higher magnification images of the head regions of the embryos in the top panels. N, total number of embryos examined. Embryos
injected with either yap (WT) mRNA or EGFP mRNA had normal phenotypes. (B) Representative images of EGFP mRNA-injected (control) or yap (5SA)
mRNA-injected zebrafish embryos at 48 hpf. Embryos injected with Yap (5SA) mRNA (10 pg) showed the same spectrum of abnormal phenotypes as
mst2 morphants. Data are presented as for Fig. 1B.
doi:10.1371/journal.pone.0097365.g002
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‘‘phototransduction’’ and ‘‘detection of light stimulus’’ (Fig. 6A).

Strikingly, the retinal photoreceptor gene rhodopsin was the gene

most downregulated in yap (5SA)-expressing embryos compared to

yap (WT)-expressing embryos (Fig. 6B). This remarkable decrease

was 17.0-fold at 42 hpf, an enormous 1,974-fold at 48 hpf, and

449-fold at 54 hpf. Moreover, we found that expression levels of

genes encoding photoreceptor TFs such as crx, nr2e3 and otx5,

which are required for rhodopsin transcription [23–25], were greatly

reduced in yap (5SA)-injected embryos (decreased by 157-, 58.8-,

and 29.1-fold, respectively, at 48 hpf) (Fig. 6B). These results

indicate that the expression of yap (5SA) mRNA affects the

transcription of retinal photoreceptor genes.

To confirm Yap’s influence on retinal gene expression, we

carried out a detailed RT-PCR analysis of mRNA levels in yap

(5SA)-injected embryos and mst2 morphants. We found that

mRNA levels of otx2, otx5, crx and rhodopsin were all dramatically

downregulated in yap (5SA)-injected embryos at 48 hpf compared

to yap (WT)-injected embryos (Fig. 6C). Mst2 morphants also

displayed decreased mRNA expression of the otx2, crx, and

rhodopsin genes (Fig. S3A and S3B). Lastly, because Rx is known to

be an upstream transactivator that regulates otx2 and rhodopsin

expression in mice and Xenopus [9,26], we examined whether

expression of the rx1 and rx2 genes was reduced in yap (5SA)-

expressing embryos. Interestingly, levels of rx1 and rx2 mRNAs in

yap (5SA)-injected embryos were comparable to those in yap (WT)-

injected embryos (Fig. 6C). These results suggest that Yap activity

affects zebrafish retinogenesis via transcriptional regulation of

photoreceptor genes acting downstream of the rx genes.

The Photoreceptor Cell Differentiation Factor Rx1 is a
Novel Interacting Partner of Yap

The above microarray and RT-PCR analyses suggested that

activated Yap might suppress photoreceptor cell differentiation

through interactions with TF(s) acting upstream of otx, crx and

rhodopsin. We investigated Rx1 as a candidate TF in this context

because zebrafish Rx1 reportedly plays a prominent role in the

regulation of retinal photoreceptor differentiation [27]. Intrigu-

ingly, we found that zebrafish Rx1 contains an evolutionarily

conserved PPXY motif that interacts with Yap’s WW domains

(Fig. 7A), whereas none of the other three photoreceptor TFs

examined (Otx2, Otx5 and Crx) contains a PPXY motif. This

observation prompted us to use co-immunoprecipitation analysis

to investigate whether Yap and Rx1 could physically interact with

each other in cells. Myc-Rx1 was co-expressed with FLAG-Yap

(5SA), FLAG-Yap (5SA/WW1*, 2*), or FLAG-Yap (5SA/TEAD*)

in HEK293T cells, and cell lysates were subjected to immuno-

precipitation with anti-FLAG antibody. We observed that Myc-

Rx1 successfully co-immunoprecipitated with either FLAG-Yap

(5SA) or FLAG-Yap (5SA/TEAD*) but not with FLAG-Yap

(5SA/WW1*, 2*) (Fig. 7B). These results demonstrate that Rx1 can

indeed interact with Yap, and that this interaction is mediated by

Yap’s two WW domains. We also co-expressed FLAG-Yap (5SA)

with Myc-Rx1 missing its PPXY motif [Myc-Rx1 (DPPXY)] in

HEK293T cells and subjected cell lysates to immunoprecipitation

with anti-FLAG antibody. Myc-Rx1 (DPPXY) did not co-

immunoprecipitate with FLAG-Yap (5SA) (Fig. 7C), indicating

that the PPXY motif of Rx1 is essential for its interaction with

Yap. These data identify the photoreceptor cell differentiation

factor Rx1 as a novel interacting partner of Yap, and suggest that

Figure 3. The TEAD-binding, WW and transcription activation domains of Yap contribute to early zebrafish development. Left panel,
schematic illustration of constructs of Yap (WT), Yap (5SA), and the indicated variants with deletion (D) or mutation (*) of the indicated domains.
Specific amino acid alterations are indicated. A, Lats phosphorylation site replaced by an alanine. In vitro-synthesized mRNAs (10 pg) derived from
these constructs were injected into zebrafish embryos and phenotypes were quantified as shown in the right panel. Color classification is as for Fig.
1A. Results are presented as the percentage of the total number of embryos examined (N).
doi:10.1371/journal.pone.0097365.g003
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Yap may be crucial for coordinating the timing of the terminal

differentiation of photoreceptor neurons by suppressing the

transcription of the otx, crx and rhodopsin genes.

Discussion

In this study, we examined the role of Hippo-Yap signaling

during zebrafish retinogenesis by carrying out an in vivo analysis.

We demonstrated that knockdown of Mst2 or forced expression of

yap (5SA) not only disrupts normal embryogenesis as a whole but

has specific detrimental effects on retinal pigmentation, eye

morphology, and the expression of retinal photoreceptor genes.

With respect to embryogenesis, the SL phenotype we observed in

our yap (5SA) mRNA-injected embryos at 18–21 hpf (Fig. S2C) is

similar to that of morphants created in a previous study by

knockdown of the zebrafish yap gene [17,28]. These latter

morphants exhibited a shortened body axis and elevated

expression of the somite marker myoD during somitogenesis. Our

findings thus provide additional evidence that strict control of the

activity and localization of Yap is essential for normal somitogen-

esis during the earliest stages of embryogenesis. Moreover, our

data show that Hippo-Yap signaling acts at a later developmental

stage as a crucial switch governing retinogenesis.

A key result of our paper is that Yap and the retina-specific TF

Rx1 physically interact with each other through Yap’s WW

domains and Rx1’s PPXY motif. Fig. S4 illustrates our proposed

model for the bifunctional involvement of Hippo-Yap signaling in

determining RPC proliferation versus photoreceptor cell differen-

tiation. When the Hippo pathway is inactive, Yap is activated and

associates with TEAD to help drive expression of proliferation-

related genes. Simultaneously, activated Yap binds to Rx1 and

attenuates its transactivation of photoreceptor genes. The result is

the expansion of RPCs and the suppression of photoreceptor cell

differentiation. However, when the Hippo pathway is activated by

a developmental cue, Yap activation is blocked and the expression

of photoreceptor genes is upregulated, promoting the differenti-

ation of mature photoreceptor cells. Thus, in this model, Hippo-

Yap signaling is the key molecular mechanism governing the

decision of an RPC to self-renew or differentiate.

In Drosophila, Hippo is the homolog of mammalian Mst2. In the

Drosophila eye, Hippo is involved in post-mitotic fate-determining

events such as photoreceptor subtype specification [29]. It is

conceivable that the primary role of Mst2 in the developing eye is

evolutionarily conserved among vertebrate species. In our study of

MO-mediated knockdown of zebrafish mst2, we showed that this

gene is essential for retinal photoreceptor differentiation (Fig. 1A,

1B and S3). In Xenopus, Nejigane et al. [2013] carried out a loss-of-

function analysis of mst1/2 and found that mst2 morphants

displayed morphogenetic defects, including abnormally small eyes

[30]. However, it has been difficult to determine the separate

physiological functions of the mammalian Mst1 and Mst2 genes

during retinal development due to their overlapping tissue

expression and functional redundancy. For example, both the

Mst1 KO and Mst2 KO single null mutant strains are viable and

develop normally, suggesting a substantial functional overlap

between these two paralogs [31]. Further functional analysis of

Mst1/2 genes in other vertebrates should help to reveal more

about the possible evolutionary diversion of Mst1 and Mst2.

Previous studies have implicated Hippo signaling in ocular

development [11,16,17,30]. For example, Zhang et al. observed

that forced expression of Yap in mouse retina prevented proneural

bHLH proteins from inducing cell cycle exit, whereas inhibition of

Yap decreased RPC proliferation and increased retinal cell

differentiation [11]. However, few studies have focused on the

molecular mechanism(s) by which Hippo-Yap signaling regulates

the differentiation of specific neuronal subtypes such as photore-

ceptor cells. In our study, we demonstrated that at least three

photoreceptor TFs (Otx2, Otx5 and Crx) are activated down-

stream of Hippo signaling (Fig. 6C and S3). In addition, we

discovered that Rx1 is a novel interacting partner of Yap (Fig. 7B),

a finding that supplies a missing piece of the puzzle concerning the

molecular basis of Hippo-Yap-mediated effects on photoreceptor

cell differentiation. In mouse studies, Rx is essential for otx2

transactivation in the embryonic retina [9]. In Xenopus retina, Rx

reportedly plays a role in the transcriptional regulation of other

retinal photoreceptor genes, such as rhodopsin and red cone opsin [26].

In zebrafish, Rx1 is required for photoreceptor differentiation

[27]. These previous results, together with our present study,

support the idea that the timing of activation of both the Rx1-otx/

crx and Rx1-rhodopsin transcriptional cascades is regulated by the

Hippo-Yap pathway during zebrafish photoreceptor development.

Our mutational analysis of the Yap (5SA) protein demonstrated

that Yap’s TEAD-binding, WW, and transcription activation

domains all play a pivotal role in the regulation of retinogenesis

(Fig. 3). TEAD family members have previously been shown to be

critical partners of Yap in regulating neural progenitor cells. For

example, Yap functions through TEAD family members to control

the proliferation of progenitors in the chicken spinal cord [32]. In

the Xenopus neural plate, Yap and TEAD1 cooperate to expand

neural progenitors and directly regulate pax3 expression [21]. Our

study therefore provides more evidence that the precise regulation

of Yap-TEAD interaction is important for maintaining normal

neurogenesis. In addition to TEAD family members, PPXY motif-

containing TFs, such as ErbB4, p73 and RUNX2, have been

shown to interact with Yap via its WW domains [33–35]. For

instance, Yap suppresses RUNX2-dependent transcriptional

activation of the osteocalcin gene promoter [36]. Our study identifies

zebrafish Rx1 as a novel photoreceptor differentiation factor, and

shows that Rx1’s PPXY motif interacts with the WW domains of

Yap. This result is consistent with previous observations that many

protein interactions associated with Hippo-Yap signaling rely on

the binding of a protein’s PPXY motif to Yap’s WW domains [37–

39]. We postulate that Yap functions as a bifunctional transcrip-

tional cofactor by using its TEAD-binding or WW domains; i.e.,

Yap co-activates the proliferation of RPCs induced by TEAD

family members, but also co-represses retinal photoreceptor

Figure 4. Yap is directly involved in zebrafish retinogenesis. (A) Schematic illustration of the base hsp70-EGFP-yap construct (left panel) and
the procedure for the heat shock experiment (right panel). Zebrafish embryos at the one-cell stage were injected with plasmid DNA containing the
heat shock promoter constructs indicated in (B). At 21 hpf, injected embryos were immersed in a 37uC water bath for 1 h to apply heat shock and
thus induce expression of EGFP-fused Yap. At 54 hpf, EGFP-expressing embryos were isolated and classified on the basis of their phenotypic features.
(B) Representative images of the embryos in (A) that were injected with heat shock promoter constructs as indicated on the left side of panels. For
each column, top right panels show lateral views of whole embryos, top left panels show higher magnification images of the head regions of the
embryos, and bottom panels are fluorescent images of the corresponding top panels. White arrowheads, areas of AP. (C) Quantification of
phenotypes of the embryos injected with heat shock promoter constructs in (A, B) as analyzed at 54 hpf. Color classification is as for Fig. 1A except
that the phenotype of AP alone is indicated by striped orange shading. Results are presented as the percentage of the total number of embryos
examined (N).
doi:10.1371/journal.pone.0097365.g004
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differentiation through interaction of its WW domains with Rx1

(Fig. S4).

It is worth noting that the zebrafish genome contains additional

PPXY motif-containing retinal TFs, including ROR members and

Nrl (Fig. S5B and S5C); these proteins could also be potential Yap

targets. In particular, zebrafish RORa and RORb possess a

PPXY motif that is highly conserved among vertebrate species

(Fig. S5B). Furthermore, RORa and RORb are known to be

crucial for photoreceptor cell differentiation because they directly

regulate multiple photoreceptor genes [40–42]. Further analyses of

TFs expressed in vertebrate photoreceptor tissues should help to

evaluate the general role of Yap in photoreceptor cell differenti-

ation.

Yap and its paralogous coactivator TAZ are central nuclear

effectors of Hippo signaling and play critical roles in early

development [43]. In most vertebrates, Yap occurs both in the

Yap1-1 isoform, which has a single WW domain, and in the Yap1-

2 isoform, which has tandem WW domains [44]. In contrast,

vertebrate TAZ occurs almost exclusively in an isoform with a

single WW domain [45]. Recently, a second TAZ isoform was

identified in medaka that possesses tandem WW domains like the

Yap1-2 isoform [45]. In this study, the affinity between TAZ and

PPXY-containing ligands was enhanced by the presence of the

additional WW domain, potentially affecting partner protein

selection. However, it remains to be determined whether the

second TAZ isoform shares binding partners and functional

redundancy with the Yap1-2 isoform during early fish develop-

ment.

Our studies have demonstrated that active Yap can repress

retinal photoreceptor cell differentiation, at least in part, by

directly blocking the Rx transcriptional machinery. However, the

upstream factors that control the timing of Hippo-Yap activation

remain unknown. It is possible that the apicobasal polarity protein

Crumbs (CRB) is a candidate upstream sensor regulating Yap

activity during retinogenesis. Pellissier et al. have recently reported

that the loss of both CRB1 and CRB2 during early retinogenesis in

mice prevents the development of a separate photoreceptor layer

and leads to a loss of retinal function that is reminiscent of the

abnormalities of humans with Leber Congenital Amaurosis [46].

Pellissier et al. also showed that the transcription of connective tissue

growth factor, a Yap-regulated gene, was reduced in CRB1/CRB2

double KO mice [46], suggesting a critical role for CRB in

regulating Yap activity and RPC proliferation during vertebrate

retinogenesis. Other cell-extrinsic signals, such as mechanical

forces, GPCR ligands, cell density, and serum concentration, have

been shown to regulate the Hippo pathway during tissue-specific

stem cell differentiation [47]. Understanding exactly how such a

variety of microenvironmental signals might coordinate Hippo

pathway signaling during RPC/photoreceptor cell fate determi-

nation awaits future study.

Materials and Methods

Statement on the Ethical Treatment of Animals
This study was carried out in strict accordance with the

recommendations in the ethical guidelines of Tokyo Medical and

Dental University. All experimental protocols in this study were

approved by the Animal Welfare Committee of Tokyo Medical

and Dental University (Permit Number: 2010-212C). All exper-

iments were performed in a manner that minimized pain and

discomfort.

Zebrafish Maintenance and Staging
The TL wild type (WT) strain was maintained essentially as

described in ‘‘The Zebrafish Book’’ [48]. Embryos were produced

by natural matings and staged by standard morphological criteria

or by hours or days post-fertilization (hpf or dpf), as described [49].

Phylogenetic Tree
Amino acid sequences of Mst1 and Mst2 of various species were

obtained from the Ensembl database. The Ensembl ID numbers of

the sequences used were as follows: human MST1

(ENSP00000361892), mouse MST1 (ENSMUSP00000018353),

Xenopus Mst1 (ENSXETP00000049383), medaka Mst1 (EN-

SORLP00000024937), pufferfish Mst1 (ENSTNIP00000007894),

stickleback Mst1 (ENSGACP00000000023), human MST2

(ENSP00000390500), mouse MST2 (ENSMUSP00000018476),

Xenopus Mst2 (ENSXETP00000038688), zebrafish Mst2 (EN-

SDARP00000015367), medaka Mst2 (ENSORLP00000023002),

pufferfish Mst2 (ENSTNIP00000012004), stickleback Mst2 (EN-

SGACP00000004790) and Drosophila Hippo (FBpp0085688). A

Genescan prediction from the Ensembl database was used to

obtain the complete medaka Mst2 sequence. These amino acid

sequences were aligned with each other and any positions

containing gaps were eliminated. The phylogenetic tree was

constructed using the neighbor-joining method and ClustalX

software [50]. The reliability of the tree was estimated using the

bootstrap method and 10,000 replications.

Antisense Morpholino (MO) against mst2
The mst2 MO (59-ATGGG CTGTT AAAAC ACAAT

GAGGA-39) was designed to target the splice acceptor site of

exon 4 of the zebrafish mst2 gene (ENSDARG00000011312) and

was synthesized by GeneTools, LLC (Philomath, OR). For

knockdown, mst2 MO solution (13.3 or 20 ng) was injected into

the yolks of one-cell to four-cell stage zebrafish embryos

immediately beneath the cell body. The standard negative control

MO (59-CCTCT TACCT CAGTT ACAAT TTATA-39) was

injected into a control cohort of zebrafish embryos in a similar

fashion. Reduction in mst2 mRNA was confirmed by RT-PCR

analysis using the oligonucleotide primer pair 59-AGCCA

TTCAC AAGGA ATCAG G-39 and 59-GGTAA GTTGT

CCAGC TACTC C-39.

Figure 5. Retina-specific expression of yap (5SA) induces retinogenesis defects without affecting body axis formation. (A) Schematic
illustration of the base rx-EGFP-yap construct (left panel) and the procedure for the experiment (right panel). Zebrafish embryos at the one-cell stage
were injected with plasmid DNA containing the rx promoter constructs indicated in (B). (B) Representative dorsal and lateral views of the embryos in
(A) that were injected with rx promoter constructs as indicated on the left side of panels. Data are presented as for Fig. 4B. White arrowheads, areas of
AM plus AP. (C) Quantification of phenotypes of the embryos injected with rx promoter constructs in (A, B) as analyzed at 32 hpf. Color classification
is as for Fig. 4C except that the phenotype of AM plus AP is indicated by striped red shading. Results are presented as the percentage of the total
number of embryos examined (N). Note that expression of yap (5SA) variants mutated in both the WW1 and WW2 domains prevented the appearance
of abnormal eye phenotypes.
doi:10.1371/journal.pone.0097365.g005
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Figure 6. Yap (5SA) mRNA-injected embryos exhibit dramatic downregulation of retinal photoreceptor genes. (A) The top five GO
categories for genes downregulated by over 4.0-fold in yap (5SA)-expressing embryos at 48 hpf as determined by microarray analysis. (B) A summary
of microarray results for the top 50 downregulated genes in the yap (5SA)-expressing embryos in (A) compared with yap (WT)-expressing embryos at
42, 48 and 54 hpf. The expression levels of genes in the yap (5SA)-injected embryos are shown as Log2 (fold change) values relative to yap (WT)-
injected embryos. The order of the genes is based on expression levels detected at 48 hpf. Red lettering indicates retinal photoreceptor genes whose
expression was severely decreased in yap (5SA)-injected embryos. (C) RT-PCR analysis of mRNA expression of the indicated retinal genes in zebrafish
embryos injected with yap (WT) or yap (5SA) mRNA and examined at 48 hpf. b-actin, loading control. Yap (5SA)-expressing embryos are grouped by
abnormal phenotype, as indicated. Results are representative of two independent experiments.
doi:10.1371/journal.pone.0097365.g006
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Total RNA Extraction and RT-PCR Analysis
Total RNA was isolated from 7–10 zebrafish embryos at 2 dpf

using TRIzol reagent according to the manufacturer’s protocol

(Invitrogen). First-strand cDNA was synthesized from 1 mg total

RNA using SuperscriptIII reverse transcriptase (Invitrogen) and

oligo-dT primer. Primers used for RT-PCR analysis of mRNA

expression in zebrafish extracts were as follows: for rhodopsin, 59-

ACAGA GGGAC CGGCA TTCTA CG-39 and 59-CAGGC

CATGA CCCAG GTGAA G-39; for crx, 59-AGAGA CGCGG

CCGTC CCAAG-39 and 59-TCTTC ACGCA TCTTT CCTTC

C-39; for otx5, 59-ACCCT AACAC TCCAC GGAAA C-39 and

59-TGCAG TCCAG GCCTG TAAAG-39; for otx2, 59-ATGAT

GTCGT ATCTC AAGCA ACC-39 and 59-AGGAA GTGGA

ACCAG CATAG CC-39; for rx1, 59-GATGC CGACA TGTTC

TCCAA C-39 and 59-CGCCA TGGGC TGCAT GCTTT G-39;

for rx2, 59-GGCTG CCTCT CCACA GAAAG-39 and 59-

AAACC ACACC TGAAC TCGAA C-39; for b-actin, 59-CAGCT

TCACC ACCAC AGC-39 and 59-GTGGA TACCG CAAGA

TTCC-39.

Plasmid Construction
Because our laboratory has been studying the small fish medaka

for decades, we took advantage of the availability of medaka yap

(WT) cDNA and the evolutionary conservation of yap sequences

among fish species to create plasmids expressing mutated yap

cDNAs. Our full-length medaka yap (WT) cDNA was originally

isolated as a homolog of the human YAP1-2b isoform [19,44]. We

subcloned this cDNA into a modified pCS2+ vector, which

positions the FLAG tag at the N-terminus of the insert. The Yap

(5SA) mutant and its variants with point mutations or deleted

domains were generated by the inverse PCR-based method using

the primers listed in Table S1. For heat shock experiments, yap

(WT), yap (5SA) and its variants were cloned into a modified

pCS2+ vector in which the CMV promoter was replaced with the

zebrafish hsp70 promoter and the EGFP coding sequence (see

Fig. 4A). For retina-specific expression, the zebrafish hsp70

promoter was replaced with a 4-kb fragment of the medaka rx3

promoter, which was isolated by PCR using the medaka genome

and the primer pair 59-CCGCC GGCCT CTGAT GTGAT

GTTGA CAAA-39 and 59-CCCCA TGGTT GTCTA AAAAG

GAACT TAAA-39 (see Fig. 5A) [51]. For co-immunoprecipitation

analyses, the PCR-amplified full-length zebrafish rx1 cDNA was

cloned into a pMyc-CMV5 vector (the kind gift of Dr. T. Katada,

University of Tokyo), placing the Myc tag at the N-terminus of the

insert. The Rx1 variant in which the PPXY motif was deleted was

generated by the inverse PCR-based method using the primers

listed in Table S1.

Synthesis of Capped mRNA for Microinjection
Capped sense strand mRNA was synthesized using SP6 RNA

polymerase and the mMESSAGE mMACHINE system (Ambion)

according to the manufacturer’s protocol. RNA injections were

performed as described previously [52].

Microarray Analysis
TRIzol reagent was used to extract total RNA at 42, 48 or

54 hpf from whole zebrafish embryos that had been injected with

yap (WT) or yap (5SA) mRNA. RNA quality assurance, cDNA

Figure 7. The WW domains of Yap interact with the PPXY motif
of Rx1. (A) Schematic illustration of the zebrafish Rx1 and Rx1 (DPPXY)
constructs. A partial amino acid sequence including the PPXY motif of
zebrafish Rx1 was aligned with the sequences of Rx from the indicated
species. The PPXY motif (red lettering) is highly conserved among
vertebrates. A detailed alignment of Rx family proteins can be found in
Fig. S5A. (B) Co-immunoprecipitation analysis of HEK293T cells
transiently expressing Myc-Rx1 that were co-transfected with empty
vector (–), or vector expressing Yap (5SA), Yap (5SA/WW1*, 2*) or Yap
(5SA/TEAD*). Lysates were immunoprecipitated (IP) with anti-FLAG Ab
to isolate Yap, followed by Western blotting (WB) with anti-Myc Ab to
detect Myc-Rx1 (top), or with anti-FLAG Ab to detect FLAG-Yap
(middle). (C) Co-immunoprecipitation analysis of HEK293T cells

transiently expressing FLAG-Yap (5SA) that were co-transfected with
empty vector (–), or vector expressing Rx1 or Rx1 (DPPXY). Lysates were
IP’d using anti-FLAG Ab and subjected to WB with anti-Myc Ab to
detect Rx1 (top), and with anti-FLAG Ab to detect Yap (middle). Bottom,
WB analysis of total cell lysate using anti-Myc Ab to detect Rx1.
doi:10.1371/journal.pone.0097365.g007
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synthesis, and cRNA labeling and hybridization were carried out

by Takara Bio Inc. (Otsu, Japan) using a Zebrafish (V3) Gene

Expression Microarray 4X44K, the Low Input Quick Amp

Labeling Kit, the Gene Expression Hybridization Kit, and the

Gene Expression Wash Buffers Pack (all from Agilent Technol-

ogies) according to the manufacturer’s protocols. Raw data

extraction and analyses were performed using Agilent Feature

Extraction software (Agilent Technologies). Gene Ontology

analysis was conducted using KeyMolnet software (IMMD Inc.,

Tokyo, Japan).

Antibodies
Mouse monoclonal anti-FLAG (F1804) and rabbit polyclonal

anti-Myc (C3956) antibodies (Abs) were purchased from Sigma–

Aldrich Co.

Co-immunoprecipitation Assay
Co-immunoprecipitation assays were performed as previously

described [53], with some modifications. HEK293T cells were

plated in 10-cm dishes and transfected with the appropriate

expression plasmids as described in the Figure Legends. Cells were

washed twice with phosphate-buffered saline (PBS) and homog-

enized in binding buffer [150 mM NaCl, 1 mM EDTA, 0.5%

Nonidet P-40, 1 mM EGTA, 5% glycerol, and 20 mM Tris-HCl

(pH 7.4)] supplemented with 4 mg/mL aprotinin, 50 mM NaF,

and 0.1 mM Na3VO4. Extracts were clarified by centrifugation for

10 min at 15,000g, and supernatants were precleared by

incubation with 20 ml protein G-agarose beads (GE Healthcare)

for 1 h at 4uC. After preclearing, supernatants were incubated

with 20 ml anti-FLAG M2-agarose beads (Sigma–Aldrich) over-

night at 4uC. The beads were washed three times with binding

buffer, boiled in SDS sample buffer, and centrifuged. The

supernatants were fractionated by SDS-PAGE and analyzed by

Western blotting as described below.

Western Blotting
Immunoprecipitated materials and total cell extracts obtained as

described above were fractionated by SDS-PAGE and transferred

electrophoretically to PVDF membranes. Membranes were

incubated in blocking solution [2% nonfat skim milk in Tris-

buffered saline (TBS)] for 1 h at room temperature (RT). Blocked

membranes were incubated with anti-FLAG or anti-Myc Ab in

5% BSA/TBS overnight at 4uC. Membranes were washed three

times in 0.2% Tween 20 in TBS (TBST), incubated with anti-

mouse/rabbit horseradish peroxidase-conjugated Abs in 2%

nonfat skim milk in TBS for 1 h followed by three washes in

TBST. Proteins were visualized using the SuperSignal West Femto

Kit (Pierce) and a ChemiDoc XRS system (Bio-Rad), as described

[52].

Supporting Information

Figure S1 Knockdown analysis of the zebrafish mst2
gene. (A) Alignment of amino acid sequence of zebrafish Mst2

with its human and mouse homologs. Amino acids were aligned

using the ClustalX program. Residues are colored according to

their physicochemical properties [54]. Gaps have been introduced

to optimize alignment. *, critical autophosphorylation site

reflecting kinase activation [55]. Black underline, SARAH

domain. Arrow, insertion site of the in-frame stop codon in the

zebrafish mst2 morphant. (B) Phylogenetic tree inferred from

amino acid sequences of Mst proteins. Statistical significance (%) is

shown on each node. Nodes with closed circles represent species

divergences, while the node with the open circle represents gene

duplication. Scale bar, 0.02 substitutions per site. (C) Top panel,

schematic illustration of the target site of the mst2 MO. Arrows

indicate positions of primer pairs used in RT-PCR evaluation of

MO efficacy. Bottom panel, partial sequences of native and intron

3-inserted mst2 mRNAs. The stop codon (in red lettering) occurs in

the inserted intron 3 of mst2 mRNA, resulting in the production of

a truncated Mst2 protein. (D) RT-PCR validation of mst2 MO

efficacy. Total RNA was extracted at 52 hpf from embryos

injected with control MO (20 ng) or mst2 MO (13.3 ng) and

showing the phenotypes of abnormal eye pigmentation plus short

body length (AP & SL), or abnormal eye morphology (AM) plus

AP & SL. b-actin, loading control.

(TIF)

Figure S2 Morphological analysis of yap (5SA) mRNA-
injected zebrafish embryos during the gastrulation and
segmentation periods. (A) Alignment of amino acid sequence

of medaka Yap with its zebrafish homolog performed as in Fig. S1.

*, conserved serine residues phosphorylated by Lats. (B) Repre-

sentative images of yap (5SA) mRNA-injected zebrafish embryos

(N = 3) at the indicated developmental stages during gastrulation.

Embryos were injected with EGFP mRNA as a control. (C)

Representative lateral images of the embryos in (B) examined at

the indicated stages during segmentation.

(TIF)

Figure S3 Reduced retinal gene expression in mst2
morphants. (A) RT-PCR analysis of mRNA levels of the

indicated retinal genes in zebrafish embryos injected with control

MO or mst2 MO and examined at 52 hpf. Mst2 morphants were

grouped by abnormal phenotype, as indicated. (B) RT-PCR

analysis of rhodopsin mRNA expression in the morphants in (A). For

A and B, results are representative of two independent trials.

(TIF)

Figure S4 A proposed model for the dual function of
Hippo-Yap signaling during retinal progenitor cell
proliferation versus photoreceptor cell differentiation.
Left panel: When the Hippo pathway is inactive, activated Yap

transactivates cell proliferation-related genes via association with

TEAD. At the same time, activated Yap represses Rx1-mediated

transcription of the otx, crx and rhodopsin genes, which results in

suppression of photoreceptor cell differentiation. Right panel:

When the Hippo pathway is active, Yap activation is blocked.

TEAD on its own is insufficient to drive cell proliferation-related

gene transcription. Without Yap-mediated suppression, Rx1-

mediated transcription of otx, crx and rhodopsin is upregulated,

leading to the differentiation of mature photoreceptor cells.

(TIF)

Figure S5 The PPXY motif in retinal transcription
factors is highly conserved among vertebrate species.
Sequence alignment of C-terminal amino acid residues of the

retinal TFs Rx (A), ROR (B) and NRL (C) from the indicated

species. Residues are colored according to their physicochemical

properties. The red boxes indicate the positions of the PPXY

motif. The blue boxes indicate the OAR domain of Rx

(transactivation domain), the a-Helix10 domain of ROR, and

the leucine zipper of NRL.

(TIF)

Table S1 List of primer sequences for plasmid con-
structions.

(TIF)

Methods S1 Supporting methods.

(DOC)
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