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Abstract

Heterochromatin contains a significant part of nuclear DNA. Little is known about the mech-

anisms that govern heterochromatic DNA stability. We show here that in the yeast Saccha-

romyces cerevisiae (i) DNA mismatch repair (MMR) is required for the maintenance of

heterochromatic DNA stability, (ii) MutLα (Mlh1-Pms1 heterodimer), MutSα (Msh2-Msh6

heterodimer), MutSβ (Msh2-Msh3 heterodimer), and Exo1 are involved in MMR at hetero-

chromatin, (iii) Exo1-independent MMR at heterochromatin frequently leads to the formation

of Pol ζ-dependent mutations, (iv) MMR cooperates with the proofreading activity of Pol ε
and the histone acetyltransferase Rtt109 in the maintenance of heterochromatic DNA stabil-

ity, (v) repair of base-base mismatches at heterochromatin is less efficient than repair of

base-base mismatches at euchromatin, and (vi) the efficiency of repair of 1-nt insertion/dele-

tion loops at heterochromatin is similar to the efficiency of repair of 1-nt insertion/deletion

loops at euchromatin.

Author summary

Eukaryotic mismatch repair is an important intracellular process that defends DNA

against mutations. Inactivation of mismatch repair in human cells strongly increases the

risk of cancer initiation and development. Although significant progress has been made in

understanding mismatch repair at euchromatin, mismatch repair at heterochromatin is

not well understood. Baker’s yeast is a key model organism to study mismatch repair. We

determined that in baker’s yeast (1) mismatch repair protects heterochromatic DNA from

mutations, (2) the MutLα, MutSα, MutSβ, and Exo1 proteins play important roles in

mismatch repair at heterochromatin, (3) Exo1-independent mismatch repair at hetero-

chromatin is an error-prone process; (4) mismatch repair cooperates with two other intra-

cellular processes to protect the stability of heterochromatic DNA; and (5) the efficiency
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of repair of base-base mismatches at heterochromatin is lower than the efficiency of repair

of base-base mismatches at euchromatin, but the efficiency of 1-nt insertion/deletion loop

repair at heterochromatin is similar to the efficiency of 1-nt insertion/deletion loop repair

at euchromatin.

Introduction

Mutations fuel evolution and are also the basis of numerous diseases including cancer [1].

Base substitutions, 1-bp deletions, and 1-bp insertions are the most common mutations in the

cell. Mutations are formed as a result of DNA damage and replication errors. Cells have

evolved multiple mechanisms that suppress mutations [1, 2]. The high-fidelity DNA synthesis

and DNA mismatch repair (MMR) play major roles in protecting the genome from mutations

[3–8]. Replicative DNA polymerases achieve the high-fidelity DNA synthesis by selecting cor-

rect dNTPs and by proofreading DNA synthesis errors [4, 9]. The nucleotide selectivity step is

responsible for keeping the error rate of replicative DNA synthesis at the level of 10−4–10−6,

and proofreading further increases the fidelity of replicative DNA synthesis by 10–1,000 fold.

Nuclear DNA is mainly synthesized by DNA polymerases (Pols) α, δ, and ε [10–12]. At the

eukaryotic DNA replication fork, Pol ε performs the bulk of leading-strand synthesis, and Pol

δ carries out the majority of lagging-strand synthesis [10–15]. Pol δ and Pol ε are the only two

nuclear DNA polymerases that have proofreading activities [16, 17]. Pol δ can proofread both

its own errors and those of Pol ε, but Pol ε can only proofread its own mistakes [18].

MMR removes a large fraction of DNA polymerase errors that escape proofreading [17,

19–21]. As a result, MMR decreases the level of spontaneous mutations in the genome by ~100

fold [22]. MMR efficiency is different at different genomic sites [23], and it is higher on the lag-

ging than leading strand [24]. Strand breaks in the leading and lagging strands are likely to be

the signals that direct eukaryotic MMR to remove mismatches on the daughter strands [25–

28]. MutLα- and Exo1-dependent MMR is a major mechanism for correction of DNA poly-

merase errors in eukaryotic cells [29, 30]. This mechanism includes mismatch excision and

DNA re-synthesis steps, and it involves a mismatch recognition factor (MutSα or MutSβ), the

replicative clamp PCNA, the PCNA loader RFC, and Pol δ, in addition to MutLα endonuclease

and the 5’!3’ exonuclease Exo1 [29–58]. Loss of Exo1 causes a modest defect in MMR, indi-

cating that MMR is able to occur via Exo1-independent mechanism(s) [41, 45, 48, 57, 59–61].

Exo1-independent MMR is not as well understood as Exo1-dependent MMR [29, 30, 62]. A

genetic study implicated proofreading activity of Pol δ in Exo1-independent MMR in budding

yeast [45], and biochemical analyses of defined systems provided evidence that MutSα, MutLα
endonuclease, PCNA, RFC, and Pol δ-driven strand displacement DNA synthesis are involved

in human Exo1-independent MMR [57, 61].

Like proofreading and MMR, the histone acetyltransferase Rtt109 [63–65] is required for

high-fidelity DNA replication [66]. Loss of Rtt109 increases the spontaneous mutation rate

[66]. Rtt109 supports DNA replication fidelity by acetylating histone H3 on the K56 residue

[66]. Histone H3 K56ac is an abundant histone modification associated with S phase and DNA

replication in S. cerevisiae [67, 68]. The mechanism by which Rtt109-dependent H3 K56ac

maintains the replication fidelity is not well understood, but a genetic analysis [66] indicated

that it is likely to entail Rad51 and Rad52, key components of the homologous recombination

machinery [69].

Nuclear DNA is packaged into euchromatin and heterochromatin soon after the passage of

the DNA replication fork [70, 71]. Compared to euchromatin, heterochromatin is more

Mismatch repair and heterochromatin

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007074 October 25, 2017 2 / 23

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1007074


condensed. Transcription in heterochromatin is silenced/suppressed whereas it is active in

euchromatin. In S. cerevisiae, heterochromatin is present atHMR,HML, subtelomeric regions,

and the rDNA locus [70, 72]. Sir2, Sir3, and Sir4 proteins are the structural components of het-

erochromatin atHMR,HML, and subtelomeric regions [70], but heterochromatin at rDNA

does not include the latter two proteins. A Sir2-Sir3-Sir4-nucleosome complex is the basic unit

of heterochromatin at theHMR,HML, and subtelomeric loci [70, 72, 73]. In this complex,

Sir2-Sir3-Sir4 heterotrimer contacts the nucleosome via Sir3 and Sir4. In addition to being a

structural component of yeast heterochromatin, Sir2 also has a NAD+-dependent histone dea-

cetylase activity that is required for heterochromatin formation [74]. In the process of hetero-

chromatin formation Sir2 deacetylates the N-terminal tails of nucleosomal histones H3 and

H4, facilitating loading of Sir2-Sir3-Sir4 complexes onto the nucleosomes.

Previous research has been mainly focused on investigating eukaryotic MMR in the context

of naked DNA and euchromatin. Up to date, only two studies have analyzed MMR at hetero-

chromatin [75, 76]. One of the studies used bioinformatic approaches to investigate distribution

of base-base substitutions at 1-Mb resolution in late heterochromatic and early euchromatic

regions of cancer genomes [75]. It provided evidence that in cancer cells the MMR system

removes base-base mismatches less efficiently at heterochromatin than at euchromatin. The

other study revealed that Msh6-dependent correction of small insertion/deletion loops and

base-base mismatches in S. pombe is less efficient at heterochromatin than at euchromatin [76].

In this study, we examined MMR at heterochromatin in S. cerevisiae. We determined that

MMR at heterochromatin involves MutLα, MutSα, MutSβ, an Exo1 and that MMR occurring

at heterochromatin in the absence of Exo1 is an error-prone process. In addition, we deter-

mined that MMR cooperates with the Pol ε proofreading activity and Rtt109 to maintain the

stability of heterochromatic DNA. In agreement with a previous study [75], we established that

the efficiency of repair of base-base mismatches at heterochromatin is lower than the efficiency

of repair of base-base mismatches at euchromatin. However, we found that the efficiency of

1-nt insertion/deletion loop repair at heterochromatin is very similar to the efficiency of 1-nt

insertion/deletion loop repair at euchromatin. This finding does not support the model that the

efficiency of MMR at heterochromatin is reduced by lower accessibility of MMR proteins to

heterochromatic DNA compared to euchromatic DNA [75, 76].

Results

Contribution of MMR to the maintenance of heterochromatic DNA

stability in S. cerevisiae

We started this work to study the impact of MMR on spontaneous mutation rates at hetero-

chromatic loci in S. cerevisiae. In the majority of our experiments, we utilized a forward muta-

tion assay that took advantage of the URA3 gene. In this assay, yeast cells that acquire loss-of-

function mutations in heterochromatic URA3 are selected on a medium containing 5-FOA

(5-fluoroorotic acid) and 5 mM nicotinamide (NAM). NAM was included into the selective

medium because it switches the heterochromatic URA3 to a euchromatic state, which leads to

its expression [77, 78]. We first confirmed that when the URA3 reporter was inserted at hmr
(Fig 1A) in a wild-type strain, it was in a heterochromatic state (Fig 1B). This is in a full

agreement with a previous work that showed that a similar reporter, K. lactis URA3, is hetero-

chromatic at hmr [78]. We then established that MSH2was not required to maintain the het-

erochromatic status of URA3 at hmr (Fig 1C). Next, we studied how MSH2 deletion in the

wild-type strain affected the 5-FOAR mutation rate at heterochromatic hmr::URA3. As shown

in Fig 1D, we found that deletion of MSH2 in the wild-type strain increased the 5-FOAR

mutation rate at heterochromatic hmr::URA3 by 8 fold. This finding showed that MMR was
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involved in the protection of heterochromatic hmr::URA3 from mutations. We also investi-

gated whether loss of MSH2 affected mutation rates at two other heterochromatic loci: hml::
URA3 and Chr VII-L::URA3 (Fig 2). (The latter locus is near the left telomere of Chr VII [79].)

The data revealed that MSH2 deletion in the wild-type strains increased the 5-FOAR mutation

rates at heterochromatic hml::URA3 and Chr VII-L::URA3 loci by 12 and 6 fold, respectively

(Fig 2). Collectively, the results of these experiments demonstrated that MMR was essential for

the maintenance of heterochromatic DNA stability in S. cerevisiae.

Participation of MutLα, MutSα, and MutSβ in MMR at a heterochromatic

locus

Yeast MutLα (Mlh1-Pms1 heterodimer), MutSα (Msh2-Msh6 heterodimer), and MutSβ
(Msh2-Msh3 heterodimer) play important roles in MMR at euchromatic loci [31, 36, 80, 81].

We performed experiments to study whether these proteins contributed to MMR at hetero-

chromatic hmr::URA3. We determined that the FOAR mutation rate in the mlh1Δ, pms1Δ, or

msh3Δmsh6Δ strain was similar to that in themsh2Δ strain (Fig 1D). Additionally, we deter-

mined that the FOAR mutation rate for the msh6Δ strain was 3 times higher than that for the

wild-type strain and that the msh3Δ strain displayed the same FOAR mutation rate as the wild-

type strain (Fig 1D). Collectively, these experiments revealed that (i) MutLα, MutSα, and

MutSβ were involved in MMR at heterochromatin and (ii) MutSα played a more important

role in MMR at heterochromatic hmr::URA3 than MutSβ.

Fig 1. Importance of MMR for the stability of heterochromatic DNA at hmr::URA3. (A) Genetic maps of heterochromatic HMR and hmr::URA3. (B) URA3

is heterochromatic at hmr in a wild-type strain. The same dilution of an overnight culture of the wild-type strain was plated onto a synthetic complete medium

(SC), a SC medium supplemented with 1 g/L 5-FOA (SC + 5-FOA), and a SC medium supplemented with 1 g/L 5-FOA and 5 mM nicotinamide (SC + 5-FOA + 5

mM NAM). The plates were incubated at 30˚C for 3 days. Representative images are shown. (C) Deletion of MSH2 does not perturb heterochromatin at hmr::

URA3. The experiments were carried out as described in B. The data are shown as averages ± 1 S.D. (n�11). Additional analysis showed that heterochromatin

at hmr::URA3 is not affected by the exo1Δ, msh2Δ exo1Δ, rev3Δ, msh2Δ rev3Δ, exo1Δ rev3Δ, mlh1Δ, pms1Δ, msh3Δmsh6Δ, msh3Δ, msh6Δ, pol2-4, pol2-4

pms1Δ, rtt109Δ, and msh2Δ rtt109Δmutations (S1 Table). (D) Spontaneous FOAR mutation rates at heterochromatic hmr::URA3 in the indicated isogenic

strains. The wild-type strain was BKDY155. The mutation rates in this and other Figures and Tables are expressed as mutations per cell division and were

measured as described under Materials and Methods. CI, confidence interval. The mutation rates that are marked with a, b, or d are not statistically different from

each other (ap = 0.7, bp = 0.19, and dp = 0.21), and the mutation rates that are marked with c or e are statistically different from each other (c p = 0.0001 and
e p<0.0001).

https://doi.org/10.1371/journal.pgen.1007074.g001
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Involvement of Exo1 in MMR at a heterochromatic locus

Previous genetic studies implicated Exo1 in MMR at euchromatic regions [41, 48, 59, 60]. We

studied whether Exo1 had a role in MMR at a heterochromatic locus. We established that dele-

tion of EXO1 in a wild-type strain increased the 5-FOAR mutation rate at heterochromatic

hmr::URA3 by 4-fold and that msh2Δwas epistatic to exo1Δ for 5-FOAR mutations at hetero-

chromatic hmr::URA3 (Fig 1D). These data suggested that loss of EXO1 caused a strong defect

in MMR at heterochromatin. We then determined and analyzed the ura3 mutation spectra at

heterochromatic hmr in the wild-type, exo1Δ,msh2Δ, andmsh2Δ exo1Δ strains (Table 1, Figs

3 and 4). It can be seen that the most common mutations in the ura3 mutation spectra of the

wild-type and exo1Δ strains were base substitutions, whereas the most common mutations in

the ura3 mutation spectra of themsh2Δ andmsh2Δ exo1Δ strains were 1-bp deletions. Further

analysis of the data revealed that ~95% of 1-bp deletions in the msh2Δ and msh2Δ exo1Δ spec-

tra were within N�3 mononucleotide runs (Fig 4), but only ~60% and ~15% of 1-bp deletions

in the wild-type and exo1Δ spectra, respectively, were within such runs (Fig 3). To determine

whether the ura3 mutation spectra of themsh2Δ,msh2Δ exo1Δ, exo1Δ, and wild-type strains

were statistically different from each other or not, we performed the pairwise comparisons

using χ2 test of independence and adjusted the p values with the Bonferroni correction. The

data showed that there was no statistical difference between the ura3 mutation spectra of the

msh2Δ andmsh2Δ exo1Δ strains, whereas those two spectra were statistically different from the

Fig 2. Contribution of MMR to the stability of heterochromatic DNA at hml and a Chr VII-L telomeric

region. (A) Outline of heterochromatic HML, hml::URA3, Chr VII-L, and Chr VII-L::URA3 regions. (B)

Deletion of MSH2 in the wild-type strains does not disrupt heterochromatin at the hml::URA3 and Chr VII-L::

URA3 loci. The experiments were carried out as described in Fig 1B. The data are shown as averages ± 1 S.

D. (n�6). (C) Spontaneous mutation rates at the heterochromatic hml::URA3 and Chr VII-L::URA3 loci in the

isogenic wild-type and msh2Δ strains. The wild-type strains were BKDY438 and BKDY541. The mutation

rates were measured as described under Materials and Methods. 95% confidence intervals are in

parentheses.

https://doi.org/10.1371/journal.pgen.1007074.g002
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ura3 mutation spectra of the wild-type and exo1Δ strains (Table 2). In addition, we conducted

the pairwise comparisons of the ura3 mutation spectra of themsh2Δ,msh2Δ exo1Δ, and wild-

type strains utilizing a Monte Carlo modification of the Pearson χ2 test of spectra homogeneity

[82]. For this statistical analysis the spectra were arranged in a way (S2 Table) that was differ-

ent from the one shown in Table 1. The results of this statistical analysis revealed that the

ura3 mutation spectra of the msh2Δ and msh2Δ exo1Δ strains were not statistically different

from each other (χ2 = 7.9, P = 0.8945), but were statistically different from the ura3 mutation

spectrum of the wild-type strain (χ2 = 38.1 and 39.7, respectively, P< 10−5, the critical 5%

value = 20.9). Our findings that the ura3 mutation spectra of themsh2Δ andmsh2Δ exo1Δ
strains were not statistically different from each other and thatmsh2Δwas epistatic to exo1Δ
with respect to FOAR mutations at heterochromatic hmr::URA3 (Fig 1D) demonstrated that

Exo1 was involved in MMR at heterochromatin. Moreover, our finding that the ura3 mutation

spectrum of an exo1Δ strain was statistically different from the ura3 mutation spectra of the

msh2Δ andmsh2Δ exo1Δ strains showed that Exo1-independent MMR at heterochromatin

produced mutational intermediates.

Formation of REV3-dependent mutational intermediates during

Exo1-independent MMR at a heterochromatic locus

The REV3 gene encodes the catalytic subunit of the error-prone Pol z [83–85]. Prior work

showed that deletion of REV3 in an exo1Δ strain suppresses the mutation rate at euchromatic

CAN1 [81]. In agreement with this, we found that introduction of rev3Δ into an exo1Δ strain

suppressed the mutation rate at euchromatic Chr V::URA3 (Fig 5). To understand the origin

of mutational intermediates, which arose at heterochromatic hmr::URA3 as a result of Exo1-in-

dependent MMR, we carried out experiments to determine whether deletion of the REV3 gene

in the exo1Δ,msh2Δ, andmsh2Δ exo1Δ strains affected the FOAR mutation rates. These experi-

ments demonstrated that deletion of REV3 in the exo1Δ strain decreased the FOAR mutation

rate to the level observed in the wild-type strain, but deletion of REV3 in themsh2Δ andmsh2Δ
exo1Δ strains did not change the FOAR mutation rates (Fig 1D). Thus, FOAR mutations pro-

duced at heterochromatic hmr::URA3 in the exo1Δ strain were REV3-dependent, whereas

FOAR mutations produced at heterochromatic hmr::URA3 in themsh2Δ andmsh2Δ exo1Δ
strains were REV3-independent. Based on these results, we concluded that Exo1-independent

MMR at heterochromatin often produced Rev3-dependent mutational intermediates. Our

analysis of the mutation rates in themsh6Δ rev3Δ,msh6Δ exo1Δ rev3Δ,msh3Δ rev3Δ, and

msh3Δ exo1Δ rev3Δ strains was consistent with this conclusion (S3 Table).

Table 1. Spectra of ura3 mutations at heterochromatic hmr in the wild-type, msh2Δ, msh2Δ exo1Δ, and exo1Δ strains.

Mutation type Genotype

wild type msh2Δ msh2Δ exo1Δ exo1Δ
1-bp deletions 7 25 24 7

Base substitutions 40 17 18 40

1-bp insertions 1 6 5 0

Complex mutations 1 1 2 3

Other mutations* 1 1 1 0

Total 50 50 50 50

The mutation spectra were obtained as described in Materials and Methods.

*, other mutations in the FOAR mutation spectra of wild-type, msh2Δ, and msh2Δ exo1Δ strains were a 2-bp insertion, a 2-bp deletion, and a 13-bp

duplication, respectively.

https://doi.org/10.1371/journal.pgen.1007074.t001
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Cooperation of the MMR system with Pol ε proofreading and the histone

acetyltransferase Rtt109 in the maintenance of heterochromatic DNA

stability

The MMR system removes DNA polymerase errors at euchromatic loci [17, 19–21, 45, 86]. To

examine whether the MMR system removes Pol ε errors at a heterochromatic locus, we

Fig 3. Spectra of ura3 mutations at heterochromatic hmr in the wild type and exo1Δ strains. The entire

sequence of the URA3 open reading frame is shown. Characters above and below the URA3 sequence

represent ura3 mutations at heterochromatic hmr in the wild type and exo1Δ strains, respectively. Base

substitutions, 1-bp deletions, and 1-bp insertions are depicted as red capital letters, blue delta symbols, and

green capital letters, respectively. A 2-bp deletion is boxed, and underlined symbols represent complex

mutations. The mutation spectra were determined as described under Materials and Methods.

https://doi.org/10.1371/journal.pgen.1007074.g003
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constructed an hmr::URA3 pol2-4 pms1Δ strain. (pol2-4 encodes the catalytic subunit of Pol ε,

which lacks the proofreading activity [16].) In agreement with the previous work [17], we

noticed that the pol2-4 pms1Δmutant grew poorly and single colonies of this mutant were of

different sizes (small, medium and large). Our analysis showed that the relative mutation rate

in the pol2-4 pms1Δ double mutant was 11 times higher than the sum of the relative mutation

rates in the single mutants (i.e. there was a strong synergistic relationship between pol2-4 and

Fig 4. ura3 mutation spectra at heterochromatic hmr in the msh2Δ and msh2Δ exo1Δ strains. Symbols

above and below the URA3 open reading frame denote ura3 mutations at heterochromatic hmr in the msh2Δ
and msh2Δ exo1Δ strains, respectively. Red capital letters, blue delta symbols, and green capital letters

represent base substitutions, 1-bp deletions, and 1-bp insertions, respectively. A 2-bp deletion and a 13-bp

duplication are boxed, and complex mutations are underlined.

https://doi.org/10.1371/journal.pgen.1007074.g004
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pms1Δ for FOAR mutations at heterochromatic hmr::URA3) (Fig 1D). The presence of the

strong synergistic relationship demonstrated that at heterochromatic hmr::URA3 Pol ε errors

that were not removed by its proofreading activity were corrected by the MMR system.

The MMR system and histone acetyltransferase Rtt109 act in overlapping pathways to pre-

serve the replication fidelity at euchromatic sites [66]. We explored whether a similar coopera-

tion between the MMR system and Rtt109 took place at heterochromatic hmr::URA3. The

experiments revealed that there was a weak synergistic relationship between msh2Δ and

rtt109Δ for ura3 mutations at heterochromatic hmr::URA3 (Fig 1D). To better understand the

nature of the cooperation, we determined and analyzed the spectra of ura3 mutations at het-

erochromatic hmr in the rtt109Δ andmsh2Δ rtt109Δ strains (S1 Fig and Table 3). The data

indicated that the MMR system and Rtt109 acted in overlapping pathways that increased the

replication fidelity by suppressing base substitutions and 1-bp deletions.

Reduced efficiency of MSH2-dependent repair of base-base

mismatches at a heterochromatic locus

During the course of this work, we noticed that the mutation rates at heterochromatic hmr::
URA3, hml::URA3, and Chr VII-L::URA3 in our wild-type strains (Figs 1 and 2) were 2–4

times higher than the mutation rates at euchromatic CAN1 in other wild-type strains [45, 66,

Table 2. Summary of χ2 test of independence of the ura3 mutation spectra at heterochromatic hmr.

Comparison p-value p-values adjusted for 7 comparisons with the Bonferroni

correction

Overall < .0001 <0.007

wild type vs. msh2Δ 0.0001 0.0007

wild type vs. msh2Δ exo1Δ 0.0004 0.0028

wild type vs. exo1Δ 0.5578 ~1

msh2Δ vs. msh2Δ exo1Δ 0.9761 ~1

msh2Δ vs. exo1Δ < .0001 <0.0007

msh2Δ exo1Δ vs. exo1Δ < .0001 <0.0007

The mutation spectra used for the pairwise comparisons are shown in Table 1.

https://doi.org/10.1371/journal.pgen.1007074.t002

Fig 5. Effect of REV3 deletion on the mutation rate at euchromatic ChrV::URA3 in an exo1Δ strain. The

mutation rates are presented as medians with 95% confidence intervals and were measured as described

under Materials and Methods except that the selective medium for the mutation rate measurements was a SC

medium containing 1 g/L 5-FOA. The exo1Δ and exo1Δ rev3Δ strains are isogenic derivatives of a wild-type

strain (FKY1292).

https://doi.org/10.1371/journal.pgen.1007074.g005
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80]. To ensure that the observed difference in the mutation rates was not a result of genetic

background variations and/or the use of the different mutation reporters, we inserted URA3 at

a Chr V euchromatic locus (where it is normally located) in a wild-type strain, which was iso-

genic to the strains carrying the heterochromatic reporters (Figs 1 and 2), and measured an

FOAR mutation rate in this strain. As shown in Fig 6A, the mutation rate at euchromatic Chr

V::URA3 of this wild-type strain was ~ 6–11 times lower than a mutation rate at a heterochro-

matic locus of a similar wild-type strain. This observation was consistent with an idea that in

wild-type strains, heterochromatic DNA was less stable than euchromatic DNA. To test this

idea we disrupted heterochromatin by introduction of sir2Δ, sir3Δ, sir4Δ, sir2-N345A, or hmr-
EΔ [87] mutation into a wild-type strain and measured the mutation rates in the constructed

strains (Fig 6A). (The N345A mutation inactivates the Sir2 histone deacetylase activity, which

is required for heterochromatin formation [74].) Analysis of the data showed that the mutation

rate at hmr::URA3 in sir2Δ, sir3Δ, sir4Δ, sir2-N345A, or hmr-EΔ strain was 3–7 times lower

than the mutation rate at heterochromatic hmr::URA3 in the wild-type strain (Fig 6A). These

Table 3. Rates of different types of ura3 mutations at the heterochromatic hmr locus in the indicated S. cerevisiae strains.

Genotype FOAR mutation rate (x 10−8) at heterochromatic hmr::URA3

Base substitutions 1-bp deletions 1-bp insertions Complex mutations Other mutations Total

Wild type 48 8.4 1.2 1.2 1.2 60

(n = 50) (1) (1) (1) (1) (1) (1)

msh2Δ 170 250 60 10 10 500

(n = 50) (3.5) (30) (50) (8.3) (8.3) (8.3)

rtt109Δ 156 13 5 18 9 200

(n = 45) (3.3) (1.6) (4.2) (15) (7.5) (3.3)

rtt109Δmsh2Δ 420 590 46 <23 46 1,100

(n = 47) (8.8) (70) (38) (<19) (38) (18)

The mutation spectra were obtained as described in Materials and Methods. The relative mutation rates are in parentheses.

https://doi.org/10.1371/journal.pgen.1007074.t003

Fig 6. Impact of heterochromatin environment on the mutation rates. The FOAR (A) and CanR (B)

mutation rates are shown as medians with 95% confidence intervals. The mutation rates were determined as

described under Materials and Methods.

https://doi.org/10.1371/journal.pgen.1007074.g006
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findings provided a strong support for the idea that in wild-type strains, heterochromatic

DNA was less stable than euchromatic DNA. Additional support for this idea was obtained in

experiments in which we established that the mutation rate at euchromatic hmr::CAN1 in a

sir2Δ strain was half that at heterochromatic hmr::CAN1 in a wild-type strain (Fig 6B).

A previous elegant study demonstrated that the efficiency of MSH2-dependent repair of

small insertion/deletion loops varies across the yeast genome [23]. MMR efficiency variations

are likely to have important evolutionary consequences. In light of this information, we calcu-

lated MMR efficiencies at the heterochromatic and euchromatic loci. The calculated efficien-

cies of MMR at heterochromatic hmr::URA3, hml::URA3, and Chr VII-L::URA3were 88%,

92%, and 84%, respectively, and the calculated efficiency of MMR at euchromatic Chr V::

URA3was 97%. Thus, these data suggested that MMR was less efficient at heterochromatin

than euchromatin.

We next determined that (i) the efficiencies of repair of base-base mismatches and 1 nt-

insertion/deletion loops at heterochromatic hmr::URA3were 72% and 97–98%, respectively,

and (2) the efficiencies of repair of base-base mismatches and 1 nt-insertion/deletion loops at

euchromatic Chr V::URA3were 96% and ~98–99%, respectively (Table 4). Based on these

data, we concluded that the efficiency of repair of base-base mismatches at heterochromatic

hmr::URA3was significantly reduced compared to the efficiency of repair of base-base mis-

matches at euchromatic Chr V::URA3.

We thought that the reduced efficiency of repair of base-base mismatches at heterochro-

matic hmr::URA3might be a consequence of the heterochromatic environment. We reasoned

that if this idea was correct, then disruption of heterochromatin at hmr::URA3 by deletion of

SIR2 should increase the efficiency of repair of base-base mismatches at this locus. Our experi-

ments showed that the efficiency of repair of base-base mismatches at euchromatic hmr::URA3
in a sir2Δ strain was 90% (Table 4). Thus, disruption of heterochromatin at hmr::URA3 by

sir2Δmutation increased the efficiency of repair of base-base mismatches at this locus from

72% to 90%. This observation suggested that the heterochromatic environment decreased the

efficiency of repair of base-base mismatches.

Discussion

MMR is required for the stability of heterochromatic DNA in S. cerevisiae

Significant progress has been made in understanding of MMR at euchromatin since the

demonstration of its importance for euchromatic DNA stability [31, 88, 89]. However, much

less is known about MMR at heterochromatin [75, 76]. In this work, we have found that inacti-

vation of MMR in S. cerevisiae significantly increases the spontaneous mutation rates at

Table 4. Efficiencies of repair of different types of mismatches at heterochromatic hmr::URA3, a euchromatic Chr V::URA3, and euchromatic

hmr::URA3 locus.

Location Repair efficiency (%)

Base-base mismatches 1-nt deletion loops 1-nt insertion loops Total

Heterochromatic hmr::URA3 in a wild-type strain 72 97 98 88

Euchromatic Chr V::URA3 in a wild-type strain 96 99 98 97

Euchromatic hmr::URA3 in a sir2Δ strain 90 99.8 98.8 96

The repair efficiencies in the wild-type strains were calculated using the following formula: repair efficiency (%) = 100 –(100 x μwt/μmsh2Δ), where μwt

and μmsh2Δ are rates of relevant types of mutations in the wild-type and msh2Δ strains, respectively. The repair efficiency in the sir2Δ strain was calculated

using a similar formula: repair efficiency (%) = 100 –(100 x μsir2Δ/μmsh2Δ sir2Δ), where μsir2Δ and μmsh2Δ sir2Δ are rates of relevant types of mutations in the

sir2Δ and msh2Δ sir2Δ strains, respectively. Rates of the different mutation types in all these strains are shown in S4 Table.

https://doi.org/10.1371/journal.pgen.1007074.t004
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heterochromatic hmr::URA3, hml::URA3, and Chr VII-L::URA3 loci (Figs 1 and 2). These

findings have demonstrated that MMR is essential for the maintenance of heterochromatic

DNA stability in S. cerevisiae. Furthermore, our analysis of the genetic interactions has pro-

vided strong evidence that in budding yeast MMR cooperates with Pol ε proofreading and

Rtt109 to protect heterochromatic DNA from spontaneous mutations (Fig 1D).

Previous studies revealed that at euchromatic CAN1 the mutation rates in msh2Δ strains are

27–40 times as high as those in wild-type strains [45, 66, 80]. Consistent with those studies, we

have established that at a different euchromatic locus, Chr V::URA3, the mutation rate in an

msh2Δ strain is 37 times higher than that in a wild-type strain (S4 Table). However, at each of

the three heterochromatic loci, the mutation rate in the msh2Δ strain is only 6–12 times that of

the wild-type strain (Figs 1 and 2). Thus, the budding yeast data substantiate the view that

MMR is more important for euchromatic DNA stability than for heterochromatic DNA stabil-

ity [75, 76]. The experiments, in which we have determined that at euchromatic hmr::URA3
the mutation rate in an msh2Δ sir2Δ strain is 23 times that in an sir2Δ strain, have provided a

direct support for such a view (Fig 6A).

MutLα, MutSα, MutSβ, and Exo1 are involved in MMR at

heterochromatin

Our data have implicated MutLα, MutSα, and MutSβ in MMR at heterochromatin (Fig 1D).

MutLα, MutSα, and MutSβ are also involved in MMR at euchromatin [31, 41, 44, 48, 80, 90].

Thus, it appears that the roles of MutLα, MutSα, and MutSβ at heterochromatin are not very

different from those at euchromatin [29, 30, 57].

Biochemical studies with cell-free extracts and reconstituted systems demonstrated the

importance of the 5’-3’ exonuclease Exo1 for the mismatch excision step in the process that

repairs base-base mismatches and 1-nt insertion/deletion loops [46–49, 91]. Such a role for

Exo1 in MMR is in full agreement with genetic analyses of this process at euchromatic sites in

yeast and mice [35, 41, 45, 48]. However, the importance of Exo1 for MMR at euchromatin

was brought into question by the finding that the mutator phenotype of a yeast exo1Δ strain

was not consistent with an MMR defect [81]. We have conducted experiments to investigate

whether Exo1 plays a role in MMR at heterochromatin. In these experiments we have found

that (i) at heterochromatic hmr::URA3 the mutation rate in an exo1Δ strain is 4 times that in

the wild-type strain and half that in themsh2Δ strain; (ii) deletion of MSH2 is epistatic to dele-

tion of EXO1 for spontaneous FOAR mutations at heterochromatic hmr::URA3 (Fig 1D); and

(iii) the ura3 mutation spectrum at heterochromatic hmr in anmsh2Δ exo1Δ strain is not sta-

tistically different from the ura3 mutation spectrum at the same locus in an msh2Δ strain

(Table 2 and text in Results section). Collectively, these findings have shown that Exo1 plays a

major role in MMR at heterochromatin.

Exo1-independent MMR at heterochromatin is an error-prone process

We have determined that (i) the mutation rate at heterochromatic hmr::URA3 in an exo1Δ
strain is REV3-dependent whereas the mutation rate at heterochromatic hmr::URA3 in an

msh2Δ strain is REV3-independent (Fig 1D) and (ii) the mutation spectrum at heterochro-

matic hmr::URA3 in an exo1Δ strain is statistically different from the mutation spectra at het-

erochromatic hmr::URA3 in themsh2Δ andmsh2Δ exo1Δ strains (Table 2). Furthermore, it

can be seen that the majority of 1-bp deletions in the spectra of the msh2Δ and msh2Δ exo1Δ
strains are within the N�5 mononucleotide runs (Fig 4), whereas not a single 1-bp deletion in

the mutation spectrum of the exo1Δ strain is in any of these runs. These findings have indi-

cated that Exo1-independent MMR at heterochromatin is an error-prone process that leads to
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the formation of Pol z-dependent mutations (Fig 7). Because Exo1 plays more important role

in MMR on the lagging strand [92, 93], this error-prone process is likely to preferentially

occur on the lagging than leading strand.

We would like to note that it has been suggested that the mutator phenotype of exo1Δ
strains reveals the participation of Exo1 in both MMR and an MMR-unrelated mutation

avoidance pathway [81]. However, if Exo1 participated in an MMR-unrelated mutation avoid-

ance pathway functioning across the genome, then a mutation spectrum at a heterochromatic

site in anmsh2Δ exo1Δ strain should have been different from a mutation spectrum at the

same site in anmsh2Δ strain. In contrast, we determined that the mutation spectrum at hetero-

chromatic hmr::URA3 in anmsh2Δ exo1Δ strain is not statistically different from the mutation

spectrum at the same locus in anmsh2Δ strain (Table 2).

We propose that error-prone Exo1-independent MMR at heterochromatin consists of three

principal steps (Fig 7). In the initial step, Exo1-independent MMR at heterochromatin leads to

the formation of an excessive number of MutLα endonuclease-dependent strand breaks in the

discontinuous daughter strand. This happens because mismatch removal step in Exo1-inde-

pendent MMR is slowed down by the absence of Exo1, which permits MutLα to produce addi-

tional strand breaks in the discontinuous daughter strand. Next, one of these strand breaks is

used by Pol z (REV3-REV7-Pol31-Pol32 complex [94, 95]) to introduce a mismatch, and the

original mismatch is corrected. Finally, the Pol z-produced mismatch escapes correction, per-

haps due to the presence of an MMR impediment, and then is fixed as a mutation in the next

round of DNA replication. We believe that this model also provides a satisfactory explanation

for the formation of REV3-dependent mutations at euchromatin in exo1Δ strains [81] (Fig 5).

Although we do not know what could block removal of the Pol z-produced mismatch by the

Exo1-lacking MMR system, past work revealed that the nucleosome is able to function as an

Fig 7. A model for eukaryotic Exo1-independent MMR that leads to the formation of REV3-dependent

mutations. In this model, DNA polymerase errors are depicted as bumps in the top strand.

https://doi.org/10.1371/journal.pgen.1007074.g007
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MMR impediment [96, 97]. Our experiments have shown that the mutator phenotypes of the

msh3Δ exo1Δ andmsh6Δ exo1Δ strains are REV3-dependent (S3 Table) and the mutator phe-

notype of themsh2Δ exo1Δ strain is REV3-independent (Fig 1D). Taken together, these data

have demonstrated that Exo1-independent MutSα-dependent MMR at heterochromatin in

msh3Δ exo1Δ cells and Exo1-independent MutSβ-dependent MMR at heterochromatin in

msh6Δ exo1Δ cells often causes the formation of REV3-dependent mutations.

Wei et al. (2003) found that loss of Exo1 predisposes mice to the development of lympho-

mas [48]. That finding allowed the authors to propose that EXO1 mutations may predispose

humans to cancer [48]. However, strong evidence to support this proposal is still missing [98,

99]. In yeast, EXO1 deficiency increases the mutation rates in the forward mutation assays to

the levels that are 70–140% of those caused by MSH6 deficiency [45] (Fig 1D). Based on these

data, we envision that cancers triggered by EXO1 mutations may be nearly as common as

those initiated byMSH6mutations [100]. Previous work and our mutation spectrum data sug-

gest that cancers triggered by EXO1 deficiency will rarely display microsatellite instability [41,

45, 60] (Figs 3 and 4), which is a hallmark of MMR deficiency caused by MSH2,MLH1, or

PMS2 inactivation. Thus, to better understand the relationship between EXO1 and cancer, it

may be necessary to analyze microsatellite-stable, but not microsatellite-unstable, cancers that

display increased mutation rates.

Heterochromatic environment decreases the efficiency of MSH2-

dependent repair of base-base mismatches

We have measured mutation rates at several genomic sites; one of the sites is euchromatic and

the others are heterochromatic. We have found that the mutation rate at euchromatic Chr V::

URA3 in a wild-type strain is ~9, ~6, and ~11 times lower than the mutation rates at hetero-

chromatic hmr::URA3, hml::URA3, and Chr VIIL::URA3, respectively, in similar wild-type

strains (Fig 6A). Moreover, we have found that disruption of heterochromatin in a wild-type

strain by sir2Δ, sir3Δ, sir4Δ, sir2-N345A, or hmr-EΔ [87] (S1 Table) decreases the mutation

rate at hmr 2–7 fold (Fig 6). Together, these data have shown that in S. cerevisiae the hetero-

chromatic DNA is less stable than the euchromatic DNA, which supports the idea that the

chromatin environment is a key factor that affects the stability of DNA [23, 101].

Sun et al. (2016) have recently described that in an S. pombe msh6Δ strain mutation rate in

heterochomatin is ~50% higher that in euchromatin [76]. Consistent with this, we have found

that the mutation rate at heterochromatic hmr::URA3 in themsh2Δ strain is 1.5–2 times higher

than those at euchromatic hmr::URA3 in themsh2Δ hmr-EΔ andmsh2Δ sir2Δ strains (Fig 6A).

Together, these findings suggest that the heterochromatic environment modestly increases the

level of DNA replication errors at heterochromatic sites.

Our data (Figs 1–3 and Table 4) corroborate the view that MMR efficiency varies from one

locus to another and is an important factor that contributes to locus-specific mutation rates

[23, 75]. Surprisingly, at heterochromatic hmr::URA3 the efficiency of repair of base-base mis-

matches is only 72% but the efficiency of repair of 1-nt insertion/deletion loops is 97–98%

(Table 4). Thus, the heterochromatic environment decreases the efficiency of repair of base-

base mismatches but has a little of influence on the efficiency of repair of 1-nt deletion loops

(Table 4). This finding argues against the model that the efficiency of MMR at heterochroma-

tin is reduced by lower accessibility of MMR proteins to heterochromatic DNA compared to

euchromatic DNA [75, 76]. We do not know how the heterochromatic environment reduces

the efficiency of repair of base-base mismatches. It is likely that the overall efficiency of repair

of base-base mismatches at heterochromatin is decreased because many base-base mismatches

in newly replicated heterochromatic DNA are poor substrates for the MMR reaction. We
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envision that these base-base mismatches are poor substrates for the MMR reaction because

they contain damaged bases, which arise as a result of low level of base excision repair at

heterochromatin.

In summary, we have performed a detailed analysis of MMR at heterochromatin. Our

research has demonstrated that MMR involves MutLα, MutSα, MutSβ, and Exo1 to maintain

heterochromatic DNA stability. Surprisingly, it has also revealed that Exo1-independent MMR

at heterochromatin is an error-prone process and that the repair of 1-nt insertion/deletion

loops at heterochromatin is nearly as efficient as the repair of 1-nt insertion/deletion loops at

euchromatin.

Materials and methods

Yeast strains and plasmids

The yeast S. cerevisiae strains are derivatives of BY4742 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0).
The wild-type strains are BKDY155 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 hmr::URA3 hml::
HphMX), BKDY157 (MATα his3Δ1 leu2Δ0 lys2Δ0Chr V::URA3 hml::HphMX), BKDY438

(MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 hml::URA3), BKDY541 (MATα his3Δ1 leu2Δ0 lys2Δ0
ura3Δ0 Chr VII-L::URA3), BKDY834 (MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 can1::LEU2
hmr::CAN1), and FKY1292 (MATα his3Δ1 leu2Δ0 lys2Δ0Chr V::URA3). In BKDY157 and

FKY1292, a DNA sequence between nucleotides 115,949 and 117,045 of Chr V is replaced

with URA3. Each of the mutant strains is isogenic to one of the wild-type strains. In the hmr-
EΔ strain, the 56-bp HMR-E region (Chr III 292,674–292,729) [87] was replaced with a LEU2
cassette. To create the gene deletions, PCR-amplified disruption cassettes were introduced

into yeast cells by lithium acetate/PEG4000/DMSO transformation. The presence of each gene

deletion was confirmed by locus and disruption cassette-specific PCRs. The pol2-4mutation

was introduced into the chromosomal POL2 gene using the integration-excision method, and

the sir2-N345Amutation was inserted into the chromosomal SIR2 gene utilizing a previously

described technique [102].

Measurements of mutation rates

The spontaneous mutation rates were measured using a fluctuation test. At least 9–18 cultures,

which were started from single colonies of two-four independent isolates of the same genotype,

were used to determine the spontaneous mutation rate. The cultures were grown to saturation

in 3 ml YPDAU medium (1% yeast extract, 2% bacto-peptone, 2% dextrose, 60 mg/L adenine,

60 mg/L uracil) at 30˚C. The saturated cultures were diluted in sterile water, and appropriate

dilutions were plated on a synthetic complete (SC) medium to determine the total number of

cells in the cultures and on a selective medium to determine the total number of the mutant

cells in the cultures. Unless noted otherwise, the selective medium for FOAR cells was a SC

medium containing 1 g/L 5-FOA and 5 mM NAM (SC + 5-FOA + NAM), and the selective

medium for CanR cells was a SC medium that lacked arginine and contained 60 mg/L L-cana-

vanine and 5 mM NAM. The plates were incubated for 3–4 days at 30˚C, and the colonies

were counted. 5–70% of the FOAR colonies grew on a SC—Ura + 5 mM NAM medium. FOAR

cells, which formed these colonies, were excluded from calculations of the mutation rates. To

identify FOAR colonies that were Ura+, FOAR colonies formed on the fluctuation test plates

were replica-plated onto the SC—Ura + 5 mM NAM medium, and the plates were incubated

for 1 day at 30˚C.

The mutation rates were calculated from the total numbers of cells and mutants in the cul-

tures using the Drake’s formula μ = ƒ/ln(Nμ) [103], where μ is mutation rate per replication, ƒ

is the median mutant frequency, and N is population size.
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Statistical tests

Where indicated, the significance of the observed differences in the mutation rates was

assessed with the Mann-Whitney U two-tailed test (GraphPad Prism 6 software), in which the

null hypothesis is that there is no difference between the two data sets.

To examine the relationship between the nominal variables of spectra and mutation type

(Table 2), categorical variables were summarized with frequencies and percentages, and a χ2

test of independence with a Bonferroni correction for multiple comparisons was utilized.

In a different method, a Monte Carlo modification of the Pearson χ2 test of spectra homo-

geneity [82] was used to compare mutation distributions (S2 Table). The calculations were

done using the COLLAPSE program [104].

Determination of ura3 mutation spectra

In order to determine the ura3 mutation spectrum, ~50–100 patches each started from a dif-

ferent single colony were grown on YPDAU plates (1% yeast extract, 2% bacto-peptone, 2%

dextrose, 60 mg/L adenine, 60 mg/L uracil, 2% agar). The patches were next replica-plated on

the SC + 5-FOA + 5 mM NAM, followed by incubation of the plates for 1 day at 30˚C. The

patches that were formed on the SC + 5-FOA + 5 mM NAM plates were replica-plated on

fresh SC + 5-FOA + 5 mM NAM plates, and the plates were incubated for 2–3 days at 30˚C. A

single FOAR colony was randomly selected from each patch, purified on a SC + 5-FOA + 5

mM NAM plate, and propagated on a YPDAU plate. The patches were then replica-plated on

SC—Ura + 5 mM NAM plates. Patches that grew on the SC—Ura + 5 mM NAM plates were

not analyzed further. Genomic DNAs of the remaining FOAR patches were isolated with a

MasterPure Yeast DNA purification kit (Epicentre). Each of these genomic DNAs was used as

a template to PCR-amplify a 1.4-kb DNA fragment encompassing the entire length of ura3
ORF with primers #1 (5’- GAGAATAAGCGCAGGTACTCCTG -3’) and #2 (5’- CGCCATA

TACGAAAATGTTGGTG -3’). The amplified DNA fragments were purified with a PCR puri-

fication kit (Thermo Fisher) and sequenced to determine ura3 mutations.
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S1 Fig. Spectra of ura3 mutation at heterochromatic hmr in the rtt109Δ and msh2Δ rtt109Δ
strains. ura3 mutations at heterochromatic hmr in the rtt109Δ andmsh2Δ rtt109Δ strains are

above and below the URA3 open reading frame, respectively. Base substitutions are shown as

capital red letters, 1-bp deletions are depicted as blue Greek delta letters, and 1-bp insertions

are presented as green capital letters. A 2-bp deletion, a 3-bp deletion, and a 16-bp deletion are

boxed, and complex mutations are underlined.
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