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Abstract: Engineered nanomaterials (ENMs) are products of the emerging nanotechnology industry
and many different types of ENMs have been shown to cause chronic inflammation in the lungs of
rodents after inhalation exposure, suggesting a risk to human health. Due to the increasing demand
and use of ENMs in a variety of products, a careful evaluation of the risks to human health is urgently
needed. An assessment of the immunotoxicity of ENMs should consider susceptibility factors
including sex, pre-existing diseases, deficiency of specific genes encoding proteins involved in the
innate or adaptive immune response, and co-exposures to other chemicals. This review will address
evidence from experimental animal models that highlights some important issues of susceptibility to
chronic lung inflammation and systemic immune dysfunction after pulmonary exposure to ENMs.
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1. Introduction

Inflammation is the consequence of an innate immune response of the host to stimuli such as
pathogens (e.g., bacteria, fungi, viruses), allergens, or toxic chemicals and pollutants [1–3]. The steps
in the inflammatory response can be defined as (1) induction, (2) peak, and (3) resolution [1,2,4–7].
The induction phase involves innate immune cells (e.g., macrophages) detecting the pathogen or
other foreign agent and orchestrating the recruitment of other innate immune cells (e.g., neutrophils,
eosinophils) to the site of infection and/or injury [1,2,5–7]. The peak of inflammation involves recruited
innate immune cells (e.g., macrophages, monocytes, neutrophils) engulfing pathogens or inhaled
agents, triggering key defensive mechanisms, notably the generation of reactive oxygen species
(i.e., respiratory burst) from macrophages and the release of neutrophil extracellular traps (NETs)
from recruited neutrophils [1–7]. Recruited innate immune cells also secrete a plethora of cytokines
(e.g., IL-6, IL-1β, TNF-α) and chemokines (e.g., CXC and CC motif chemokines) that have numerous
functions (e.g., cell proliferation, cell migration, cell death, alteration of epithelial or endothelial barrier
permeability) and also serve as extracellular signals that bridge the innate and adaptive immune
systems. The resolution of inflammation involves clearance of foreign agents, removal of recruited
host immune cells, and repair of damaged tissue [8,9]. During an acute inflammatory response, the
body’s innate immune system defends against the foreign agent in order to remove the invading threat
and to heal the damaged tissue through the recruitment of various immune cells such as neutrophils,
monocytes, macrophages, lymphocytes, and plasma cells [1–9]. The induction of acute inflammation is
a rapid process that occurs within hours and resolves within days, where the immune process is more
localized to the specific injury site [9,10]. This acute inflammatory response is critical to restore the
body back to a state of homeostasis after injury [5–10]. However, when acute inflammation fails to
resolve or multiple exposures dysregulate the immune system, this may lead to unresolved chronic
inflammation [4–10].

Int. J. Mol. Sci. 2020, 21, 7310; doi:10.3390/ijms21197310 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms21197310
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/19/7310?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 7310 2 of 29

Unresolved chronic inflammation involves persistent activation of the innate immune response,
over a period of weeks, months, or years, as well as involvement of the adaptive immune
response [11–13]. While the innate immune system initiates the acute inflammatory response toward a
foreign agent, the adaptive immune system is a more complicated system involving the recognition of
a specific antigen, the polarization and clonal expansion of specific lymphocyte populations, and the
production of antibodies toward the specific antigen [14,15]. The adaptive immune system is not an
immediate response but provides long-lasting ‘memory’ to the foreign agent [14,15]. Both the innate
and adaptive immune systems are closely connected to each other and both components are involved
in unresolved chronic inflammation that culminates in a variety of disease states, including allergies,
asthma, fibrosis, and cancer [16–19]. Unresolved chronic lung inflammation would sustain higher
numbers of inflammatory cells and mediators to reside around the inflammatory site, worsening
tissue injury and prolonging the cascade of pro-inflammatory signaling. One of the most well-known
lung diseases that results from chronic inflammation in the lung is asthma [14,19]. Asthma is a
chronic inflammatory disorder that is characterized by airway hyperresponsiveness (AHR) and airway
remodeling, both of which reduce lung function [14,20]. Asthma affects approximately 300 million
people worldwide and 26 million people in the United States [21,22]. Importantly, asthma is exacerbated
by a variety of agents, including ultrafine air pollution particles (i.e., ambient nanoparticles). Thus,
there is a critical need to elucidate the mechanisms of unresolved chronic inflammation in chronic lung
diseases such as asthma that are exacerbated by inhaled nanoparticles.

Engineered nanomaterials (ENMs) are increasingly incorporated into a variety of products,
making human exposure inevitable [23–31]. ENMs are defined as a class of engineered substances
with at least one dimension in the range of 1–100 nm [32,33]. The high surface area per mass ratio
and other physicochemical characteristics impart novel properties for use of ENMs in diverse fields
including catalysis, electronics, textile fabrication, personal cosmetics, paints, and other various
industrial applications [25,29,33–37]. In recent years, ENMs have gained increasing attention in the
field of nanomedicine for the diagnosis and treatment of a variety of diseases, including cancer [38–41].
However, due to the small size and high reactivity of many ENMs, there is the risk of possible adverse
human health effects upon exposure [29]. There are many different types of ENMs used for industrial
applications including metal nanoparticles and carbon nanoparticles (e.g., carbon nanotubes (CNTs),
carbon nanofibers (CNFs), and graphene), as well as those used for nanomedicine applications such as
polymeric nanoparticles, solid lipid nanoparticles, and liposomes [25,33,38,42]. CNTs make up a big
portion of the nanotechnology market. Market analysis predicts that CNTs will represent a multi-billion
dollar industry within the next five years [43]. CNTs include single-walled carbon nanotubes (SWCNTs)
resembling a rolled graphene sheet with a diameter between 1 and 4 nm and multi-walled carbon
nanotubes (MWCNTs) containing multiple rolled graphene sheets with diameters between 10 and
100 nm [44–47]. Different CNTs are utilized in electronics, medical applications, battery manufacturing,
and polymers [48–50].

There is growing evidence from in vitro cell and in vivo rodent models that different ENMs can
interact with the immune system [51–59]. For example, it has been found that macrophage activation can
be dysregulated by silica nanoparticles [60]. In another study, it was suggested that silver nanoparticles
(AgNPs) influenced gut homeostasis by compromising barrier integrity in intestinal epithelial cells
co-cultured with macrophages [61]. That work also showed that an inflamed condition, simulated
by the addition of LPS and IFN-γ in vitro, caused greater AgNP-induced epithelial necrosis and
apoptosis. Other reports have demonstrated that different types of ENMs such as CNTs or fullerenes
disrupt the function of immune cells including B cells, NK cells, mast cells, and macrophages [62,63].
The greatest exposure route for ENMs is through inhalation, leading to concern that ENMs will cause
or exacerbate respiratory diseases. Many previous studies have shown that ENMs cause chronic lung
inflammation, pulmonary fibrosis, lung cancer, or exacerbation of allergic lung disease in experimental
animals [56,64–75]. Other studies using cultured human or rodent lung cells demonstrate that ENMs
increase the production of pro-inflammatory or pro-fibrotic mediators [76,77]. There is some limited
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evidence that occupational ENM exposure (i.e., MWCNTs) is associated with increased pro-fibrotic
mediators in serum and induced sputum of workers [74]. Therefore, repeated pulmonary exposures to
ENMs may possess a new risk for chronic unresolved lung inflammation in humans.

There is a large gap of knowledge in terms of which susceptibility factors are most important in
determining the severity of ENM-induced chronic respiratory diseases in humans, such as asthma,
fibrosis, and cancer. Therefore, in this review, we will summarize some of the susceptibility
factors that appear to be important in determining the severity of lung inflammatory responses
and systemic immunotoxicity in experimental animals exposed to ENMs. These susceptibility factors
include deficiency or dysregulation of specific genes, sex, pre-existing diseases, and co-exposures to
other chemicals, allergens, or microbial agents that may increase the severity of chronic unresolved
inflammatory responses of the lung to ENMs (Figure 1). In addition, we will identify some gaps in our
understanding of susceptibility to ENM-induced lung inflammation that should help to better predict
the risks to human health.
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2. Deficiency in Cell Signaling Molecules as Determinants of Susceptibility to ENM-Induced
Chronic Lung Inflammation

2.1. Transcription Factors

2.1.1. STAT1

The signal transducers and activators of transcription (STATs) are a family of seven transcription
factors that remain inactivated in the cytoplasm until activation by extracellular signaling proteins like
cytokines or growth factors binding to their cognate receptors on the cell surface [78]. Among them,
STAT1 is known as a regulator of apoptosis, growth arrest, and development and maintenance of T
helper 1 (TH1) cells [78,79]. Therefore, the actions of STAT1 are critical to oppose the development of T
helper 2 (TH2) cells. It has been previously shown that Stat1 Knockout (KO) mice are susceptible to
mortality caused by viral and bacterial infection, primarily due to the fact that the STAT1 pathway is a
major signaling pathway through which interferons (IFNs) mediate antiviral activity [80]. Stat1 KO
mice are also susceptible to bleomycin-induced lung fibrosis with heightened proliferative responses to
growth factors such as platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) [81].
As summarized in Table 1, Stat1 KO mice exhibit increased fibrosis induced by rigid MWCNTs
with higher levels of TGF-β1 in the bronchoalveolar lavage fluid (BALF) and increased Smad2/3
phosphorylation in lung tissue [82]. Furthermore, STAT1 plays a critical role to protect against
allergen-induced airway remodeling and exacerbation by tangled MWCNTs [83]. From a clinical
perspective, patients with idiopathic pulmonary fibrosis have lower levels of STAT1 protein than normal
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individuals [84]. Therefore, STAT1 deficiency likely plays an important role in lung inflammation that
results in chronic lung diseases and can be a risk factor to increase susceptibility toward ENMs.

2.1.2. T-bet

T-box transcription factor TBX21 (T-bet) is a transcription factor that plays a critical role in the
development and differentiation of TH1 cells in the lung [85]. T-bet regulates IFN-γ production and
inhibits TH2 cell development [85]. It has been reported that mice with targeted deletion of T-bet
have decreased production of IFN-γ and increased production of TH2 cytokines, such as IL-4 and
IL-13, leading to the spontaneous development of allergic airway remodeling (eosinophilic infiltration,
airway mucous cell metaplasia, and subepithelial fibrosis) similar to pathological changes observed
in the lungs of asthma patients [86]. As summarized in Table 1, homozygous T-bet KO mice exhibit
enhanced mucous cell metaplasia three weeks after exposure to nickel nanoparticles (NiNPs) compared
to wild type mice [87]. The enhanced mucous cell metaplasia in T-bet KO mice induced by NiNPs was
accompanied by an increase in MUC5AC and MUC5B mRNAs in the lung [87]. Furthermore, numbers
of inflammatory cells, including eosinophils and lymphocytes, persisted in the BALF of T-bet KO mice
for at least three weeks after the final NiNP exposure [87]. Moreover, T-bet KO mice developed more
interstitial lung fibrosis after NiNP exposure compared to wild type mice [87]. MWCNT exposure via
oropharyngeal aspiration also increased mucous cell metaplasia in T-bet KO compared to the wildtype
mice, but to a lesser extent compared to NiNPs [87]. Therefore, T-bet appears to play an important
role in the polarization of T cells towards a TH1 phenotype and suppression of allergic TH2 lung
inflammation. Since T-bet KO mice are susceptible to chronic allergic lung inflammation caused by
NiNPs and MWCNTs, this suggests that individuals with T-bet deficiency would be more susceptible
to certain types of ENMs.

2.1.3. Nrf2

Nuclear factor erythroid 2-related factor (Nrf2) is a transcription factor that controls the expression
of antioxidant proteins [88]. Nrf2 is activated to increase the production of antioxidants such as
drug-metabolizing enzymes including glutathione S-transferase and NAD(P)H: quinone oxidoreductase
1 upon exposure to oxidative stress in cells [88]. Activation of Nrf2 has been implicated as a protective
factor that counteracts the pathogenesis of lung disease in mice and humans upon inhaled oxidants
including ozone, cigarette smoke, and air pollution particles [89]. It has been reported that a lack of
Nrf2 results in a severe outcome inpatients with respiratory infections, chronic obstructive pulmonary
disease (COPD), asthma, idiopathic pulmonary fibrosis, and lung cancer [89]. As summarized in
Table 1, exposure of Nrf2 KO mice to MWCNTs by oropharyngeal aspiration showed a higher level of
inflammation and fibrosis with increased inflammatory cell infiltrates in the lungs 7 days after the
initial exposure compared to the wild type mice [90]. Moreover, increased ROS generation, oxidative
damage, and lung inflammation in Nrf2 KO mice exposed to MWCNTs suggests that Nrf2 is critical
towards suppressing the lung inflammatory response [90]. Another study, summarized in Table 1,
showed that Nrf2 KO mice exposed to silica nanoparticles via intranasal instillation displayed increased
generation of reactive oxygen species (ROS) and decreased total antioxidant capacity compared to
wild type mice [91]. This study also suggested that Nrf2 protects against the oxidative stress induced
by silica nanoparticles [91]. Therefore, the role of Nrf2 in controlling antioxidant protein expression
may be critical to resolve inflammatory responses through suppression of ROS generated by ENMs.
The source of these ROS could be directly generated from ENMs via surface chemistry, or indirectly by
inflammatory cells (e.g., macrophages) undergoing a respiratory burst in response to ENM exposure.

2.1.4. P53

P53 is a transcription factor and tumor suppressor that is pivotal in the progression of lung cancer
and also appears to play a role in pulmonary fibrosis [92]. For example, idiopathic pulmonary fibrosis
patients have a higher incidence of mutated p53 genes and overexpression of mutated p53 [93,94].
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Human lung epithelial (BEAS-2B) cells exposed to SWCNTs for 12–24 weeks showed increased
resistance to apoptosis and a decrease in p53 activation in vitro [95]. Furthermore, mesothelioma
formation in the pleural lining of the abdominal cavity in p53 heterozygous mice (p53+/-) has been
reported following intraperitoneal injection of MWCNTs [96]. However, that study lacked a comparison
to wild type p53+/+ mice. As summarized in Table 1, an increased incidence of larger granulomas,
lymphoid aggregates, and epithelial cell hyperplasia was observed in the lungs of p53+/- mice, compared
to wild type mice, eleven months after oropharyngeal exposure to rigid (Mitsui-7) MWCNTs [97].
Therefore, p53 could play a role in suppressing chronic lung inflammation and granuloma formation
upon pulmonary exposures to different ENMs, including SWCNTs and MWCNTs. Deficiency of p53 in
experimental animals and humans is a susceptibility factor in pulmonary diseases, including cancer
and pulmonary fibrosis.

Table 1. Summarized list of transcription factors that may be involved in the susceptibility to
ENM-induced chronic lung inflammation.

Transcription
Factor Type of ENM Dosing and Exposure

Method
Duration of

Exposure Findings in KO mice References

STAT1
Multi-Walled Carbon

Nanotubes (MWCNTs)
(tangled or rod-like)

4 mg/kg via
oropharyngeal

aspiration
Single Exposure

Increased lung fibrosis with higher
TGF-β1 in bronchoalveolar lavage fluid

(BALF).
Increased Smad2/3 phosphorylation in

lung tissue.

[82]

T-bet

Nickel Nanoparticles
(NiNPs

or
MWCNTs

4 mg/kg via
oropharyngeal

aspiration
Single exposure

Enhanced mucous cell metaplasia.
Increased MUC5AC and MUC5B mRNAs.
Persistent eosinophils and lymphocytes

in BALF.
Greater interstitial lung fibrosis.

[87]

Nrf2 MWCNTs 5, 20, and 40µg via
pharyngeal aspiration Single exposure

Higher level of inflammation and fibrosis.
Increased inflammatory cell infiltrates.

Increased ROS generation and oxidative
damage.

[90]

Silica NPs 10 mg/kg via intranasal
instillation

Once a day for
2 weeks

Increased reactive oxygen species.
Decreased total antioxidant capacity. [91]

P53 MWCNTs (tangled or
rod-like)

1 mg/kg via
oropharyngeal

aspiration

Once a week for
4 weeks

Increased incidence of larger granuloma
formation, lymphoid aggregates, and

epithelial cell hyperplasia in the lungs of
heterozygous p53(+/−).

[97]

BMAL1 MWCNTs
6.4 or 25.6 µg via
oropharyngeal

aspiration

Once a week,
for 5 consecutive

weeks

Increased inflammatory cytokines,
oxidative stress, and procoagulant effect

in serum.
[98]

ZnONPs
6.4 or 12.8 µg via
oropharyngeal

aspiration

Once a week,
for 5 consecutive

weeks

Decreased inflammatory cytokines,
decreased oxidative stress, and increased

procoagulant effect.
[98]

2.1.5. BMAL1

Brain and muscle ARNT-like protein (BMAL1) is a transcription factor that controls circadian
rhythm and regulates ROS generation [98]. Bmal1 KO mice showed higher platelet aggregation
and adhesion, indicating a higher risk for cardiovascular disease compared to wild type mice [99].
Moreover, most of the Bmal1 KO mice die at an age between 26 and 52 weeks, mainly due to excessive
ROS production and a chronic oxidative stress state in various tissues, resembling an early aging
phenotype [100]. As summarized in Table 1, both wild type and Bmal1 KO mice have been evaluated
for pro-inflammatory responses after exposure to zinc oxide nanoparticles (ZnONPs) or MWCNTs
delivered to the lungs via oropharyngeal aspiration over 5 weeks [98]. MWCNT exposure caused an
increase in inflammatory responses, cell counts in BALF, oxidative stress, and procoagulant effects in
the serum of Bmal1 KO mice compared to wild type mice [98]. On the other hand, ZnONP exposure
showed a decrease in inflammatory and oxidative responses but increased the procoagulant effect in
Bmal1 KO mice compared to the wild type mice [98]. Although MWCNTs and ZnONPs produced
opposite inflammatory responses in Bmal1 KO mice, the dysregulation of coagulation induced by both
of these ENMs in Bmal1 KO mice indicates that BMAL1 plays an important role in preventing adverse
cardiovascular effects of ENMs [98]. However, different mechanisms appear to be involved in the
chronic inflammatory responses to MWCNTs and ZnONPs.
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2.2. Enzymes/Proteins

2.2.1. NADPH Oxidase

NADPH oxidases are enzymes that are responsible for producing superoxide radicals (O2
•-) [101].

Neutrophils kill invading pathogens by generating reactive oxygen species (ROS) such as O2
•- [101].

ROS have recently been shown to be a critical factor in controlling the resolution of inflammation by
regulating neutrophils and macrophages by sending “eat-me” signals [101]. NADPH oxidase-deficient
mice or gp91phox−/− that specifically lacks the gp91phox subunit of the enzyme have been used to evaluate
lung inflammation after exposure to SWCNTs [102]. This study, summarized in Table 2, showed
that gp91phox−/− KO mice had augmented lung inflammation with higher numbers of neutrophils,
apoptotic cells, pro-inflammatory cytokines (TNF-α, CCL2, and IL-6), and reduced TGF-β1 at 1, 7,
and 28 days after pharyngeal exposure to SWCNTs [102]. The results also suggest that the impaired
resolution of the inflammatory response may develop into a chronic unresolved inflammatory state,
due to prolonged increase in neutrophils and pro-inflammatory cytokines, in NADPH oxidase deficient
mice [102]. Thus, NADPH oxidase could play a protective role in the resolution of ENM-induced lung
inflammation by releasing ROS to regulate neutrophils and macrophages.

2.2.2. COX-2

Cyclooxygenase-2 (COX-2), also known as prostaglandin-endoperoxide synthase-2 (PTGS2), is an
enzyme that has been implicated in asthma and fibrosis [103]. Along with TH2 cytokines, including
IL-13 and IL-5, COX-2 has been implicated in asthma pathogenesis [104,105]. However, unlike
IL-13 and IL-5, which are increased in individuals with asthma, COX-2 deficiency has been linked
to increased severity of asthma progression [103–107]. Particularly, individuals with asthma have
a reduced level of mRNA encoding COX-2 in airway epithelial cells [106]. Furthermore, a study
using airway epithelial cells collected from endobronchial brushings from healthy individuals, when
treated with IL-13 to mimic the asthmatic microenvironment, had reduced COX-2 mRNA expression
levels [107]. Lower levels of COX-2 in airway epithelial cells from the healthy individuals treated
with IL-13 resulted in lower prostaglandin E2 (PGE2) [107]. Therefore, these data indicate that COX-2
plays a protective role in the asthmatic lung and loss of COX-2 and PGE2 results in susceptibility to
allergic airway inflammation. As summarized in Table 2, Ptgs2 KO mice sensitized to ovalbumin
allergen through repeated intranasal aspiration followed by a single oropharyngeal aspiration of
MWCNTs were found to be more susceptible to eosinophilic lung inflammation, airway mucous cell
metaplasia, and airway fibrosis compared to wild type mice [103]. Compared to wild type mice,
the Ptgs2 KO mice also had significantly higher Th2 cytokines including IL-13, Th1 cytokines such as
CXCL10, and the Th17 cytokine IL-17A [103]. Overall, this study showed that Ptgs2 KO mice were
susceptible to the exacerbation of allergen-induced airway disease by MWCNTs [103]. Deficiency
in COX-2 could therefore be a possible mechanism involved in chronic lung inflammation induced
by certain types of ENMs such as MWCNTs. Thus, COX-2 appears to be an enzyme that is needed
for the resolution of chronic airway inflammation and loss of COX-2 could lead to susceptibility to
ENM-induced lung inflammation.

2.2.3. TIMP1

Tissue inhibitor of metalloproteinase 1 (TIMP1) is a glycoprotein that acts as an extracellular
signaling molecule to control cell growth, apoptosis, differentiation, angiogenesis, and oncogenesis [108].
TIMP1 also plays a role to control extracellular matrix by mediating the activity of matrix
metalloproteinases (MMPs) [108]. Furthermore, it has been reported that high expression of TIMP1 is
associated with liver and pulmonary fibrosis in animal models [109–111]. It has been demonstrated
that MWCNT-induced lung fibrosis in mice corresponded with highly upregulated TIMP1 at both
the mRNA and protein level in lung tissue [112]. Moreover, Timp1 KO mice exposed to MWCNTs
as summarized in Table 2 had reduced lung fibrosis, suppressed myofibroblast differentiation, and
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lower activation of extracellular signal-regulated kinase (ERK) signaling, indicating that TIMP1 plays
a pro-fibrotic role in the progression of MWCNT-induced lung fibrosis through activation of the
intracellular ERK pathway [112]. Thus, TIMP1 may aggravate MWCNT-induced lung inflammation
and may contribute to the susceptibility to chronic lung disease.

2.2.4. MPO

Myeloperoxidase (MPO) is an abundant enzyme in inflammatory cells especially produced by
neutrophils and plays a vital defense role in the innate immune system [113]. Intratracheal instillation
of MWCNTs and SWCNTs in rats has been shown to consistently increase the concentration of MPO in
BALF [114]. Increased MPO was also associated with an increased number of total cells and neutrophils
in the BALF, suggesting that it could be a potential biomarker for pulmonary toxicity induced by
ENMs [114]. However, MPO has been reported to effectively mediate the oxidative biodegradation
of CNTs (SWCNTs or MWCNTs), leading to resolution of inflammation [113]. To support this,
MPO KO mice exposed to SWCNTs (summarized in Table 2) showed less efficient clearance of the
nanomaterials [115]. This same study showed that MPO KO mice had a slightly weaker acute
neutrophilic inflammatory response at day 1 after exposure to SWCNTs but significantly greater lung
fibrosis at day 28. Thus, these findings suggest that increased MPO from pulmonary injury induced
by ENMs could be playing a vital role in both initiating and resolving inflammation. As such, MPO
has been suggested to be a double-edged sword where it can both be responsible for the initiation of
inflammation and the resolution of inflammation caused by pulmonary exposure to ENMs.

2.2.5. ApoE

Apolipoprotein E (ApoE) is a protein that is responsible for fat metabolism in the body [116].
It has been reported that ApoE KO mice have increased vascular dysfunction to particulates like diesel
exhaust and fullerene C60 (C60) nanoparticles [117,118]. As summarized in Table 2, intratracheal
instillation of different ENMs, including carbon black nanoparticles (CBNPs), gold nanoparticles
(AuNPs), C60 nanoparticles, and SWCNTs, increased DNA damage in BALF inflammatory cells,
increased neutrophils in BALF, and higher BALF protein levels in ApoE KO mice compared to wild
type mice [119]. ApoE KO mice with repeated exposure to MWCNTs via intratracheal instillation were
also more susceptible to oxidative DNA damage in lung tissue compared to the wildtype mice [120].
Suzuki et al. also found that pharyngeal aspiration to single or double-walled CNTs caused endothelial
progenitor cell (EPC) dysfunction and reduced migration function of EPCs in ApoE KO mice [121].
Dysregulation of EPCs in ApoE KO mice could contribute to the development of atherosclerosis [121].
Another study using ApoE KO mice treated with MWCNTs via intratracheal instillation showed a
positive association between pulmonary inflammation and oxidative stress, along with the expression
of genes involved in vascular activation [122]. Increased vascular activation from MWCNTs also could
play a role in exacerbating the progression of atherosclerosis [122]. Overall, these studies suggest that a
lack of ApoE is a susceptibility factor in ENM-induced lung inflammation and cardiovascular disease.
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Table 2. Summarized list of enzymes/proteins that may be involved in the susceptibility to ENM-induced chronic lung inflammation.

Enzymes/Proteins Type of ENMs Dosing and Exposure
Method Duration of Exposure Findings in KO Mice References

NADPH Oxidase Single-Walled Carbon
Nanotubes (SWCNTs)

40 µg/mouse via
pharyngeal aspiration Single exposure

Augmented lung inflammation by producing higher numbers of
neutrophils, apoptotic cells, pro-inflammatory cytokines including
TNF-α, MCP-1 (CCL2), and IL-6, and reduced anti-inflammatory

cytokine, TGF-β1.
Prolonged increase in neutrophils and pro-inflammatory cytokines.

[102]

COX-2 MWCNTs 4mg/kg via oropharyngeal
aspiration

Single MWCNTs exposure
after ovalbumin (OVA)

sensitization and challenges

More susceptible to eosinophilic lung inflammation, airway mucous
cell metaplasia, and airway fibrosis with ovalbumin allergen

sensitization.
Significantly higher Th2 cytokines including IL-13, Th1 cytokines such

as CXCL10, and the Th17 cytokine IL-17A detected.

[103]

TIMP1 MWCNTs 40 µg/mouse via
pharyngeal aspiration Single exposure Induced lung fibrosis through activation of intracellular ERK pathway [112]

MPO SWCNTs 40 µg/mouse via
pharyngeal aspiration Single exposure

Less efficient clearance of CNTs causing a profound inflammatory
response.

However, wildtype mice also showed that increased MPO was also
associated with number of total cells and neutrophils.

[115]

ApoE

AuNPs
C60

SWCNTs
Carbon Black NPs

(CBNPs)

0.54 µg AuNPs, 54 µg C60,
54 µg SWCNTs, 18 or

54 µg CBNPs via
instillation or inhalation

Single exposure Increased the DNA damage of inflammatory cells, neutrophil
percentage, and higher protein level in BALF. [119]

MWCNTs 4 or 40 µg/mouse via
intratracheal instillation Once a week for 4 weeks Increased pulmonary inflammation and oxidative stress/damage to

DNA in lung tissue. [120]

SWCNTs Or
Double-Walled CNTs

10 or 40 µg/mouse via
pharyngeal aspiration

Once every other week for
10 weeks

Dysregulation of endothelial progenitor cell (EPC) function
contributing to developing atherosclerosis, buildup of cholesterol

plaques in the walls of arteries.
[121]

MWCNTs 6.4 or 25.6 µg/mouse via
intratracheal instillation Once a week for 5 weeks More susceptible to oxidative damage to DNA in lung tissue.

Accelerated progression of atherosclerosis. [122]
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2.3. Receptors

2.3.1. AhR

Aryl hydrocarbon receptor (AhR) is a transcription factor that was originally shown to
bind and become activated by environmental toxicants such as dioxins and polycyclic aromatic
hydrocarbons [123]. Once activated, AhR transactivates phase I and phase II metabolizing enzymes such
as cytochrome P450 1A1 [123]. Recent studies have shown that AhR is not only involved in metabolizing
toxicants but may also be involved in the pulmonary immune and pro-inflammatory responses [124]. For
example, a study using AhR KO mice exposed to ZnONPs via oropharyngeal aspiration (Table 3) showed
that these mice had reduced cell numbers, total protein, LDH activity, and pro-inflammatory cytokine
production in BALF compared to the wild type mice [125]. No increase in CYP1A1, a downstream
target of AhR, was detected in AhR KO mice [125]. In addition, AhR KO mice did not display an
increase in kynurenine (KYN), which is an endogenous AhR agonist [125]. Therefore, this work
suggests that AhR is involved in mediating ZnONP-induced pulmonary inflammation. Furthermore,
impaired/imbalanced AhR expression could be a potential factor in determining susceptibility to
ENM-induced chronic lung inflammation.

2.3.2. CCR5

CCR5 is a chemokine receptor that is known to mediate the TH1 response and binds several
chemokines including RANTES/CCL5, MIP-1α, and MIP-1β [126,127]. A study by Park and colleagues,
summarized in Table 3, compared the inflammatory response from Ccr5 KO and wild type mice after
exposure to SWCNTs via intratracheal instillation [128]. A single intratracheal instillation of SWCNTs
significantly reduced the number of neutrophils in Ccr5 KO mice, yet KO mice had more frequent
histopathological lesions compared to the wildtype mice [128]. The lung inflammatory response of Ccr5
KO mice was dominated by B cells and CD8+ T cells, while the wild type mice were mostly dominated
by T cells and CD4+ T cells in the lungs [128]. Moreover, SWCNTs also increased IL-6, IL-13, and IL-17
in BALF of Ccr5 KO mice compared to the wildtype mice [128]. These data suggested that the delay
in the resolution of inflammation could be due to impaired cell migration to the inflammation site,
which was supported by reduced numbers of neutrophils [128]. The authors of this work suggested
that a delay in the resolution of inflammation resulted from shifting from a Th1 type response to a Th2
type response in the Ccr5 KO model [128]. Overall, these findings suggest that Ccr5 KO mice appear to
be more susceptible to SWCNT-induced chronic lung inflammation due to the delay in the resolution
of inflammation [128]. Therefore, CCR5 may play an important role in the resolution of inflammation
induced by ENMs.

2.4. Cytokines/Chemokines

2.4.1. IL-1/Inflammasome

IL-1 is a family of cytokines that play a critical role in innate immunity [129]. There are 11 members
in the family, and IL-1β, IL-1α, and IL-33 are the main IL-1 family members [129,130]. IL-1 family
members provide non-specific immune responses toward foreign pathogens [129]. However, IL-1
also can mediate an adaptive immune response [129]. Therefore, IL-1 family members are pivotal
cytokines that are involved in both acute and chronic inflammation [129]. Among the IL-1 family,
the role of IL-1β has been studied the most extensively in ENM-induced lung inflammation. IL-1β
secretion from inflammatory cells is regulated by inflammasomes, intracellular scaffolds that cleave
pro-IL-1β to mature IL-1β when they detect extracellular signals [129]. The inflammasome is a critical
complex to orchestrate IL-1 function [129]. For example, IL-1β is first produced as a precursor form,
termed pro-IL-1β, that is lacking in biological activity [129]. In order to increase IL-1β production and
secretion, the multiprotein complex inflammasome is assembled and serves as a docking scaffold for
caspase-1 to cleave the inactive pro-IL-1β to active IL-1β.
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It has been shown that MWCNTs and other nanoparticles can activate the inflammasome
assembly through lysosomal disruption [129,131]. For example, mice exposed with MWCNTs through
oropharyngeal aspiration had increased IL-1β secretion in BALF [132]. Different studies have shown
that IL-1α and IL-1β play roles in ENM-induced lung inflammation [131,132]. However, the role of
IL-1β remains controversial, since some work has shown that reduced inflammasome activation results
in greater pulmonary fibrosis induced by ENMs. For example, mice sensitized to house dust mites and
challenged with MWCNTs showed reduced IL-1β in BALF but had more severe airway fibrosis after
21 days with increased pro-fibrogenic cytokines, including PDGF-A and PDGF-B mRNAs, compared
to HDM or MWCNT treatment alone [132]. Another study, summarized in Table 3, showed that a 24
h acute exposure to MWCNTs, containing either low or high nickel content, through oropharyngeal
aspiration in IL-1R KO mice had reduced acute inflammation and airway resistance but increased IL-6
protein production compared to the wild type mice [133]. However, this study also showed that the
exposure to MWCNTs induced a significantly higher number of pulmonary granulomas and significant
inflammation in IL-1R KO after 28 days compared to wild type mice [133]. The results of this study
also showed that total inflammatory cells were reduced at both 24 h and 28 days post exposure in
IL-1R KO mice [133]. It was suggested that the resolution of inflammation was inefficient in IL-1R
KO mice, resulting in increased granuloma and inflammation after 28 days [133]. Similarly, another
study also showed that acute inflammation induced by intratracheal instillation of MWCNTs was
suppressed 24 h after the exposure in IL-1R KO mice, but fibrotic lesions still developed in KO mice
after 28 days [134]. Other work using IL-1R KO mice exposed to rod-like MWCNTs by oropharyngeal
aspiration (see Table 3) showed significantly reduced neutrophils in the BALF and lower levels of
mRNA encoding CXCL5 (a neutrophil chemokine) at 4 h compared to the wildtype mice [135]. After
the 28-day exposure to rod-like MWCNTs, neutrophils were still reduced in the BALF and TNF-α
mRNA expression levels were suppressed compared to the wild type mice [135]. However, no changes
were observed in TH2 related signals including mRNAs encoding IL-13 and TGF-β1, compared to the
wild type mice [135]. Overall, the available evidence suggests that impaired IL-1 signaling caused by
MWCNTs dysregulates the immune system, resulting in reduced acute inflammation or inefficient
resolution of inflammation and resulting in pulmonary fibrosis and granuloma formation.

2.4.2. OPN

Osteopontin (OPN; secreted phosphoprotein 1 or SPP1) is a cytokine that is involved in various
physiological and pathological processes, including inflammation, fibrosis, and bone remodeling [136].
Elevated OPN is expressed in tissues undergoing an intense wound healing process or during
fibrogenesis [136]. It has been shown that both acute and chronic exposures to MWCNTs can induce
higher OPN production levels [136]. A study using Opn KO mice showed that inhalation exposure
to MWCNTs via pharyngeal aspiration (see Table 3) induced inflammation that was dependent on
OPN [136]. The study also showed that Opn KO mice had reduced fibrotic formation and myofibroblast
accumulation in the lungs compared to the wild type mice [136]. They suggested that OPN production
and secretion in turn could activate TGF-β1 to promote fibrosis in the lungs [136]. Rats exposed to
different doses of TiO2 particles via inhalation showed a significant increase in lung OPN mRNA and
OPN protein in BALF in a dose–response manner [137]. Therefore, OPN appears to play a critical
role in tissue remodeling. Individuals with excessive production of OPN might be more susceptible
to unresolved chronic lung inflammation due to exposure to ENMs, resulting in excessive tissue
remodeling and fibrosis in the lungs.
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Table 3. Summarized list of receptors and cytokines/chemokines that may be involved in the susceptibility to ENM-induced chronic lung inflammation.

Cytokines/
Chemokines

Type of
ENMs Dosing and Exposure Method Duration of

Exposure Findings in KO Mice References

IL1/Inflammasome MWCNTs

50 µg low nickel or high nickel
containing MWCNT via

oropharyngeal aspiration
Single exposure Reduced acute inflammation and airway resistance but

increased IL-6 protein production within 1 day.

[133]

Induced significantly higher number of pulmonary
granulomas formation and significant inflammation post

28 days.

162 µg/mouse Mitsui-7 MWCNTs
via intratracheal instillation Single exposure

Acute inflammation at day 1 was suppressed.
Fibrotic lesions still developed in KO mice 28 days

post exposure.
[134]

10 µg rod-like MWCNTs for 4hr via
pharyngeal aspiration

10 and 40µg rod-like MWCNTs for
28 days via pharyngeal aspiration

Single exposure

Reduced neutrophils in BALF and neutrophil
chemoattractant CXCL5 mRNA levels 4hr after the

exposure.
Neutrophils were still reduced in BALF and TNF-α

mRNA level was suppressed after 28 days.
No changes were observed in Th2 related signals

including IL-13 and TGF-β1 mRNA levels.

[135]

OPN MWCNTs 40 µg via pharyngeal aspiration Single exposure Reduced fibrotic formation and myofibroblast
accumulation in the lungs. [136]

AhR ZnONPs 5, 20, and 80 µg/mice via
oropharyngeal aspiration Single exposure

Reduced pulmonary inflammation, cytokine secretion,
CYP1A1, and KYN production.

Reduced cell number, total protein, and LDH activity
in BALF.

[125]

CCR5 SWCNTs 100 µg/kg via intratracheal
instillation Single exposure

Dominated by B cells and CD8+ T cells instead of T cells
and CD4+ T cells in the lungs.

Increased IL-6, IL-13, and IL-17 in BALF.
More frequent histopathological lesions were detected.

[128]
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2.4.3. IL-6

Interleukin 6 (IL-6) is major pro-inflammatory cytokine and vital regulator for both the innate
and adaptive immune system [138]. Studies have shown that IL-6 is increased systemically upon
inhalation exposure to ENMs in mice and humans [139–141]. Specifically, pulmonary instillation of
MWCNTs induced levels of systemic IL-6 in the heart, and MWCNTs coated with Zn also induced
IL-6 mRNA levels in the heart and liver [141,142]. IL-6 can mediate both pro-inflammatory and
anti-inflammatory functions [138]. An acute increase in IL-6 facilitates neutrophil recruitment to sites of
tissue injury in order to induce acute inflammation [143]. However, IL-6 also activates STAT3 signaling
which facilitates the reduction in neutrophils in acute inflammation [144]. Sustained IL-6 production
also induces prolonged STAT3 activation and neutrophil recruitment to promote unresolved chronic
inflammation [145]. Prolonged STAT3 activation has been implicated in many chronic inflammatory
diseases including asthma, fibrosis, cancer, and hepatitis [145]. Therefore, adequate regulation of
IL-6 is required for the initiation and resolution of inflammation. For example, a study showed that
IL-6 can prevent the initiation but at the same time, promote the progression of lung cancer [146].
We recently reported that IL-6 is highly induced in the lungs of mice following acute exposure to
NiNPs by oropharyngeal aspiration [147]. Il6 KO mice have not yet been evaluated after inhalation
exposure to ENMs. However, it is likely that IL-6 plays a major role in determining susceptibility to
chronic inflammation.

3. Sex

Sex can be a key determinant of susceptibility to ENM-induced chronic lung
inflammation [148–150]. In this review, we will discuss this topic in the context of biological sex
differences, including chromosome, sex organs, and endogenous hormonal profiles between males
and females as defined by the Office of Research on Women’s Health at the National Institute of
Health [151]. Sex is recognized as a critical factor in determining the susceptibility of individuals to
respiratory disease [148,152–163]. Furthermore, according to epidemiology studies, there are significant
differences in susceptibility between acute and chronic respiratory disorders [148,152,156–159,164].
Epidemiology studies show that men are more susceptible to acute lung inflammation from viral or
bacterial infections and they have worse a prognosis compared to females [158,164,165]. As seen with
the novel coronavirus SARS-CoV-2, epidemiology studies have found that a greater number of men
are infected compared to women [166]. This trend was also seen in the MERS-CoV and SARS-CoV-1
viruses [166]. In contrast to men, women are more susceptible to developing chronic lung inflammation
such as asthma [164,167]. Thus, clear susceptibility differences exist between men and women with
regards to respiratory diseases, suggesting differences in pulmonary immune responses.

To date, there is a lack of data depicting sex as a key determinant of susceptibility to ENM-induced
chronic lung inflammation. However, there is some evidence showing susceptibility of either male or
female rodents to ENM-induced lung inflammation. For example, Ray et al. found that a single dose
of MWCNTs delivered via oropharyngeal aspiration caused a greater acute and chronic inflammatory
response in female mice compared to male mice [148]. Kasai et al. also found that female rats were more
susceptible to lung inflammation induced by rigid-MWCNTs via whole-body inhalation compared
to male rats [168]. On the other hand, Ray and colleagues also showed that male mice were more
susceptible to lung inflammation induced by repeated chronic exposure to crystalline silica (cSiO2)
compared to female mice [148]. Others have shown that cSiO2, delivered to the lungs of mice by
intratracheal instillation, caused less severe lung inflammation in female mice than male mice [169,170].
Furthermore, it was demonstrated in the same study that male mice treated with estradiol through
subcutaneous injection also had reduced cSiO2-induced lung inflammation compared to male mice
that received no exogenous estradiol [169,170]. In addition, lung fibrosis was more severe in male
mice compared to female mice or male mice with supplementary estradiol [169,170]. Our lab has
also recently reported that male mice were susceptible to lung inflammation with both acute and
sub-chronic exposure to NiNPs with or without LPS [147]. Epidemiological and animal studies suggest
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that sex is a critical factor in determining the susceptibility and resolution of lung inflammation.
Moreover, the available literature using rodents suggests that susceptibility to acute and chronic lung
disease induced by ENMs is determined in part by sex. Furthermore, epidemiology data related to
ENMs are lacking due to the fact that nanotechnology is an emerging industry and human exposures
are relatively new. Thus, more extensive studies should be conducted to carefully analyze the risk of
ENMs to unresolved chronic lung inflammation and how the risk may differ between sexes.

4. Susceptible Organ Systems and Pre-Existing Disease States

4.1. Lung

Pre-existing lung diseases, including asthma, chronic bronchitis, COPD, or inflammation induced
by microbial infection (e.g., bacterial, fungal, or viral), would likely render individuals susceptible to
inhaled ENMs. As mentioned earlier, asthma affects approximately 300 million people worldwide
and 26 million in the United States [21,22]. Individuals with asthma or other pre-existing lung
disorders may be at a higher risk of developing more severe pulmonary disease, i.e., exacerbation,
with exposure to ENMs. Our group previously reviewed the toxicology of ENMs in asthma in more
detail [171]. Ovalbumin (OVA) is a commonly used allergen to induce an asthmatic phenotype
in rodents, including AHR and TH2-mediated airway inflammation [172]. It has been shown that
silica nanoparticles (SNPs) caused respiratory toxicity and exacerbated OVA-induced inflammation
with higher TH2 cytokine levels, including IL-13 [173]. Titanium dioxide nanoparticles (TiO2 NPs),
carbon black nanoparticles (CBNPs), MWCNTs, or zinc oxide nanoparticles (ZnONPs) have been
reported to exacerbate allergic inflammatory responses in mice with increases in both TH1 and TH2
cytokines [132,174–176]. Collectively, these studies suggest that individuals suffering from asthma
or other pre-existing respiratory disorders maybe at a higher risk for developing severe chronic lung
inflammation upon exposure to ENMs.

4.2. Cardiovascular

Inhalation exposure to particulate matter can lead to more severe cardiovascular conditions in
individuals with pre-existing cardiovascular disorders [177]. In addition, researchers have established
a relationship between occupational exposure to dust and ischemic heart diseases [178]. While there
is a lack of information on cardiovascular disease and ENMs in humans, studies using rodents
suggest that pulmonary exposure to ENMs could exacerbate pre-existing cardiovascular conditions in
humans [179–181]. Additionally, several specific mediators discussed below play important roles in
determining susceptibility to cardiovascular disease after ENM exposure.

Thrombospondin (TSP-1) is a protein involved in wound healing and regulating blood
pressure [182–185]. TSP-1 binding to the cell surface receptor CD47 in vascular smooth muscles has
been reported to inhibit endothelial nitric oxide synthase (eNOS) [182,186]. In addition, acetylcholine
(ACh)-stimulated activation of eNOS leads to a decrease in blood pressure, but TSP-1 has been
reported to block the Ach-stimulated decrease in blood pressure [186]. TSP-1 also has another receptor,
CD36, that may also play a role in suppressing eNOS activity [183]. Thus, the impaired signaling
axis of TSP-1/CD47/CD36 has been implicated in different cardiovascular diseases, including cardiac
hypertrophy, impaired angiogenesis, and pulmonary hypertension [184,185,187–189]. Studies with
Tsp1 KO mice and CD47 KO mice suggest that TSP-1 is critical to regulate endothelial function when
exposed to ENMs [184,185]. Two studies by Mandler et al. showed that Tsp1 KO mice exposed to
MWCNTs through oropharyngeal aspiration resulted in microvascular dysregulation that could play a
critical role in developing cardiovascular diseases [184,185]. This finding suggested that impairment of
TSP-1 is critical to cardiovascular function and leads to greater susceptibility to severe cardiovascular
disorders upon exposure to MWCNTs.

A study using mice treated with a high dose of small, tangled MWCNTs or large, thick MWCNTs
by intratracheal instillation showed a significantly higher level of serum amyloid A 3 (SAA3),
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haptoglobin, total cholesterol, and low-density lipoprotein in plasma [190]. The accumulation of SAA3
lipoprotein is induced by atherosclerotic plaque formation and is associated with chronic vascular
inflammation [191,192]. Another study using different ENMs including MWCNTs, SWCNTs, and CB
nanoparticles also showed that exposure via intratracheal instillation increased transcript level of
SAA3 in the lungs in a time- and dose-dependent manner [192]. An increase in plasma proteins, along
with an increased transcript level of SAA3, in mice after pulmonary exposure to MWCNTs, suggests
that the risk of developing or exacerbating cardiovascular diseases could be high [190,192].

The low-density lipoprotein (LDL) receptor (LDLR) binds both LDL and haptoglobin [193].
A recent study used Ldlr KO mice to examine systemic inflammation caused by indium dioxide
(In2O3) nanoparticles. After a single pharyngeal aspiration dose of In2O3 nanoparticles, Ldlr KO mice
developed significantly severe atherosclerotic lesions compared to wild type mice [193]. The Ldlr
KO mice also showed that the aorta had a much higher transcript level of IL-6 and MCP-1 (CCL2),
suggesting ongoing inflammation in the heart [193]. Ldlr KO mice also showed an increase in total
cholesterol and low-density lipoprotein in the plasma compared to wild type mice after treatment [193].
Therefore, this study emphasized the protective role of the LDLR in limiting cardiovascular disease
after pulmonary exposure to an ENM. Moreover, these findings suggest that the pulmonary exposure
to In2O3 nanoparticles can induce systemic inflammation that may exacerbate the progression of
pre-existing cardiovascular diseases.

As mentioned earlier, ApoE is a protein responsible for fat metabolism and ApoE KO mice
represent a model for atherosclerosis in humans [116,194]. Thus, deficiency in ApoE not only results in
increased susceptibility to chronic lung inflammation, but also could lead to increased susceptibility
to cardiovascular diseases. A study showed that intratracheal instillation of TiO2 NPs significantly
increased total cholesterol, nitric oxide, and eNOS in ApoE KO mice compared to wild type mice [195].
Another study also showed long term exposure to nickel nanoparticles (NiNPs) viawhole-body
inhalation system exacerbated atherosclerosis in ApoE KO mice [196]. Furthermore, the study also
showed that different vascular effects, including significant mitochondrial damage in the aorta and
severe progression of atherosclerosis, were seen after pulmonary exposure via intratracheal instillation
to carbon black nanoparticles (CBNPs) in ApoE KO mice [196]. Collectively, these mouse studies
suggest that ApoE is likely important for suppressing cardiovascular inflammation in humans after
pulmonary exposure to ENMs and that reduced ApoE would render individuals susceptible to the
adverse effects of ENMs on the cardiovascular system.

4.3. Liver

Although few studies have investigated the systemic effects of inhalation exposure to ENMs,
some work has focused on the liver to determine metabolic changes after inhalation exposure to ENMs.
A recent study showed that intratracheal instillation of MWCNTs in female mice could affect liver
lipid metabolism of their offspring [197]. The data showed that the weight of offspring was slightly
reduced, and histopathological changes were observed in the liver tissue [197]. Intratracheal instillation
of nickel oxide NPs to the lungs of rats caused pathological changes in the liver, including cellular
edema and inflammatory cell infiltration, increased total nitric oxide synthase (NOS), and increased in
liver-related enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST),
and alkaline phosphatase (ALP) [198]. Another study showed that sub-chronic inhalation of lead
oxide nanoparticles in mice via whole-body inhalation resulted in the translocation of nanoparticles to
systemic organs, including the kidney, liver, and spleen [199]. They found that lead oxide nanoparticles
caused hepatic necrosis, remodeling, and degeneration of hepatocytes [199]. Furthermore, other studies
have also demonstrated that inhalation exposure to silver nanoparticles, iron oxide nanoparticles,
and MWCNTs results in translocation to the liver [200,201]. Repeated intratracheal instillation of TiO2

NPs to the lungs of rats also showed significant hepatocyte necrosis and fibrosis [202]. Furthermore,
the increased presence of inflammatory cells in the liver and formation of liver fibrosis was seen in
the liver through pulmonary exposure via intratracheal instillation to CBNPs in ApoE KO mice [202].
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Therefore, these studies suggest that inhalation exposure to different ENMs has the potential to elicit
systemic inflammation in the liver and could exacerbate pre-existing liver conditions such as hepatic
steatosis, hepatitis, and cirrhosis. However, to our knowledge, there are no published reports on the
effects of ENMs in mouse models of pre-existing liver disease.

4.4. Spleen

The spleen has been shown to be an important target of systemic immune responses to inhaled
ENMs, specifically to MWCNTs [203–205]. Whole-body inhalation of MWCNTs in mice has been shown
to cause systemic splenic immunosuppression [204]. Immune function was measured on spleen-derived
cells and showed suppressed T cell-dependent antigen responses and reduced proliferative ability of T
cells following mitogen stimulation after 14 days of MWCNTs inhalation exposure [204]. In addition,
an increase in IL-10 and NAD(P)H oxidoreductase 1 mRNA level was detected only in the spleens
and not in the lungs [204]. Following this study, the same group investigated the mechanism for
immune suppression caused by MWCNT inhalation exposure and found that secreted transforming
growth factor-beta (TGF-β) from the lungs had an effect on suppressing the immune function of
splenocytes [203]. They demonstrated that activation of this signal in the lung from inhalation
exposure to MWCNTs activated the cyclooxygenase pathways in the spleen, resulting in suppressed
immune function and T cell dysfunction [203]. Another study showed that inhalation exposure to
MWCNTs in rats caused immune dysfunction in the spleen [205]. After 13 weeks of exposure, rats
developed systemic inflammation with increased production of inflammatory cytokines from splenic
macrophages [205]. They also found a decrease in IL-2 mRNA expression in T-lymphocytes [205].
Thus, inhalation exposure to MWCNTs can affect the normal immune response generated by the spleen
and could result in immunosuppression from T cell dysfunction.

4.5. Brain

The blood–brain barrier (BBB) consists of capillary tight junctions that selectively allow movement
of specific molecules, ions, and cells between the blood and central nervous system [206]. Under
healthy conditions, the BBB has capillary tight junctions that prevent particles entering the central
nervous system (CNS) [206]. However, during cerebrovascular inflammation caused by inhalation of
pollutants or toxicants, the tight junction of the BBB becomes destabilized with increased permeability,
thereby enabling unwanted molecules or particles like ENMs to enter the CNS [207,208]. Furthermore,
some studies have found that inhalation exposure to nanoparticles or ultrafine particles can reach
the brain in mammals [209–212]. While such exposures that result in ENM translocation across the
BBB could have deleterious effects on the CNS, some studies have shown potential benefits of using
ENMs in nanomedicine to treat brain diseases [213–215]. Thus, the toxicity of ENMs in the brain still
remains unclear. While some ENMs may not have a toxic effect on the brain, there is evidence that
some ENMs elicit neuroinflammation. For example, mice exposed to MWCNTs via oropharyngeal
aspiration induced BBB disruption after 4 h, which led to the recruitment of phagocytic microglia
causing neuroinflammatory responses [216]. Another study also showed aerosolized exposure of
MWCNTs to rats increased mitochondrial ROS formation in different parts of the brain [217]. Intranasal
instillation of aluminum NPs in rats induced ERK and p38 MAPK activation in the brain, suggesting
penetration through the BBB [218]. Lastly, two weeks after an intranasal instillation of AgNPs in mice,
RNAseq analysis showed that 73 genes were affected in the cerebrum and 144 genes were changed in
the cerebellum [219]. Therefore, these studies suggest that pulmonary exposure to different ENMs
results in translocation across the BBB, causing neuroinflammation. However, the use of ENMs that
are able to penetrate the BBB could also be beneficial to treat neurological disorders. More rigorous
studies should be conducted in order to analyze the risk related to ENM exposure in the brain.
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5. Co-Exposures to ENMs and Other Agents

Co-exposures to a variety of toxic agents (e.g., metals, chemicals, microbial-derived products)
could render individuals susceptible to the pro-inflammatory, pro-fibrotic, or carcinogenic effects of
ENMs. For example, lipopolysaccharide (LPS) derived from Gram-negative bacteria can induce acute
lung injury through neutrophilic inflammation [220–222]. LPS is ubiquitous in the environment and
therefore, co-exposure to LPS and ENMs in occupational settings is likely [223–226]. Studies have
shown that ENMs, including MWCNTs and NiNPs, can exacerbate LPS-induced lung inflammation in
mice or rats [147,220]. A single co-exposure to LPS and NiNPs in mice via oropharyngeal aspiration
caused significantly higher acute neutrophilic lung inflammation and greater IL-6 secretion in the BALF
compared to LPS or NiNPs alone [147]. Greater acute lung inflammation induced by the co-exposure
corresponded to heightened phosphorylation of STAT3 in lung tissue. Repeated co-exposure of mice to
LPS and NiNPs in a sub-chronic exposure study produced greater monocytic lung inflammation and
greater CCL2 in BALF compared to LPS or NiNPs alone [147]. Greater sub-chronic lung inflammation
induced by LPS and NiNP co-exposure was associated with reduced STAT1 in lung tissue. MWCNT
exposure has been reported to exacerbate PDGF signaling and pulmonary fibrosis in rats that were
pre-exposed to LPS and had pre-existing neutrophilic lung inflammation [220]. Moreover, CBNPs also
enhanced LPS-induced lung inflammation by increasing IL-1β and macrophage chemoattractant protein
(MIP-1) [227]. Smaller CBNPs elicited a more profound effect by exacerbating severe LPS-induced
lung inflammation [227]. Moreover, circulating fibrinogen levels were much higher in the serum of
mice co-exposed to LPS and CBNPs, compared to LPS or CBNP exposure alone [227].

Proteolytic allergens from the house dust mite (HDM) Dermatophagoides pteronyssinus are common
indoor allergens [176,228,229]. Early life exposure to HDM allergens, including Der p1 and Der p2, has
been linked to the development of asthma in humans [230–232]. Pre-exposure of mice to HDM extract
by repeated intranasal aspiration exacerbated lung inflammation and airway fibrosis caused by a single
dose of MWCNTs delivered by oropharyngeal aspiration [132]. HDM-induced serum IgE levels were
amplified by MWCNTs in this study [132]. In contrast, pre-exposure of mice to MWCNTs by 30 days of
inhalation prior to repeated intranasal aspiration of HDM extract also exacerbated lung inflammatory
lesions, but reduced HDM-induced serum IgE levels [176]. Therefore, while these two studies showed
that either pre or post exposure to MWCNTs exacerbates HDM-induced chronic lung inflammation,
the mechanisms involved are likely different. Overall, co-exposure to ENMs and ubiquitous allergens
or LPS can exacerbate lung inflammation in rodents, suggesting that such co-exposures would increase
lung disease severity in humans.

6. Challenges and Alternative Approaches

Some challenges remain that must be overcome to improve risk assessment of ENMs. As the lungs
are constantly exposed to a variety of inhaled toxicants and microbial agents, single ENM exposures
studied in the lab using rodent models or in vitro cell culture models might not reflect a real-world
exposure scenario. However, studies on co-exposures to ENMs and other inhaled toxicants or microbial
agents are lacking. Therefore, more studies should be performed, using a tiered approach involving
both in vitro and in vivo models to address how co-exposure to toxicants or microbial pathogens
affects the immune response to inhaled ENMs. Another challenge is the knowledge gap between
predicting the immunotoxicity of ENMs in rodents or humans in vivo using cell culture models in vitro.
This is due, at least in part, to the complexity of the innate and acquired immune system that involves
numerous cell types (e.g., macrophages, neutrophils, T cells, B cells) and subpopulations of each of
these cell types. Some of these limitations could be overcome by co-culture models or ‘organ-on-a-chip’
technologies, coupled with in silico approaches. Furthermore, to our knowledge, no studies using
mice have been performed to differentiate the immune response generated by inhalation exposure to
ENMs between different age groups. As age and sex can be critical susceptibility factors in chronic
lung inflammation, more studies should be done to carefully assess the toxicity of ENMs, comparing
male and female mice of varying ages. This is also a challenge, as research on the immunotoxicity of
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ENMs is increasingly moving towards in vitro and in silico approaches, based on the growing number
of ENMs to be evaluated and ethical concerns of using animals in research. Nevertheless, complex
issues of sex and age are difficult to recapitulate using only in vitro or in silico approaches.

7. Conclusions

Herein, we have summarized different susceptibility factors, including sex, pre-existing disease
state, deficiency of specific genes, susceptible organ systems, and co-exposures to other agents that
might influence the pulmonary and/or systemic immune response generated by exposures to different
types of ENMs. The available literature discussed in this review article illustrates that multiple
factors play critical roles in determining host susceptibility to the adverse effects of ENMs on the
immune system. Future research should continue to emphasize susceptibility factors and susceptible
populations in risk assessments to avoid underestimating adverse outcomes in humans caused by
occupational or environmental exposure to ENMs.
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