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Abstract

Protrusion and retraction of lamellipodia are common features of eukaryotic cell motility. As

a cell migrates through its extracellular matrix (ECM), lamellipod growth increases cell-ECM

contact area and enhances engagement of integrin receptors, locally amplifying ECM input

to internal signaling cascades. In contrast, contraction of lamellipodia results in reduced

integrin engagement that dampens the level of ECM-induced signaling. These changes in

cell shape are both influenced by, and feed back onto ECM signaling. Motivated by experi-

mental observations on melanoma cells lines (1205Lu and SBcl2) migrating on fibronectin

(FN) coated topographic substrates (anisotropic post-density arrays), we probe this inter-

play between intracellular and ECM signaling. Experimentally, cells exhibited one of three

lamellipodial dynamics: persistently polarized, random, or oscillatory, with competing lamel-

lipodia oscillating out of phase (Park et al., 2017). Pharmacological treatments, changes in

FN density, and substrate topography all affected the fraction of cells exhibiting these

behaviours. We use these observations as constraints to test a sequence of hypotheses for

how intracellular (GTPase) and ECM signaling jointly regulate lamellipodial dynamics. The

models encoding these hypotheses are predicated on mutually antagonistic Rac-Rho sig-

naling, Rac-mediated protrusion (via activation of Arp2/3 actin nucleation) and Rho-medi-

ated contraction (via ROCK phosphorylation of myosin light chain), which are coupled to

ECM signaling that is modulated by protrusion/contraction. By testing each model against

experimental observations, we identify how the signaling layers interact to generate the

diverse range of cell behaviors, and how various molecular perturbations and changes in

ECM signaling modulate the fraction of cells exhibiting each. We identify several factors that

play distinct but critical roles in generating the observed dynamic: (1) competition between

lamellipodia for shared pools of Rac and Rho, (2) activation of RhoA by ECM signaling, and

(3) feedback from lamellipodial growth or contraction to cell-ECM contact area and therefore

to the ECM signaling level.
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Author summary

Cells crawling through tissues migrate inside a complex fibrous environment called the

extracellular matrix (ECM), which provides signals regulating motility. Here we investi-

gate one such well-known pathway, involving mutually antagonistic signalling molecules

(small GTPases Rac and Rho) that control the protrusion and contraction of the cell edges

(lamellipodia). Invasive melanoma cells were observed migrating on surfaces with topog-

raphy (array of posts), coated with adhesive molecules (fibronectin, FN) by Park et al.,

2017. Several distinct qualitative behaviors they observed included persistent polarity,

oscillation between the cell front and back, and random dynamics. To gain insight into

the link between intracellular and ECM signaling, we compared experimental observa-

tions to a sequence of mathematical models encoding distinct hypotheses. The successful

model required several critical factors. (1) Competition of lamellipodia for limited pools

of GTPases. (2) Protrusion / contraction of lamellipodia influence ECM signaling. (3)

ECM-mediated activation of Rho. A model combining these elements explains all three

cellular behaviors and correctly predicts the results of experimental perturbations. This

study yields new insight into how the dynamic interactions between intracellular signaling

and the cell’s environment influence cell behavior.

Introduction

Migrating cells display polarization of many membrane and cytosolic components, and spa-

tially inhomogeneous signaling activity. Cellular polarity can be highly dynamic, displaying

random, persistent or even oscillatory patterns [1–3] with clear deterministic features [4, 5]. In

spite of recently proposed phenomenological models attempting to explain how these polarity

patterns can emerge in the absence of graded extracellular cues [5, 6], we still lack the mecha-

nistic understanding of the dynamic molecular mechanisms underlying the polarity establish-

ment and maintenance over the course of cell migration. Thus, given the complexity of the

polarity dynamics, we still do not know if diverse spatio-temporal patterns can be accounted

for by the same mechanistic framework, quantitatively embedded in a biochemically informed

mathematical model. Having such a framework may assist in interventions aimed at enhance-

ment or inhibition of persistence of cell migration in diverse setting, such as wound healing or

aggressive cancer spread.

Aggressive cancers, such as advanced stage melanoma and glioblastoma multiforme, fre-

quently display persistent cell migration away from the primary tumor site. In the context of

melanoma, the invasive tumor spread is associated with several mutations, including the loss

of functional expression of PTEN, and the corresponding increase in the activity of the

PI3K-AKT signaling pathway. It is not clear how such mutations, affecting the state of the sig-

naling and regulatory networks controlling multiple cellular functions, could influence cellular

polarity dynamics and the persistence of cell migration. Migrating cells also frequently relocate

to micro-environments that are distinct from those of the tissue of origin. One of the key

aspects of cellular micro-environment is the organization and composition of the extracellular

matrix. Alteration in the density, orientation and nano-topography of the extracellular matrix

fibers and their cleaved fragments have been shown to be instrumental in onset of cellular

spread and in defining the direction and persistence of cellular migration [7–9]. Recent analy-

sis suggested that these matrix re-arrangements can be well approximated in experiments,

using matrix-mimicking nano-fabricated platforms that allow for controlled variation of the

model matrix structure and chemical composition [10]. In particular, in our experimental
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analysis with melanoma cell lines we found that individual cells can display diverse polarity

patterns when migrating in areas of the model matrix with various degrees of anisotropy [11].

Having this type of controlled micro-environment can allow one to develop mechanistic mod-

els [12] of cell polarity control and to test them by checking for consistency between model

predictions and experimental results.

In this study, we focused on testing a set of alternative models against the experimental data

obtained for melanoma cell lines of different degrees of invasiveness [13, 14]. Advanced stages

of melanoma are characterized by one of the most invasive behaviors of any cancer, leading to

rapid metastatic spread and dismal survival prognosis. In this stage, transformed melanocytes

transition from radial to vertical spread patterns, invading the underlying collagen-rich dermis

layer and penetrating the blood vessels. Cell polarity and ensuing cell migration patterns can

define the effectiveness of the cell invasion, i.e, initial metastatic steps. The experimental data-

set used in our analysis represented classification of cell polarization patterns into random,

oscillatory and persistent, in the presence of diverse extracellular cues and pharmacological

perturbations targeting specific molecular species implicated in polarization control.

Rho GTPases and extracellular matrix signaling

Rho GTPases are central regulators that control cell polarization and migration [15, 16],

embedded in complex signaling networks of interacting components [17]. Two members of

this family of proteins, Rac1 and RhoA, have been identified as key players, forming a central

hub that orchestrates the polarity and motility response of cells to their environment [18, 19].

Rac1 (henceforth “Rac”) works in synergy with PI3K to promote lamellipodial protrusion in a

cell [16], whereas RhoA (henceforth “Rho”) activates Rho Kinase (ROCK), which activates

myosin contraction [20]. Mutual antagonism between Rac and Rho has been observed in

many cell types [19, 21, 22], and accounts for the ability of cells to undergo overall spreading,

contraction, or polarization (with Rac and Rho segregated to front versus rear of a cell).

The extracellular matrix (ECM) is a jungle of fibrous and adhesive material that provides a

scaffold in which cells migrate, mediating adhesion and traction forces. ECM also interacts

with cell-surface integrin receptors, to trigger intracellular signaling cascades. Important

branches of these pathways are transduced into activating or inhibiting signals to Rho

GTPases. On one hand, ECM imparts signals to regulate cell shape and cell motility. On the

other hand, the deformation of a cell affects its contact area with ECM, and hence the signals it

receives. The concerted effect of this chemical symphony leads to complex cell behavior that

can be difficult to untangle using intuition or verbal arguments alone. This motivates our

study, in which mathematical modeling of GTPases and ECM signaling, combined with exper-

imental observations is used to gain a better understanding of cell behavior, in the context of

experimental data on melanoma cells.

There remains the question of how to understand the interplay between genes (cell type),

environment (ECM) and signaling (Rac, Rho, and effectors). We and others [19, 21–27] have

previously argued that some aspects of cell behavior (e.g., spreading, contraction, and polariza-

tion or amoeboid versus mesenchymal phenotype) can be understood from the standpoint of

Rac-Rho mutual antagonism, with fine-tuning by other signaling layers [28]. Here we extend

this idea to couple Rac-Rho to ECM signaling, in deciphering the behavior of melanoma cells

in vitro. There are several overarching questions that this study aims to address.

1. How does signaling and cell motility interface with external inputs to the cell? How does

the change in cell shape (in protrusion/contraction) affect inputs to the signaling network

and thus cell behavior?

GTPase / ECM feedbacks modulate cellular behavior
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2. Are diverse types of cell migration (random persistent, oscillatory) part of the same overall

repertoire, or are they distinct and discrete?

3. How do constraints such as limited GTPase availability [27, 29–32], lamellipod competition

[33, 34] and feedbacks (mutual inhibition, positive feedback) determine the cell behavior

[35].

4. Can we understand the transition to invasive cancer cells as a shift in basic parameters of

the same underlying signaling system?

Experimental observations constraining the models

In experiments of Park et al. [11] melanoma cells were cultured on micro-fabricated surfaces

comprised of post density arrays coated with fibronectin (FN), representing an artificial extra-

cellular matrix. The anisotropic rows of posts provide inhomogeneous topographic cues along

which cells orient.

In [11], cell behavior was classified using the well-established fact that PI3K activity is

locally amplified at the lamellipodial protrusions of migrating cells [36]. PI3K “hot spots” were

seen to follow three distinct patterns about the cell perimeters: random (RD), oscillatory (OS),

and persistent (PS). These classifications were then associated with three distinct cell pheno-

types: persistently polarized (along the post-density axis), oscillatory with two lamellipodia at

opposite cell ends oscillating out of phase (protrusion in one lamellipod coincides with retrac-

tion of the other, again oriented along the post-density axis), and random dynamics, whereby

cells continually extend and retract protrusions in random directions. The fraction of cells in

each category was found to depend on experimental conditions.

Here, we focus on investigating how experimental manipulations influence the fraction of

cells in different phenotypes. For simplicity, we focus on the polarized and oscillatory pheno-

types which can be most clearly characterized mathematically. The following experimental

observations are used to test and compare our distinct models of cell signaling dynamics.

(O1). Rho is known to activate Rho Kinase (ROCK), which phosphorylates myosin light

chain and leads to actomyosin contraction. Inhibiting ROCK is observed to increase

the fraction of polarized and decrease the fraction of oscillatory cells.

(O2). More invasive melanoma cell lines (1205Lu) are enriched in PI3K and low in the antag-

onist PTEN. These cells exhibit a lower fraction of random cells and higher fractions of

persistently polarized and oscillatory cells than the less invasive melanoma cell line

SBcl2.

(O3). Increasing fibronectin level on the post density array surfaces increases the fraction of

oscillatory and lowers the fraction of persistently polarized cells.

For a graphical summary of cell phenotypes and experimental observations, see Fig 1.

Results

We use experimental observations (O1–3) as indirect constraints, to distinguish hypotheses

for how feedbacks between internal cellular signaling and external ECM inputs modulate cel-

lular behaviors. Toward this end, we construct a collection of simple, predictive models for

Rac-Rho-ECM signaling, and compare model predictions to observations (O1–3) to determine

which hypotheses are most consistent with experimental results. The activities of the small

GTPases Rac and Rho are used as surrogates for the Rac1/PI3K and RhoA/ROCK pathways

that respectively promote actin-based protrusion and acto-myosin based contraction in

GTPase / ECM feedbacks modulate cellular behavior
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lamellipodia. Based on prior observations [18, 19, 22, 26, 27, 37, 38], we assume that Rac and

Rho are mutually inhibitory. We also assume that sufficiently high levels of ECM signaling

upregulates the activity of RhoA [39, 40]. There is evidence that ECM signaling can also upre-

gulate Rac to some extent, e.g. [41, 42]. In the final model (Model 3) discussed here, we con-

sider the possibility that ECM influences Rac activation as well. However based on our

analysis, for reasons that will become clear in the Discussion, we assume that Rho activation is

the dominant effect of ECM signaling. While motility regulation is vast with numerous regula-

tors and interactions, we ask what aspects of cell behavior can be explained by this core signal-

ing unit, and take the view that other parts of the signaling cascade serve to fine tune model

parameters and inputs.

To compare models to data, we consider three cell states: apolar, persistently polarized, and

oscillatory (Fig 1). We interpret these, respectively, in terms of the competition of two lamelli-

pods that can either coexist, exclude one another, or cycle through antiphase oscillations

where each grows at the expense of the other [11]. Apolar cells are identified with the “ran-

dom” state described in [11], lacking directionality and subject to stochastic fluctuations of

polarity (not explicitly modelled). Each lamellipod is represented as a spatially well-mixed

compartment. Hence, our models consist of ordinary differential equations describing the

Fig 1. Cell phenotypes and experimental observations. In modeling melanoma cells, we consider signaling and

competition of two lamellipodia (indicated by L1, L2). (a) Cell states described by our models include (top to bottom)

coexistence of two lamellipodia, polarization in which one lamellipod “wins” the competition (also includes bistability

where initial conditions determine the eventual polarity direction), and antiphase oscillations in which one lamellipod

expands while the other contracts periodically. The ECM variables E1, E2 are surrogates for both lamellipod size and

ECM signaling activity. (b) (Approximate) experimental observations agains which proposed models are tested.

Relative to control cells, those with either ROCK inhibition or exposed to high fibronectin (FN) level have a lower

fraction of randomly directed (apolar) cells, whereas the less aggressive cells have a lower fraction of persistently

polarized cells.

https://doi.org/10.1371/journal.pcbi.1005524.g001
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dynamics and interactions of Rac and Rho within and between these compartments. More-

over, we adopt a caricature of cell-substratum contact area as ECM signaling level, which

means that lamellipod size is synonymous with our ECM activity variable. Hence, high Rac

activity is assumed to promote ECM signaling (via lamellipod protrusion), whereas high Rho

activity has an ECM inhibiting effect (due to lamellipod contraction).

A schematic diagram of the signaling model we discuss is shown in Fig 2(a). This overarch-

ing model depicts mutually antagonism of Rac and Rho [18, 19, 21, 23, 24, 27, 28], and compe-

tition of the two lamellipods, assuming growth of one suppresses that of the other. (In the

model, lamellipod size is synonymous with cell-ECM contact area and with the level of ECM

signaling.) We also assume that the influence of ECM signaling is primarily on Rho activity.

Our models differ by details of the feedbacks and other key assumptions. Fig 2(b) and 2(c) fur-

ther illustrate the feedbacks between internal GTPase signaling and ECM signaling layers.

It is well known that mutual inhibition (or mutual competition) can set up bistability and

hysteresis. Furthermore, bistability coupled to slow negative feedback can lead to oscillations

[43]. This idea forms the central theme in our models (Fig 2d). Moreover, as we will argue, this

idea can account for all three observed phenotypes (in appropriate parameter regimes), namely

a single “winning” lamellipod (persistent polarization), apolarity (coexisting lamellipods) and

cycling (antiphase oscillations of growth and decay of the two lamellipods). The question we

address, then, is which subsystem sets up bistability and which leads to oscillations; various

interactions between GTPase and ECM signaling levels could, in principle, account for each.

One goal of our modeling is to tease apart the possibilities and find the most likely signaling

model that best accounts for experimental observations (Section “Experimental observations

constraining the models”).

Fig 2. Model schematic. (a) Schematic depiction of the proposed interactions between the GTPases and cell-ECM

contact areas, which are proxies for extracellular matrix (ECM) signalling in each lamellipod (Ej). We assume that Rac

(Rho) promotes protrusion (contraction), resulting in opposite effects: Rac (Rho) increases (decreases) the cell-ECM

contact area and hence Ej. Mechanical constraints or other limitations couple the two lamellipods, preventing the cell-ECM

contact areas from growing independently. This is modelled as a competition term coupling E1 and E2. (b,c) We consider

two potential negative feedback loops that could lead to oscillations. Each arrow is labeled with the parameter governing

the strength of its influence. (d) Basic idea of a relaxation oscillator: bistability is present in a subset of the model (black

curve); other component(s) acting on a slower timescale provide negative feedback that sets up oscillations (green, blue

curves). In this illustration, bistability results from two fold bifurcations as in the GTPase submodel, but the same idea

applies when the bifurcations are both transcritical, as found in the ECM submodel (Fig 3d). Protrusion causes an increase

in ECM signaling that leads to increased feedback, contraction has the opposing effect.

https://doi.org/10.1371/journal.pcbi.1005524.g002
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As in most models of intracellular signalling, obtaining biologically accurate values of rate

parameters from direct biochemical measurement is unrealistic. Hence, we use the following

strategy to parametrize our models. First, we scale the state variables in terms of their inherent

“IC50” levels (levels at which Hill functions are at 50% of their maximal magnitude). We also

scale time by GTPase inactivation times. This scaling yields a smaller number of ratios of

parameters to estimate, i.e. ratios that represent scaled basal and feedback-induced activation

rates. For simplicity, we assume that parameters of the Rac and Rho equations are relatively

similar.

Modeling overview

We discuss three model variants, each composed of (A) a subsystem endowed with bistability,

and (B) a subsystem responsible for negative feedback. In short, Model 1 assumes ECM com-

petition for (A) and feedbacks mediated by GTPases for (B). In contrast, in Model 2 we assume

GTPase dynamics for (A) and ECM mediated feedbacks for (B). Model 3 resembles Model 2,

but further assumes limited total pool of each GTPase (conservation), which turns out to be a

critical feature. See Tables 1 and 2 for details.

We analyze each model variant as follows: first, we determine (bi/mono)stable regimes of

subsystem (A) in isolation, using standard bifurcation methods. Next, we parameterize subsys-

tem (B) so that its slow negative feedback generates oscillations when (A) and (B) are coupled

in the model as a whole. For this to work, (B) has to force (A) to transition from one mono-

stable steady state to the other (across the bistable regime) as shown in the relaxation loop of

Fig 2d. This requirement informs the magnitude of feedback components. Although these

considerations do not fully constrain parameter choices, we found it relatively easy to then

parameterize the models (particularly Models 1b and 3). This implies model robustness, and

suggests that broad regions of parameter space lead to behavior that is consistent with experi-

mental observations.

Rac-Rho signaling. Our underlying Rac-Rho model follows closely on the well-mixed

version described in [27]. For each GTPase in each lamellipod, we assume a basic activation-

Table 1. We describe the qualitative elements of each model that give rise to polarity and antiphase lamellipod oscillations, respectively. MM:

Michaelis Menten kinetics. Numbers indicate the model designation used in the text.

Source of Polarity Source of anti-phase oscillations

Lamellipod Competition (1) Bistable lamellipod coupling Fast ECM / Slow GTPase feedback

Conserved GTPase with MM kinetics Bistable lamellipod coupling

Bistable GTPase (2) Bistable GTPase model Slow ECM / Fast GTPase feedback

Monostable lamellipod coupling Monostable lamellipod coupling

Hybrid (3) Conservative GTPase model with Hill kinetics Slow ECM / Fast GTPase feedback

Monostable lamellipod coupling Monostable lamellipod coupling

https://doi.org/10.1371/journal.pcbi.1005524.t001

Table 2. Terms that represent the GTPase and lamellipod coupling in each sub-model.

GTPase Model Lamellipod coupling

Lamellipod Competition (1) Michaelis Menten + conservation Bistable, Species competition type equations

Bistable GTPase (2) Bistable Hill kinetics Monostable

Hybrid (3) Hill kinetics + conservation Monostable

https://doi.org/10.1371/journal.pcbi.1005524.t002
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inactivation differential equation of the form

dGk

dt
¼ AGGI � dGGk; G ¼ R;r: ð1aÞ

Here G = R, ρ represent concentrations of active Rac and Rho, respectively, GI = RI, ρI repre-

sent inactive GTPase levels, and k = 1, 2 (e.g. Rk) indicates the level in the k’th lamellipod. We

assume the inactive GTPase pool is shared by competing lamellipods, but later incorporate dif-

ferent hypotheses about the size of this pool and the extent to which it is depleted. In some

model variants, we assume that GTPases are abundant so that RI, ρI are constant, whereas in

other variants, the total GTPase is limited and conserved

RI ¼ RT � R1 � R2; rI ¼ rT � r1 � r2; ð1bÞ

where RT and ρT are total average concentrations of the GTPases (see Table 3).

We generally assume that mutual antagonism between Rac and Rho influences the rates of

activation AR,ρ, whereas the rate of inactivation, δR,ρ, is constant. (This choice is largely arbi-

trary and implies GEF-based crosstalk [30, 44].) Typical terms are decreasing Hill functions, as

shown in Table 3 and Eq (3). If n = 1 (i.e. Michaelis Menten kinetics) the Rac-Rho system will

be monostable, whereas for n> 1 and appropriate parameters, the Rac-Rho system is bistable.

Extracellular matrix input. The extracellular matrix (ECM) provides input to GTPase

signaling. However, the contact area between the cell and the ECM modulates that signaling

since larger or smaller lamellipodia receive different levels of stimuli from the ECM. We define

the variable Ek to represent both the cell-ECM contact area of the k’th lamellipod (for k = 1, 2)

and the “effective level of ECM signaling” in the k’th lamellipod. (The larger the contact area,

the more integrin receptors are engaged, the greater the stimuli received from the ECM by the

given lamellipod.) Then Rac-driven cell protrusion and Rho-driven cell contraction will affect

Ek on some timescale 1=�̂. We also consider the effect of competition between lamellipods for

growth so that their “areas” (Ej, Ek) cannot expand independently. Mechanical tension or

other limited shared resources mean that one lamellipod could only grow at the expense of the

other. For example, Tony Y.-C. Tsai and Julie Theriot observe that neutrophil-like HL-60 cells

confined to “quasi-2D” motion under an agarose pad have a constant total projected area, for

which protruding and contracting lamellipodia compete (personal communication). Such

Table 3. Terms and notation used in model equations. Model 1: GTPase bistability, Model 2: Lamellipod competition, Model 3: Hybrid model. Parameters

�gE;R;r have similar meanings as γE,R,ρ in Models 1,3 but carry distinct units to accommodate linear versus Hill function kinetic terms.

Parameter definition Notation Model 1 Model 2 Model 3

Rac activation rate AR(ρ) b̂R
ðr̂0 þ rÞ

b̂R
ðr̂3

0 þ r3Þ

b̂R
ðr̂3

0 þ r3Þ

Rho activation rate Aρ(R) b̂r

ðR̂0 þ RÞ

b̂r

ðR̂3
0 þ R3Þ

b̂r

ðR̂3
0 þ R3Þ

ECM effect on Rho activation bρ(Ek) kE þ �gEEk kE þ gE
E3
k

E3
0 þ E3

k

kE þ gE
E3
k

E3
0 þ E3

k

Protrusion; ECM growth rate P(Rk, Ek)

- - Basal Rac-dependent term BE(Rk) 0
kR þ gR

R3
k

R3
0 þ R3

k

kR þ gR
R3
k

R3
0 þ R3

k

- - ECM autoamplif. term AE(Rk) kR þ �gRRk 0 0

Rho dependent contraction LE(ρk) kr þ �grrk kr þ gr

r3
k

r3
0 þ r3

k

kr þ gr

r3
k

r3
0 þ r3

k

Total GTPase conserved GT (2a) no; (2b) ✓ no ✓

https://doi.org/10.1371/journal.pcbi.1005524.t003
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observations could be modelled in many different ways. Here we chose the simplest appropri-

ate “species competition” term to capture the main idea. This suggests that a reasonable model

would be

dEk

dt
¼ �̂ Protrusion � Contraction � Competition½ �

¼ �̂ PðRk;EkÞ � Cðrk; EkÞ � lcEkEj

h i
;

ð2aÞ

where lc describes the strength of direct lamellipodia competition (lc = 0 indicates no competi-

tion). We consider a combination of basal and self-enhanced components of the protrusion

term P, as shown in Table 3. The Rho-dependent contraction term also captures competition

of the lamellipods for growth. We will refer to Ek interchangeably as “ECM signaling level” and

“lamellipod size” in our models, with the understanding that these two cell features are inti-

mately linked.

Dimensionless model equations: General case. We nondimensionalize time by δρ and

GTPase levels by associated Hill function “IC50 parameters” R̂0, r̂0 (See S1 Text) to arrive at a

generic model formulation for the signaling dynamics in each lamellipod k (k = 1, 2):

dRk

dt
¼ ARRI � dRk; AR ¼

bR

1þ rn
k
; ð3aÞ

drk

dt
¼ ArrI � rk; Ar ¼

brðEkÞ

1þ Rn
k
; ð3bÞ

dEk

dt
¼ � ðBE þ AEEkÞ � Ek LEEk þ lcEj

� �h i
; j 6¼ k: ð3cÞ

Here, �, δ are ratios of timescales and bR, bρ are dimensionless. BE, AE, and LE represent basal

protrusion, auto-amplified protrusion, and contraction strength terms, which can depend on

Rac and Rho concentrations. Rather than nondimensionalizing Ek, we retain lc, the only

parameter with units of E. This allows us to easily control the strength of coupling between

the two lamellipods in our simulations. To represent the fact that ECM signaling influences

Rho activation [39, 40], we assume that the basal rate of Rho activation, bρ(Ek) is ECM-

dependent.

Our models differ in the functional forms assumed for bρ, BE, AE, and LE. We present and

analyze each of these models one by one, to accentuate their differences and motivate model

changes that address specific deficiencies. A summary of definitions and terms used in these

models appears in Table 3 along with a complete summary of model equations in the S1 Text.

Correspondence with experiments

Parameters associated with rates of activation and/or feedback strengths are summarized in

the S1 Text. The parameters γi represent the strengths of feedbacks 1 or 2 in Fig 2(b) and 2(c).

γR controls the positive feedback (2) of Rac (via lamellipod spreading) on ECM signaling, and

γρ represents the magnitude of negative feedback (1) from Rho to ECM signaling (due to

lamellipod contraction). γE controls the strength of ECM activation of Rho in both feedbacks

(1) and (2). When these feedbacks depend on cell state variables, we typically use Hill functions

with magnitude γi, or, occasionally, linear expressions with slopes �g i. (These choices are distin-

guished by usage of overbar to avoid confusing distinct units of the γ’s in such cases.)
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Experimental manipulations in [11] (described in Section “Experimental observations con-

straining the models”) can be linked to the following parameter variations.

• ROCK inhibition treatment (O1) suppresses the link between Rho activity and actomyosin

contraction. Hence this inhibition can be identified with reduction of γρ.

• Invasiveness (O2) is associated with differences in both PTEN and PI3K activity (more inva-

sive cells exhibit more PI3K and less PTEN). Increasing PI3K activity, or increasing net pro-

trusive activity could correspond to increasing γR.

• Increasing fibronectin (FN) density (O3) leads to increased ECM signaling to Rac, and is

thus associated with increased γE (or �gE).

• Membrane tension, cytoskeletal availability, mechanical forces, or other resource limitation

in the cell can all potentially affect lamellipodial coupling. These were not perturbed experi-

mentally but can be represented by variation of the coupling parameter lc.

In view of this correspondence between model parameters and experimental manipulations,

our subsequent analysis and bifurcation plots will highlight the role of feedback parameters

γR,ρ,E in the predictions of each model. Rather than exhaustively mapping all parameters, our

goal is to use 1 and 2-parameter bifurcation plots with respect to these parameters to check for

(dis)agreement between model predictions and experimental observations (O1–O3). This

allows us to (in)validate several hypotheses and identify the eventual model (the Hybrid,

Model 3) and set of hypotheses that best account for observations.

Lamellipod competition (Models 1)

We first investigated the possibility that lamellipod competition is responsible for bistability

and that GTPases interactions create negative feedback that drives the oscillations observed in

some cells. To explore this idea, we represented the interplay between lamellipodia (e.g., com-

petition for growth due to membrane tension or volume constraints), using an elementary

Lotka-Volterra (LV) competition model. For simplicity, we assume that AE, LE depend linearly

on Rac and Rho concentration, and set BE = 0. (This simplifies subsequent analysis without

significantly affecting qualitative conclusions.) With these assumptions, the ECM Eq (3c)

reduce to the well-known LV species-competition model.

First consider Eq (3c) as a function of parameters (AE, LE), in isolation from GTPase input.

As in the classical LV system [45], competition gives rise to coexistence, bistability, or competi-

tive exclusion, the latter two associated with a polarized cell. These regimes are indicated on

the parameter plane of Fig 3a with the ratios of contractile (LE) and protrusive (AE) strengths

in each lamellipod as parameters. (In the full model, these quantities depend on Rac and Rho

activities; the ratios LE(ρk)/AE(Rk) for lamellipod k = 1, 2 lead to aggregate parameters that sim-

plify this figure.) We can interpret the four parameter regimes in Fig 3a as follows: I) a bistable

regime: depending on initial conditions, either lamellipod “wins” the competition. II) Lamelli-

pod 1 always wins. III) Lamellipod 2 always wins. IV) Lamellipods 1 and 2 coexist at finite

sizes. Regimes I-III represent strongly polarized cells, whereas IV corresponds to an unpolar-

ized (or weakly polarized) cell.

We next asked whether, and under what conditions, GTPase-mediated feedback could gen-

erate relaxation oscillations. Such dynamics could occur provided that slow negative feedback

drives the ECM subsystem from an E1-dominated state to an E2-dominated state and back. In

Fig 3a, this correspond to motion along a path similar to one labeled (d) in Panel (a), with the

ECM subsystem circulating between Regimes II and III. This can be accomplished by GTPase

feedback, since both Rho and Rac modulate LE (contractile strength) and AE (protrusion

GTPase / ECM feedbacks modulate cellular behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005524 May 4, 2017 10 / 22

https://doi.org/10.1371/journal.pcbi.1005524


Fig 3. Lamellipod competition (Model 1). (a) On its own, the ECM signaling (lamellipod competition) submodel (Eq (3c) with LE(ρ1,2) and AE(R1,2)

taken as parameters) has four regimes. Regimes I-III: a polarized cell with a single lamellipod (bistability in I and competitive exclusion in II-III). Regime

IV, lamellipods coexist. Axes represent ratios of LE(ρk)/AE(Rk) for each lamellipod (k = 1, 2). Horizontal and vertical lines are transcritical bifurcations (at

lc /AE(Rk)). (b) Typical simulation of Model 1b shows temporal oscillations in ECM signaling and Rac-Rho activities. γρ = 1.5 and all other parameters are

as in the S1 Text. (c-e) One-parameter bifurcation diagrams for E1 corresponding to the paths labeled c-e in Panel (a) (produced by tuning LE1 while

keeping LE1 + LE2 = K = constant, for K = 0.9, 1.5, 3.5). Other ECM parameters: AE1 = AE2 = lc = 1. Insets show E2 levels. Cycles of protrusion (green)

and contraction (blue), shown in panel (d), can occur when feedback from GTPases tunes the relative contraction parameter LE1 or LE2. (f-h) Bifurcation
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strength). We show this idea more explicitly in Fig 3(c)–3(e) by plotting E1 vs LE1 while keeping

LE1 + LE2 constant. (Insets similarly show E2 vs LE1.) Each of Panels (c-e) corresponds to a

1-parameter bifurcation plot along the corresponding path labeled (c-e) in Panel (a). We find

the following possible transitions: In Fig 3c, we find two distinct polarity states: either E1 or E2

dominate while the other is zero regardless of the value of LE1; a transition between such states

does not occur. In Fig 3d, there is a range of values of LE1 with coexisting stable low and high E1

values (bistable regime) flanked by regimes where either the lower or higher state loses stability

(monostable regimes). As indicated by the superimposed loop, a cycle of protrusion (green)

and contraction (blue) could then generate a relaxation oscillation as the system traverses its

bistable regime. In Fig 3e, a third possibility is that the system transits between E1-dominated,

coexisting, and E2-dominated states. In brief, for oscillatory behavior, GTPase feedback should

drive the ECM-subsystem between regimes I, II, and III without entering regime IV.

Informed by this analysis, we next link the bistable ECM submodel to a Rac-Rho system.

To ensure that the primary source of bistability is ECM dynamics, a monostable version of the

Rac-Rho sub-system is adopted by setting n = 1 in the GTPase activation terms AR, Aρ in Eqs

(3a) and (3b). We consider three possible model variants (1a-1c) for the full ECM / GTPase

model.

Abundant GTPases (Model 1a). We first assume that both Rac and Rho are abundant

(RI, ρI taken to be constant). Coupling the GTPase and ECM layers introduces temporal

dependence in the parameters AE, LE (and thus in the ratios of contraction/protrusion for the

lamellipods that form the axes in Fig 3a). Consequently, a point representing the cell on this

figure would drift from one regime to another as the dynamics evolve. In this way, the dynam-

ics of the system as a whole is analyzed from the standpoint of how the GTPase-ECM feed-

backs drive the ECM subsystem between its distinct regimes. It follows that oscillating cells are

represented by a trajectory that cycles between regimes II and III where the cell would be

polarized in opposite directions.

While in principle, such cycles seem plausible, in practice, we were unable to find them

despite reasonable parameter space exploration. (We do not entirely rule out this model, in

absence of an exhaustive parameter space exploration and adjustment of all possible kinetic

terms.) Based on our extensive simulations, however, we speculate that oscillations fail for one

of two reasons.

• When the maximum contractile strength is low (max LE < lc, which would result from small

γρ), it is mathematically impossible for the system to exit Regime I (the border of this regime

occurs at LE = lc). Thus oscillations are not possible since the system cannot enter regions II

or III. In this case polarity is possible but not oscillations.

• When stronger contractile strength is allowed (max LE > lc, which would result from larger

γρ), the system still does not oscillate. Instead of traversing Regime I, the system crosses into

Regime IV. Once in this regime, the apolar solution stabilizes and no oscillation ensues.

As we show next, a small, biologically motivated adjustment discussed in Model variant 1b

easily promotes oscillations.

Limited (conserved) GTPases (Model 1b). We next asked how a limited total amount of

each GTPase would influence model dynamics. This idea rests on our previous experience

diagrams linking predicted behavior to experimental perturbations. Panel title represents the direction of the arrow on each panel. Thick curves: stable

polar solutions (solid) and oscillations (dashed). Vertical lines represent Hopf bifurcations. Parameters are as in the S1 Text.

https://doi.org/10.1371/journal.pcbi.1005524.g003
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with GTPase models in which conservation of the total amount of GTPase played an impor-

tant role [27, 29–32, 46–49]. To address this question, we augmented Model 1 (Eq (3)), with

the additional assumption of GTPase conservation Eq (1b).

Conservation introduces a pair of linear algebraic equations of the form ρ1 + ρ2 + ρI = ρT

(and similarly for R). Since LE(ρ1,2) depend linearly on ρ in this model variant (Table 3), this

places a restriction on the sum LE(ρ1) + LE(ρ2). As a result, part of the parameter space in Fig

3a becomes inaccessible (schematically represented in gray) so that the model becomes

restricted to the white region. While LE(ρ1,2) could each individually exceed the coupling

strength (lc) (required for oscillations), the system as a whole is unable to access Region IV. In

principle, this corrects both issues that led to failure of oscillations in Model 1a, so that slow

negative feedback that modulates LE(ρ1,2) should then generate relaxation oscillations. With

this adjustment, we indeed found wide parameter regimes corresponding to oscillations (see

Fig 3b for an example).

We next evaluated this model against experimental observations (O1–O3). First, the model

predicts that ROCK inhibition suppresses oscillations (Fig 3a) while increased fibronectin pro-

motes oscillations (Fig 3c), in agreement with (O1) and (O3). Second, increased PI3K (or

reduced PTEN which acts as a PI3K antagonist) is linked to Rac-mediated protrusion (Section

“Correspondence with experiments”). This increases the strength of Feedback 2 and promotes

oscillations (Fig 3b). Given the link between PTEN suppression / elevation of PI3K in invasive

cells, this is consistent with O2.

While this model can account for all three observations, one significant issue leads us to

reject it. The timescales required to generate oscillations in this model are inconsistent with

known biological timescales. Relaxation oscillators require that a slow variable provides the

negative feedback that promotes oscillations. Since Model 1 is predicated on negative feedback

from GTPases to bistable ECM-cell contact area subsystem, it implies that GTPase dynamics

must occur on a slower time scale than that of the cell-ECM subsystem. This appears to be

unreasonable based on the fact that GTPase activation/inactivation operates on a typical time-

scale of seconds, much faster than the actomyosin-based protrusion and contraction of cells.

Indeed, when GTPase dynamics are faster than ECM dynamics (� < 1), oscillations no longer

occur. For this reason, we reject Model 1b as it stands.

GTPase effectors (Model 1c). Before dismissing Model 1 on grounds of timescale, we

considered one additional modification. We asked whether the fast timescale of GTPases

could be retarded by downstream effectors that participate in relevant feedback loops. To

study this possibility, we supplemented Eqs (3) and (1b) with dynamics of intermediate Rac

effectors w1,2 (e.g. WASP, WAVE, PI3K, or other downstream components) and Rho effectors

c1,2 (e.g. ROCK, etc.) that could correct the timescale problem. These putative effectors are rep-

resented as simple dynamic variables (See Figure A in S1 Text), with the parameter �2 govern-

ing timescale. In the �2� � limit, this variant reduces (by a quasi steady state approximation)

to Model 1b.

The structure of Model 1c and the number and values of steady states are the same as in

Model 1b. Only the timescales associated with various model components change. This

model could hence account for the same experimental observations as Model 1b. Further, if

�2 < � < 1, it can do so with GTPase dynamics faster than ECM dynamics. Unfortunately,

while GTPase dynamics no longer need be slow, dynamics of ROCK / WASP must be slower

than ECM dynamics, which is still biologically implausible.

To summarize, we have grounds for rejecting a model in which ECM dynamics are central

to the generation of bistability and polarity. To achieve oscillations with such a model, other

components of the system must operate on a slow timescale. Biologically, since GTPases and

their effectors regulate protrusion and contraction, it is only reasonable that they operate on a
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faster timescale than lamellipodial dynamics, and cannot therefore be the source of slow nega-

tive feedback. This motivates the development of our next attempt in which we reverse the

roles of GTPases and ECM as sources of bistability and negative feedback.

Bistable GTPases (Model 2)

In view of the conclusions thus far, we now explore the possibility that bistability stems from

mutual antagonism between Rac and Rho, rather than lamellipod competition. To do so, we

chose Hill coefficients n = 3 in the rates of GTPase activation, AR, Aρ. We then assume that

ECM signaling both couples the lamellipods and provides the requisite slow negative feedback.

Here we consider the case that GTPases are abundant, so that the levels of inactive Rac and

Rho (RI, ρI) are constant.

We first characterize the GTPase dynamics with bR,ρ as parameters. Subsequently, we

include ECM signaling dynamics and determine how the feedback drives the dynamics in the

(bR, bρ) parameter plane.

Isolated from the ECM influence, each lamellipod is independent so we only consider the

properties of GTPase signaling in one. This mutually antagonistic GTPase submodel is the

well-known “toggle switch” [50] that has a bistable regime, as shown in the (bR, bρ) plane of

Fig 4a. ECM signaling affects the Rac / Rho system only as an input to bρ. A linear dependence

of bρ on Ek failed to produce an oscillatory parameter regime, so we used a nonlinear Hill type

dependence with basal and saturating components. Furthermore, for GTPase influence on

ECM signaling we use Hill functions for the influence of Rho (in LE) and Rac (in BE) on pro-

trusion and contraction. We set AE = 0 in this model for simplicity. (Nonzero AE can lead to

compounded ECM bistability that we here do not consider.)

Given the structure of the bρ − bR parameter plane and the fact that ECM signaling variables

only influence bρ, we can view oscillations as periodic cycles of contraction and protrusion

forming a trajectory along one of horizontal dashed lines in Fig 4a. This idea guides our

Fig 4. Bistable GTPases mode (Model 1). (a) Bifurcation analysis of Eqs (3a) and (3b) with respect to GTPase activation

rate parameters bR and bρ (here assumed fixed, independent of Ek to decouple the ECM module). Other parameters: n = 3,

δ = 1. Dashed lines indicate the bistable range of bρ values that must be traversed to induce oscillation. Compare to Fig 5a.

(b) Bifurcation analysis of Model 2 with respect to the strength of the feedbacks γR and γρ. Two curves of Hopf bifurcations

separate oscillatory and static (but non-polar) regimes of behavior. Parameters values are provided in S1 Text.

https://doi.org/10.1371/journal.pcbi.1005524.g004
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parametrization of the model. We select a value of bR that admits a bistable range of bρ in

Fig 4a. Next we choose maximal and minimal values of the function bρ(EK) that extend beyond

the borders of the bistable range. This choice means that the system transitions from the high

Rac / low Rho state to the low Rac / high Rho state over each of the cycles of its oscillation.

With this parametrization, we find oscillatory dynamics, as shown in Fig 4b.

We now consider the two-lamellipod system with the above GTPase module in each lamel-

lipod; we challenge the full model with experimental observations. Since each lamellipod has a

unique copy of the Rac-Rho module, ECM signaling provides the only coupling between the

two lamellipods. First, we observed that inhibition of ROCK (reduction of γρ in Fig 4b) sup-

press oscillations. However the resulting stationary state is non-polar, in contrast to experi-

mentally observed increase in the fraction of polarized cells (O1). We adjusted the coupling

strength (lc) to ensure that this disagreement was not merely due to insufficient coupling

between the two lamellipods. While an oscillatory regime persists, the discrepancy with (O1) is

not resolved: the system oscillates, but inhibiting ROCK gives rise to a non-polarized station-

ary state, contrary to experimental observations.

Yet another problematic feature of the model is its undue sensitivity to the strength of Rac

activation (bR). This is evident from a comparison of the dashed lines in Fig 4a. A small change

in bR (vertical shift) dramatically increases the range of bistability (horizontal span), and hence

the range of values of bρ to be traversed in driving oscillations. This degree of sensitivity seems

inconsistent with biological behavior.

It is possible that an alternate formulation of the model (different kinetic terms or different

parametrization) might fix the discrepancies noted above, so we avoid ruling out this scenario

altogether. In our hands, this model variant failed. However a simple augmentation, described

below, addresses all deficiencies, and leads to the final result.

Hybrid (Model 3)

In our third and final step, we add a small but significant feature to the bistable GTPase model

to arrive at a working variant that accounts for all observations. Keeping all equations of

Model 2, we merely drop the assumption of unlimited Rac and Rho. We now require that the

total amount of each GTPase be conserved in the cell. This new feature has two consequences.

First, lamellipods now compete not only for growth, but also for limited pools of Rac and Rho.

This, along with rapid diffusion of inactive GTPases across the cell [30, 31, 51] provides an

additional global coupling of the two lamellipods. This seemingly minor revision produces

novel behavior.

We proceed as before, first analyzing the GTPase signaling system on its own. With conser-

vation, the bR − bρ plane has changed from its previous version (Fig 4a for Model 2) to Fig 5a.

For appropriate values of bR, there is a significant bistable regime in bρ. Indeed, we find three

regimes of behavior as the contractile strength in lamellipod k, bρ(Ek), varies: a bistable regime

where polarity in either direction is possible, a regime where lamellipod j “wins” (Ej > Ek, left

of the bistable regime), and a regime where lamellipod k “wins” (right of the bistable regime).

Only polarity in a single direction is possible on either side of the bistable regime.

As in Model 2, we view oscillations in the full model as cycles of lamellipodial protrusion

and contraction that modify bρ(Ek) over time, and result in transitions between the three polar-

ity states. To parameterize the model, we repeat the process previously described (choose a

value of bR consistent with bistability, then choose the dependence of bρ on ECM signaling so

as to traverse that entire bistable regime.)

We couple the GTPase system with ECM equations as before. We then check for agreement

with observations (O1–O3). As shown in Fig 5(e) and 5(f), the model produces both polarized
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and oscillatory solutions. To check consistency with experiments, we mapped the dynamics of

this model with respect to both ROCK mediated contraction and PI3K mediated protrusion

(Fig 5c). Inhibiting ROCK (Fig 5b, decreasing γρ) results in a transition from oscillations to

polarized states, consistent with (O1). PI3K upregulation promotes oscillations (increasing γR,

Fig 5c), characteristic of the more invasive cell line 1205Lu (consistent with O2). Finally,

increased fibronectin density (increased γE, Fig 5d) also promotes oscillations, consistent with

(O3). We conclude that this Hybrid Model can account for polarity and oscillations, and that

it is consistent with the three primary experimental observations (O1–3). Finally, Model 3 can

recapitulate such observations with more reasonable timescales for GTPase and ECM dynam-

ics than were required for Model variant 1b.

Fig 5. Hybrid Model (Model 3). Assuming that the pools of Rac and Rho are constant in the cell fixes undesirable features of Model 2. (a) As in Fig 4(a)

but with GTPase conservation Eq (1b). Other parameters: n = 3, δ = 1, ρT = RT = 2. Dashed lines indicate the range of bρ values that must be traversed to

induce oscillation. (b) Bifurcation analysis with respect to γρ. Polarized (indicated by stable steady states, solid curves) and oscillatory (unstable steady

states, dashed curves) regimes are present. (c) Two-parameter bifurcation diagrams depicting oscillatory and polarized parameter regimes separated by a

locus of Hopf bifurcations, both with (lc = 0.1) and without (lc = 0) direct lamellipod coupling. Points (e,f) indicate parameter values at which simulations

were performed (with lc = 0) to confirm dynamics. (d) Bifurcation diagram of the full model, with respect to basal Rac activation rate bR and ECM-induced

Rho activation rate γE, concordant with such diagrams in [11]. Solid (respectively dashed) lines indicate the boundary of different dynamical regimes

without (resp. with) feedback from ECM onto Rac activation. (e,f) Sample simulations showing lamellipodial polarity and oscillations (ECM signaling levels

in each lamellipod over time). Parameter values correspond to the labeled points in panel (c). For (e), lc = 0, γR = 0.2, γρ = 0.2. For (f), lc = 0, γR = 0.3,

γρ = 0.4. All other parameters are given in the S1 Text.

https://doi.org/10.1371/journal.pcbi.1005524.g005
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It is apparent that Model 3 contains two forms of lamellipodial coupling: direct (mechani-

cal) competition and competition for the limited pools of inactive Rac and Rho. While the for-

mer is certain to be an important coupling in some contexts or conditions [52], we find that it

is dispensable in this model (e.g, see lc = 0 in Fig 5c). We comment about the effect of such cou-

pling in the Discussion. In the context of this final model, we also tested the effect of ECM acti-

vation of Rac (in addition to the already assumed effect on Rho activation). As shown in Fig 5d

(dashed curves), the essential bifurcation structure is preserved when this modification is

incorporated (details in the S1 Text, and implications in the Discussion).

Summary of results

To summarize, Model 1b was capable of accounting for all observations, but required conser-

vation of GTPase to do so. This model was however rejected due to unreasonable time scales

needed to give rise to oscillations. Model 2 could account for oscillations with appropriate

timescales, but it appears to be highly sensitive to parameters and, in our hands, inconsistent

with experimental observations. Model 3, which combines the central features of Models 1b

and 2, has the right mix of timescales, and agrees with experimental observations. In that final

Hybrid Model, ECM based coupling (lc) due to mechanical tension or competition for other

resources is not essential, but its inclusion makes oscillations more prevalent (Fig 5b and 5e).

Furthermore, in this Hybrid Model, we identify two possible negative feedback motifs,

shown in Fig 2b. These appear to work cooperatively in promoting oscillations. As we have

argued, feedbacks are tuned so that ECM signaling spans a range large enough that bρ(Ek) tra-

verses the entire bistable regime (Fig 5a). This is a requirement for the relaxation oscillations

schematically depicted in Fig 2c. Within an appropriate set of model parameters, either feed-

back could, in principle, accomplish this. Hence, if Feedback 1 is sufficiently strong, Feedback

2 is superfluous and vice versa. Alternatively, if neither suffices on its own, the combination of

both could be sufficient to give rise to oscillations. Heterogeneity among these parameters

could thus be responsible for the fact that in ROCK inhibition experiments (where Feedback 1

is essentially removed), most but not all cells transition to the persistent polarity phenotype.

The Hybrid Model (Model 3) is consistent with observations O1–O3. We can now chal-

lenge it with several further experimental tests. In particular, we make two predictions.

(P1). In the model, reducing the rate of Rac-mediated protrusion (γR) promotes persistent

polarization over oscillation (Fig 5e and 5f). One way to test this experimentally is to

inhibit Rac activity. Rac inhibition experiments are reported in [11], which validate the

prediction: oscillations are suppressed in favor of persistent polarization.

(P2). Alternatively, the Hybrid model predicts that promoting Rho-mediated contraction

(increasing γρ) promotes oscillations over persistent polarization. This was tested in

[11] by ablating microtubules. Previously, it was found that the application of nocoda-

zole, which breaks up microtubules (MTs), leads to the release of MT-sequestered Rho-

GEF (GEF-H1) which subsequently activates Rho and promotes contraction [53].

Experiments of this type are reported in [2], where cells were constrained to move in

1D by micropatterned adhesive strips. In experiments by [11] it was indeed shown that

MT suppression promotes oscillation, consistent with this model prediction.

Discussion

Migrating cells can exhibit a variety of behaviors. These behaviors can be modulated by the

cell’s internal state, its interactions with the environment, or mutations such as those leading

GTPase / ECM feedbacks modulate cellular behavior

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005524 May 4, 2017 17 / 22

https://doi.org/10.1371/journal.pcbi.1005524


to cancer progression. In most cases, the details of mechanisms underlying a specific behavior,

or leading to transitions from one phenotype to another are unknown or poorly understood.

Moreover, even in cases where one or more defective proteins or genes are known, the com-

plexity of signaling networks make it difficult to untangle the consequences. Hence, using indi-

rect observations of cell migration phenotypes to elucidate the properties of underlying

signaling modules and feedbacks are, as argued here, a useful exercise.

Using a sequence of models and experimental observations (O1–O3) we tested several plau-

sible hypotheses for melanoma cell migration phenotypes observed in [11]. By so doing, we

found that GTPase dynamics are fundamental to providing 1) bistability associated with polar-

ity and 2) coupling between competing lamellipods to select a single “front” and “rear”. (This

coupling is responsible for the antiphase lamellipodial oscillations). Further, slow feedback

between GTPase and ECM signaling resulting from contraction and protrusion generate oscil-

lations similar those observed experimentally.

The single successful model, Hybrid Model (Model 3), is essentially a relaxation oscillator.

Mutual inhibition between the limited pools of Rac and Rho, sets up a primary competition

between lamellipods that produces a bistable system with polarized states pointing in opposite

directions. Interactions between GTPase dynamics and ECM signaling provide the negative

feedback required to flip this system between the two polarity states, generating oscillations for

appropriate parameters. Results of Model 3 are consistent with observations (O1–O3), and

lead to predictions (P1–P2), that are also confirmed by experimental observations [11]. In

[11], it is further shown that the fraction of cells exhibiting each of these behaviors can be

quantitatively linked to heterogeneity in the ranges of parameters representing the cell popula-

tions in the model’s parameter space.

In our models, we assumed that the dominant effect of ECM signaling input is to activate

Rho, rather than Rac. In reality, both GTPases are likely activated to some extent in a cell and

environment-dependent manner [41, 42]. We can incorporate ECM activation of Rac by

amending the term AR so that its magnitude is dependent on ECM signaling (Ek). Doing so

results in a shift in the borders of regimes we have indicated in Fig 5d (dashed versus solid bor-

ders, see S1 Text for more details). So long as Rho activation is the dominant effect, this hardly

changes the qualitative results. As the strength of feedback onto Rac strengthens, however, the

size of the oscillatory regime is reduced. Thus if feedback onto Rac dominates, loss of oscilla-

tions would be predicted. This is to be expected based on the structure of these interactions.

Where ECM! Rho mediates a negative feedback, ECM! Rac mediates a positive feedback,

which would be expected to suppress oscillatory behavior. Thus while the ECM likely mediates

multiple signaling feedbacks, this modeling suggest feedback onto Rho is most consistent with

observations.

We have argued that conservation laws (fixed total amount of Rac and fixed total amount

of Rho) in the cell plays an important role in the competition between lamellipods. Such con-

servation laws are also found to be important in a number of other settings. Fully spatial

(PDE) modeling of GTPase function has shown that conservation significantly alters signaling

dynamics [27, 31, 54]. In [55], it was shown that stochastically initiated hot spots of PI3K

appeared to be globally coupled, potentially through a shared and conserved cytoplasmic pool

of a signaling regulator. Conservation of MIN proteins, which set up a standing wave oscilla-

tion during bacterial cell division, has been shown to give rise to a new type of Turing instabil-

ity [56]. Finally, interactions between conserved GTPase and negative regulation from F-actin

in a PDE model was shown to give rise to a new type of conservative excitable dynamics

[46, 47], which have been linked to the propagation of actin waves [57].

These results provide interesting insights into the biology of invasive cancer cells (in mela-

noma in particular), and shed light onto the mechanisms underlying the extracellular matrix-
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induced polarization and migration of normal cells. First, they illustrate that diverse polarity

and migration patterns can be captured within the same modeling framework, laying the foun-

dation for a better understanding of seemingly unrelated and diverse behaviors previously

reported. Second, our results present a mathematical and computational platform that distills

the critical aspects and molecular regulators in a complex signaling cascade; this platform

could be used to identify promising single molecule and molecular network targets for possible

clinical intervention.

Supporting information

S1 Text. Supplemental text containing full equations for all models along with parameters

and a description of how parameters were obtained.

(PDF)
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