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Abstract

The spread of infectious disease via commercial airliner travel is a significant and realistic threat. To shed some light on the
feasibility of detecting airborne pathogens, a sensor integration study has been conducted and computational
investigations of contaminant transport in an aircraft cabin have been performed. Our study took into consideration
sensor sensitivity as well as the time-to-answer, size, weight and the power of best available commercial off-the-shelf (COTS)
devices. We conducted computational fluid dynamics simulations to investigate three types of scenarios: (1) nominal
breathing (up to 20 breaths per minute) and coughing (20 times per hour); (2) nominal breathing and sneezing (4 times per
hour); and (3) nominal breathing only. Each scenario was implemented with one or seven infectious passengers expelling air
and sneezes or coughs at the stated frequencies. Scenario 2 was implemented with two additional cases in which one
infectious passenger expelled 20 and 50 sneezes per hour, respectively. All computations were based on 90 minutes of
sampling using specifications from a COTS aerosol collector and biosensor. Only biosensors that could provide an answer in
under 20 minutes without any manual preparation steps were included. The principal finding was that the steady-state
bacteria concentrations in aircraft would be high enough to be detected in the case where seven infectious passengers are
exhaling under scenarios 1 and 2 and where one infectious passenger is actively exhaling in scenario 2. Breathing alone
failed to generate sufficient bacterial particles for detection, and none of the scenarios generated sufficient viral particles for
detection to be feasible. These results suggest that more sensitive sensors than the COTS devices currently available and/or
sampling of individual passengers would be needed for the detection of bacteria and viruses in aircraft.
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Introduction

The potential for international airline passengers to transport

infectious diseases into the United States is a serious concern. In

2003, the severe acute respiratory syndrome (SARS) virus was

largely spread by air travelers and became a global epidemic; at

least 18 countries on 5 continents were affected, resulting in over

8,000 cases and 774 fatalities [1]. One conservative estimate of the

economic damage to Asian countries was calculated as $11 billion

[2]. Influenza viruses that can be spread by air travelers have the

potential to cause far greater harm [3,4,5]. Deliberate infection of

passengers by terrorists is also a possible threat [6]. A potentially

powerful tool to mitigate disease threats would be rapid and

accurate detection of a variety of airborne infectious pathogens

onboard commercial aircraft before passengers and crew deplane.

We are interested in evaluating the feasibility of a rapid, reliable

and miniature biosensor system that could be deployed onboard

commercial aircraft. An appropriate biosensor would need to have

a high probability of detection (PD.0.9) and a low probability of

‘‘false alarms’’ (i.e., PFA,1026); to be capable of detecting

airborne pathogens rapidly (in ,3 hours for overseas international

flights, in ,1 hour for continental international flights) at non-

lethal concentrations; to use minimal consumables so as to

minimize system maintenance; to be relatively inexpensive to

produce in large volumes; to be energy efficient, compact and

lightweight (ideally each individual sensor would be cell phone-

sized); and to be rugged enough to remain operable for at least

twice the average working life of typical commercial aircraft.

Based on these requirements, we apply a systems engineering

approach by first establishing acceptable Type I (false positive) and

Type II (false negative) error rates. To establish a Type I error

rate, we consider that approximately 650,000 flights landed in the

United States in 2009, suggesting that a sensor system with a PFA

of 1026 would result in no more than one false alarm per year in

the US (see Figure 1). Type II error rates should be based on the

number of organisms commonly found in a commercial aircraft

cabin today that would give rise to false negatives (e.g.,

contaminants in the air could cause one or more biosensing

modalities to be impaired even in the presence of the pathogen)

relative to the sensor’s detection threshold. To establish a Type II
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error rate, we surveyed the literature and compiled microbial

information from studies onboard aircraft (refer to Appendix of

[3]). However, the granularity of the available data is insufficient

to derive an acceptable Type II error rate.

Our initial focus is to evaluate the feasibility of installing a

biosensor system on overseas international flights (e.g., from

China). We therefore analyzed the range of flight durations into a

major U.S. international airport, the San Francisco International

Airport (SFO) in 2009. As shown in Figure 2, flight durations from

several international locations to SFO range from ,1.5 to

,13.5 hours. In particular, many flights from Canada to the

United States with durations as short as 1.5 hours may have

originated in China (i.e., Vancouver – ,2504 flights per year;

Toronto – ,1368 flights per year). We therefore designed model

scenarios around a minimum aerosol sampling duration of

1.5 hours.

To understand contaminant transport and airflow patterns

inside an aircraft cabin, prior researchers have used computational

fluid dynamics (CFD) models to predict airflows with [7] and

without [8,9] simulated passengers. Some of these studies were

based on measurements using 3D ultrasonic anemometers [10]

and particle image velocimetry systems [11]. Measurements of

airflow were conducted using mock airliner cabins with

[10,12,13,14,15,16,17] and without [18] simulated passengers

(e.g., heated manikins or heaters). Chemical contaminants such as

SF6 tracer gas and bio-simulant particles such as mono-dispersed

(0.7 micron) di-ethyl-hexyl-sebacat [DEHS] have been modeled

using the Reynolds averaged Navier-Stokes equations based on the

Renormalized Group (RNG) k–e turbulence model [12,17,19]. In

particular, to determine optimal sensor placement in a mock wide-

body aircraft cabin section, CFD simulations have been used to

model different chemical release conditions (continuous or discrete

doses) and release rates (1027, 1026, or 1025 m3/s [12,19]). These

studies reported that the optimal sensor placement in a wide-body

airliner cabin would be in the middle of the ceiling for simulated

sensor sensitivity ranging from 0.01 parts per million (ppm) to

10 ppm [12,19]. Although these previous studies are insightful and

valuable, they do not directly address whether sufficient human

exhalations are released into the aircraft cabin for onboard

biosensors to detect the presence of harmful particles. Earlier work

also failed to correlate tracer gas concentration with the number of

viral particles per cubic meter of cabin air or infectivity.

Figure 1. International Airline Arrivals into the United States, 2009. Source: Analysis of T-100 International Segment data, Bureau of
Transportation Statistics, U.S. Department of Transportation.
doi:10.1371/journal.pone.0014520.g001
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In the present study, we consider exhaled particles from regular

breathing, coughing and sneezing. Since infectious airborne

particles are typically under 20 microns [4], here we restrict our

simulation and analysis to expellants with diameters under 20

microns. To establish a medically relevant cough scenario, we

surveyed studies that measured cough frequencies from patients

with respiratory conditions for up to 24 continuous hours. These

results are summarized in Table S1 for asthma [20,21], chronic

obstructive pulmonary disease [22,23,24], chronic cough

[25,26,27,28], cystic fybrosis [29], idiopathic pulmonary fibrosis

[30], primary ciliary dyskinesia [31], pulmonary tuberculosis [23],

and pneumonia [23]. Based on these results, we simulate 20

coughs per hour as a representative cough frequency in infected

passengers. To establish a plausible sneeze scenario, we assume

that a typical infectious passenger can sneeze from 4 to 50 times

per hour, where the highest sneeze frequency approaches that of a

‘‘super spreader’’ — a term that can refer to persons with ‘‘high

values of cough and/or sneeze frequency, elevated pathogen

concentration in respiratory fluid, and/or increased respirable

aerosol volume per expiratory event such that their pathogen

emission rate is much higher than average’’ [32]. In addition to

particles expelled during coughing and sneezing, particles exhaled

during regular breathing were also accounted in each scenario. To

establish a plausible breathing scenario, the distribution and

concentration of particles exhaled during breathing were taken

from studies that employed aerodynamic particle sizers [33],

combined with data previously reported in the literature (see

Methods for details). Collectively, we simulated three types of

scenarios: (1) breathing and coughing, (2) breathing and sneezing,

and (3) inhaling only through the nose and exhaling only from the

mouth.

Results

To verify that the temperature and velocity gradients computed

by our CFD model are consistent with previous work by Chen et al.

[17], we compared the velocity profiles from a 4’’ mesh and found

good agreement. As shown in Figure 3, the airflow occurs

primarily transverse to the main axis of the cabin. This is in part

due to the absence of simulated passenger traffic in the aisle.

Furthermore, the CFD aircraft cabin flow fields presented here are

consistent with results presented by independent investigators [17]

and the U.S. Federal Aviation Administration (FAA) [34].

In our CFD simulations, we specified some number of infected

passengers whom we considered to be contaminant producers

(Figure 4, second-to-last row, shown in orange). The locations of

the mouths of these passengers are the initial positions of simulated

exhaled particles. To visualize the transverse extent of exhalant

trajectories during a breathing-and-coughing scenario, we show

streamlines originating at these positions that represent the flow of

particles across the cabin (Figure 4, bottom). Each of the infected

passengers released the same amount of contaminant within each

case simulated.

To assess the feasibility of onboard bio-detection equipment for

each tested scenario, the particles exhaled from each infected

passenger were simulated under steady-state conditions (equilib-

rium, well-mixed) and the airborne particles concentrations were

computed based on their diameter size using specifications from

COTS aerosol collectors. For purposes of classification, we refer to

particles that are between 1 and 20 microns in diameter as

‘‘bacterial’’ and particles less than 1 micron as ‘‘viral’’. We then

compared the accumulated biomass to the limit of detection (LoD)

of COTS biosensors. Case A was simulated with seven infected

passengers, each breathing 20 times a minute across all scenarios,

where scenario 1 simulates breathing and coughing, scenario 2

simulates breathing and sneezing, and scenario 3 simulates

breathing only. Cough and sneeze rates were set to 20 and 4

exhalation events per hour, respectively. The steady-state masses

in case A were computed to be 3.4361029 kg, 5.1261029 kg, and

3.0761029 kg for scenarios 1, 2, and 3, respectively (refer to

Table 1, Case A, row a). These masses correspond to

approximately 66106 bacterial and 66106 viral particles in

Figure 2. 2009 Mean Flight Times to the San Francisco International Airport (SFO). Source: Analysis of T-100 International Segment data,
Bureau of Transportation Statistics, U.S. Department of Transportation.
doi:10.1371/journal.pone.0014520.g002
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scenario 1, over 1.06107 bacterial and over 86103 viral particles

in scenario 2, and over 1.06105 bacterial and over 1.76105 viral

particles in scenario 3 (see Table 1, Case A, row b).

To obtain the biological particles per cubic meter of cabin

space, we applied two factors. First, the total number of particles at

steady-state (row b) was divided by the total volume of air in the

four-row aircraft cabin section, which was 26.9 m3. Second, the

bacterial particles were multiplied by a viable fraction of 4.761024

while viral particles were multiplied by an estimated viable fraction

of 5.961025 to obtain biological particle counts per cubic meter,

respectively (see Table 1, Case A, row c) [35]. To estimate the

number of collectable viable particles as a function of particle size

(i.e., bacterial versus viral), the values in row c were multiplied by

aerosol collector efficiencies which account for the fraction of

particles collected with respect to the total number of particles

present. Specifically, based on values from a commercially

available collector (OMNI 3000, Kansas City, MO), we applied

collector efficiencies of 0.91 and 0.357 for the bacterial and viral

particles, respectively [36]. Finally, the total cumulative numbers

of collectable viable biological particles in a 90-minute continuous

sampling interval were calculated based on a typical collector flow

rate (i.e., 0.3 m3 per minute) (see Table 1, Case A, row e). Because

the viability coefficients germane to estimating bacterial and viral

particle counts were based on limited estimates from a single study

[35], we included the total number of collectible particles in

Table 1, Case A, row f as an upper bound on detection. The

values in Table 1, Case A, row f were not used in this analysis

because it is highly unlikely that a person would exhale 100%

infectious bacteria or virus even in states of high bacterial or viral

shedding.

To determine the feasibility of using onboard biosensors to

detect the presence of airborne particles, the numbers of

collectable viable particles in 90 minutes (Table 1, Case A, row

e) from all cases were compared with the LoD in mature,

commercially available biosensors [37]. Commercial biosensors

that rely on nucleic acid-based polymerase-chain reaction (PCR)

amplification are known to have limits of detection of less than 10

copies, and generally provide a time-to-answer in 60 minutes.

However, because manual sample preparation is outside the scope

of this analysis and antibody-based biosensor systems can generally

provide a time-to-answer in under 20 minutes, we only considered

non-PCR biosensor systems here. The typical LoD for a COTS

antibody-based biosensor system ranges from 103–104 organisms

per test (manufacturers typically refer to bacterial organisms as

colony-forming units and viral organisms as plaque forming units)

[37]. Therefore, based on these analyses, COTS collectors and

biosensors would be sufficiently sensitive to detect bacterial targets

in a 90-minute sampling interval for only scenarios 1 (breathing

and coughing) and 2 (breathing and sneezing). Scenario 3

(breathing only) generated fewer than 103 bacterial particles.

Further, none of the scenarios generated sufficient viral particles

for detection to be feasible. Note, however, that there are

significant limitations and unknowns involved in quantifying viral

particles without direct data gathered from field tests (see

Discussion).

To examine the sensitivity of our analysis, we decreased the

number of infectious passengers from seven to one in case B for

scenarios 1 though 3. All other input parameters were identical to

case A. The numbers of collectable viable particles in 90 minutes

(Table 1, Case B, row e) from all cases were compared with 103

organisms per test. In contrast to case A, only scenario 2 (breathing

and sneezing) generated sufficient numbers of bacterial particles

(i.e., more than 103) for onboard detection to be feasible. The

remainder of case B simulation results were well beneath the 103

organisms per test, suggesting that onboard detection would not be

feasible.

Figure 3. 4’’ Mesh Velocity Contour.
doi:10.1371/journal.pone.0014520.g003
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To test the robustness of our analysis, we expanded on scenario

2. Case C was simulated based on one infected person breathing

up to 20 times a minute and sneezing 20 times per hour, while case

D was simulated based on one super spreader breathing up to 20

times a minute and sneezing 50 times per hour (see Methods for

details). In both cases C and D, we found that over 600 bacterial

particles would be detected in a 90- minute sampling interval

(Table 1, Case C and D, row e), while no more than one viral

particle would be detected. Taken together, these estimates suggest

that onboard detection would not be feasible for bacterial- or viral-

particles in cases C and D.

To confirm that equilibrium conditions are indeed reached

early during a flight, we calculated the time to reach steady state.

Note, however, that transient characteristics are primarily

governed by airflow. The following concentration rates are

provided for completeness, not to imply that the equilibrium time

depends upon the rate of contaminant introduction. First, we used

known data to calculate the approximate expellant volume of

particles under 20 microns for one cough (,2.0461027ml), one

sneeze (,5.2761025ml), and one breath (1.2461028ml). (See

Methods for details.) We also modeled seven passengers who either

cough 20 times per hour in scenario 1, sneeze 4 times per hour in

scenario 2, or simply breathe 20 times per hour in scenario 3. This

allowed us to calculate total per-passenger particle-generation

rates (in kg per second) of 4.67610212, 7.04610212, and

4.15610212, respectively (Table 2). Taking the ratio of the steady

state concentrations for scenarios 1 through 3 (Table 1, Case A [kg

per cabin volume]: 3.4361029, 5.1261029, 3.0761029) to the

per-passenger particle-generation rate, we arrived at approxi-

mately 12 minutes to reach steady state for scenarios 1 through 3.

Twelve minutes is well within a typical flight time and under the

90-minute sampling time interval.

Due to the temporal characteristics associated with sneezing and

coughing, a time history study is required to understand the

movements of contaminant particles released during these

expiratory events (Figure 5). In the transient case presented here,

each passenger sneezes once and the fluid expelled at each seat

location was tracked with regard to the time to transport the

contaminant to the outlet vents. The resultant history of the

contaminant in the cabin is computed in terms of contaminant

Figure 4. Infected Passenger Schematic. Seat Position from Left to Right: LK FED BA. Contaminant Streamlines Shown for Scenario 1 Breathing
and Coughing.
doi:10.1371/journal.pone.0014520.g004
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mass (kg) and concentration in ppm relative to the air (Figure 5A).

The contaminant concentration shown in Figure 5A represents the

contaminant mass divided by the cabin volume. As a result, these

values are not the measure of local values of contamination at each

seat position in the cabin, some of which would show higher

contaminant concentrations. Rather, the numbers represent

average concentrations across each four-row cabin section

illustrated in Figure 4.

The contaminant mass flow rate at the outlet vent is shown in

Figure 5B. We observe that contaminants emitted from window

seat positions (Figure 4, seats L and A) enter the outlet ventilation

much faster than those emitted from other seats. It is possible that

the flow from the window seats may be too transient for a ceiling-

mounted collector above the central seats to aggregate enough

particles to achieve reliable identification from those passenger

seated in L or A. To mitigate this relatively low sampling rate, the

collector may require a high inflow rate. Further, this suggests that

a collector’s effectiveness may increase when the collector is placed

at the outlet vent near the window seat position. This may not be

the most appropriate sensor location for collecting non-window-

seat emissions, because the contaminant concentration becomes

substantially diluted by the time it reaches the outlet, as shown by

the second y-axis in Figure 5B.

Overall, the findings for each of these three scenarios were

similar and consistent with the findings of Chen’s laboratory

[12,17]. The general air flow characteristics are two big vortices

caused by the ventilation system that generates a recirculation

swirl on each side of the aircraft. Specifically, particle emissions

from the two window seat passengers (Figure 4, seats L and A)

were the least circulated contaminants within the cabin (see

Table 1. Estimates of collectable biological particles.

Scenarios: (1) Breathing & Coughing (2) Breathing & Sneezing (3) Breathing Only

Bacterial Viral Bacterial Viral Bacterial Viral

Case A. Seven Super spreader

a) Accumulated mass at steady state (kg) 3.4361029 5.1261029 3.0761029

b) Total particles at steady state 6.4696106 6.5706106 1.0826107 8,589 1.0886105 1.7826105

c) Biological particles per m3 113.02 14.41 189 ,1 1.9 0.39

d) No. of collectable biological particles per m3 102.66 5.14 172 ,1 1.7 0.14

e) No. of collectable viable particles in 90
minutes at 0.3 m3/min

2,771.79 138.69 4,635 ,1 46.62 3.76

f) No. of collectable particles in 90 minutes
at 0.3 m3/min

5.8976106 2.3516106 9.8626106 3,073 9.9196104 6.3756104

Case B. One Super spreader

a) Accumulated mass at steady state (kg) 7.97610210 1.1561029 6.98610210

b) Total particles at steady state 1.5026106 1.5256106 2.4256106 1,925 2.4796104 4.0596104

c) Biological particles per m3 26.24 3.35 42 ,1 0.43 0.09

d) No. of collectable biological particles per m3 23.84 1.19 38 ,1 0.39 0.03

e) No. of collectable viable particles in 90
minutes at 0.3 m3/min

643.55 32.20 1039 ,1 10.62 0.86

f) No. of collectable particles in 90 minutes
at 0.3 m3/min

1.3696106 5.4586105 2.2106106 689 2.2606104 1.4526104

Case C. One Super spreader

a) Accumulated mass at steady state (kg) 3.4561029

b) Total particles at steady state 1.5256106 1,210

c) Biological particles per m3 27 ,1

d) No. of collectable biological particles per m3 24 ,1

e) No. of collectable viable particles in 90
minutes at 0.3 m3/min

653 ,1

f) No. of collectable particles in 90 minutes
at 0.3 m3/min

1.3906106 433

Case D. One Super spreader

a) Accumulated mass at steady state (kg) 8.5261029

b) Total particles at steady state 1.5716106 1,247

c) Biological particles per m3 27 ,1

d) No. of collectable biological particles per m3 24 ,1

e) No. of collectable viable particles in 90
minutes at 0.3 m3/min

673 ,1

f) No. of collectable particles in 90 minutes
at 0.3 m3/min

1.4326106 446

doi:10.1371/journal.pone.0014520.t001
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Figure 5A) and entered the outlet vents quickly (see Figure 5B). In

contrast, particles emitted by the passengers seated at the center or

aisle seats lingered in the cabin and were not transported as

effectively to the outlet vent compared to particles that originated

from the window seats (see Figure 5B). The particles emitted from

the aisle seat passengers near the windows (seats B and K) tend to

linger longer because it enters the recirculation zone at a location

where the air is pushing the particles away from the vents. The

particles emitted from the aisle passengers in the center seats (seats

D and F) enter the recirculation zone at a location where it is

driven towards the vents. These results should not be applied

broadly to all wide-body aircraft because the simulations were

based on a representative Boeing 767 aircraft cabin.

Discussion

Three scenarios of infectious ‘‘super spreader’’ passengers were

investigated, consisting of states of extreme coughing, extreme

sneezing, and regular breathing. Our principal finding was that the

steady-state bacteria concentrations in aircraft would be high

enough to be detected in the case where seven infectious passengers

are exhaling under scenarios 1 (breathing and coughing) and 2

(breathing and sneezing), and where one infectious passenger is

actively exhaling in scenario 2. Breathing alone failed to generate

sufficient bacterial particles for detection, and none of the scenarios

generated sufficient viral particles for viral detection to be feasible.

This is consistent with a recent study by Fabian et al. who found

that only 33% of infected persons exhale detectable viral RNA.

Fabian et al. sampled directly from a breathing apparatus with

Teflon filters and identified the collected particles by RNA

extraction [38]. Unlike this direct sampling method, the aircraft

cabin is designed for rapid dilution by turning over the air volume

approximately 20 times per hour. Taken together, these findings

provide further support for the view that it is difficult to collect and

detect viral particles directly from cabin air using autonomous

collector and biosensor systems.

It is important to realize that infectious particles can be emitted

during regular breathing. Particles released during regular

breathing are predominantly under 1 micron in diameter [38],

small enough to enter the human alveolar region and upper

respiratory tract. Some subjects can exhale more contaminant

particles from breathing than from coughing: consider that the

average person breathes 20 times a minute and each breath may

contain 0.5 liters of air. Although one cough may release up to

3.56 liters of air, the typical cough frequency of a sick person is

usually less than 50 times per hour. The rate of exhalation for

breathing is therefore significantly higher for breathing than for

coughing. In this study, we assumed that exhaling passengers are

not covering their mouths during coughing and sneezing;

however, airline passengers are likely to cough or sneeze into

their hands or elbows, though most do not cover their mouths

when breathing. This differential in mitigating behaviors by

passengers enhances the possibility of asymptomatic airborne

transmission. Interestingly, observational studies conducted on the

novel H1N1 virus reported a wide range of asymptomatic

infection rates: from ,10% among households in Germany and

Canada [39,40] to over 90% in India [41]. For influenza virus

alone, multiple modes of transmission have been hypothesized

[42,43], and there is limited information on viral shedding from

asymptomatic persons. However, we believe that airway trans-

mission via regular breathing cannot be ruled out as a putative

transmission pathway for communicable respiratory diseases.

Further investigation of this pathway is especially critical given

recent data on the number of particles exhaled during normal

breathing [44].

Other studies suggest different values for the amount of bacteria

and viruses produced by sneezing and breathing. A related study

on staphylococcus aureus dispersion (11 subjects) from sneezes

reported 2.83 and 3.24 colony-forming units (CFU) per cubic

meter per minute of S. aureus and coagulase-negative staphylococ-

ci, respectively [45]. If we assume that 6 CFU represent 6 particles

in the 2–4 micron range based on data from the Duguid sneeze

study [35], and that one sneeze approximates 3.56 liters of air in

one second, then this would suggest that the viable fraction of

infectious bacteria per sneeze is 8.1610-6. This is less than the

viable fractions used to compute the total number of collectable

viable particles in Table 1, row e. Another study of influenza (13

symptomatic subjects) reported that one person generated up to 20

influenza particles per minute during breathing [38]. The same

study reported 87% of exhaled particles were ,1 micron with

particle counts ranging from 61–3,848 and 5–2,756 per liter of air

for particle sizes ranging from 0.3–0.5 and 0.5–1 microns,

respectively. So in one minute, if a person breathed at a rate of

10 liters per minute, a possible range of 660 to 66,040 particles

under 1 micron could be generated, giving rise to influenza-

containing particle fractions ranging from 0.03 to 0.0003. The

Fabian study did not address the viability of influenza particles;

Table 2. Expiratory parameters per passenger.

Scenarios (case) Expiratory Description Concentration (kg/m3) {
Average Expellants
(kg/s) 1

Average Volume
Exhaled (L/s)

1 (A&B) Breathing and Coughing –
,20 breaths per minute and 20 coughs per hour

2.5161028 4.67610212 0.186

2 (A&B) Breathing and Sneezing – ,20 breaths per minute
and 4 sneezes per hour

4.1361028 7.04610212 0.171

3 (A&B) Breathing Only –
20 breaths per minute

2.4961028 4.15610212 0.167

2 (C) Breathing and Sneezing –
,20 breaths per minute and 20 sneezes per hour

1.0761027 1.99610211 0.186

2 (D) Breathing and Sneezing –
,20 breaths per minute and 50 sneezes per hour

2.3061027 4.94610211 0.215

Notes:
1Expellant Density Assumed to be Same as Water (998 kg/m3).
{Air Density Represents a Pressurized Cabin at an Altitude of 7000 Feet (0.81 kg/m3) [50].
doi:10.1371/journal.pone.0014520.t002
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rather, the analyses were based on particle identification using

nucleic acid amplification. Thus, it is not possible to deduce a

viability coefficient from the results of their study. Note that the

viable fraction in our study is 5-fold lower than the influenza

particle fractions reported by Fabian et al. Given these large

discrepancies and the overall scarcity of relevant data in the

literature, it would be beneficial to conduct experiments using

non-infectious virus (and/or 120 nm polystyrene beads that

exhibit size characteristics comparable to influenza viruses) to

empirically test the number of collectible influenza particles

emitted in a 90-minute interval within a mock aircraft section.

One may notice that the viral particle counts from the

breathing-and-sneezing scenario are quite low relative to those

computed for the breathing-and-coughing and breathing-only

scenarios. This discrepancy is due to the data source employed in

our calculation. Specifically, all sneeze data was based on a single

1946 study by Duguid [35], which did not observe any particles of

,1 micron diameter. In addition, there were fewer breaths per

minute in the breathing-and-sneezing scenario compared to the

breathing-only scenario. It would be beneficial to repeat the

sneeze-related analysis using newer data from sneeze experiments

that used sick persons as subjects.

The study has additional limitations, including the assumption

that there is no longitudinal mixing more than four rows from the

infectious passenger along the length of the airliner cabin. Indeed,

recent experimental evidence suggests that biological particles can

Figure 5. Time History of Contaminant Transport. (a) Contaminant Concentrations in the Airliner Cabin. (b) Contaminant Mass Flow Rate at the
Outlet Vents.
doi:10.1371/journal.pone.0014520.g005
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be detected more than four rows away from the emission source

[46]. This far-field transmission study was conducted in a wide-

body mock aircraft cabin section under ambient pressure and

representative flight ventilation conditions. The biological particles

were emitted from a handheld mister and may not be entirely

representative of human exhalation. A further limitation of the

present analysis is that detection does not imply infection. Viral

particles are known to degrade quickly (from minutes to hours)

outside host environments [43], bacteria and spores can have

longer survival times (.five weeks) [47]. Infection is additionally

confounded by the host’s immune system; the findings in the

present study do not address infectivity. Collectively, the

limitations imposed by the parameters used in this study were

intended to create the most optimistic case for a biosensor system

that could collect and detect viable bacterial and viral pathogens.

Equally important, but completely omitted in the analyses

presented here, is the PFA, which must be minimized in any

deployed biosensor system. Given the low steady-state particle

concentrations of viral pathogens in cabin air, even in an

optimistic case where seven passengers in a row are actively

exhaling particles, future studies should consider the feasibility of

rapidly detecting infectious particles directly from human

exhalation using hand-portable devices and well-targeted sampling

schemes (e.g., direct sampling of sputum or nasopharyngeal fluid).

Materials and Methods

The Model
The models developed in this work closely follow the work

conducted by Chen et al. [12,16,17,48]. The difference in the

present work is that the source producing the representative-sized

contaminants more closely resembles a passenger breathing and

coughing, breathing and sneezing, or simply regular breathing.

ANSYS CFX commercial software was utilized for the CFD

simulations. The software computes the contaminant transport via

advection and diffusion, as shown in equation 1.

LC

Lt
z~++. ~UUC

� �
~~++. rDCz

mt

Sct

� �
~++.

C

r

� �� �
zSC ð1Þ

where
~UU = velocity (m/s)

C = concentration, mass of contaminant per unit volume of air

(kg/m3)

r = mixture density, mass per unit volume (kg/m3)

SC = volumetric source term, contaminant per unit volume of

air per unit time (kg/m3 s)

DC = kinematic diffusivity (m2/s)

mt = turbulent viscosity (Pa s)

Sct = turbulent Schmidt number (non-dimensional)

Equation 1 assumes that particles follow airflow streamlines. As

a result, the particles’ velocity is not computed. This method of

modeling is valid when the particle diameter is relatively small and

particle dispersion is not important [49]. The majority of airborne

particles small enough to enter the human respiratory tracts are

less than 20 mm in diameter [42] and are also small enough to

remain suspended in the airflow. According to the Stokes number,

it is reasonable to state that particles less than 75 microns will stay

suspended and follow the lazy particle model [49]. By assuming

that no particle settles onto a surface and all particles stay

suspended and possibly continue to the collector is not entirely

realistic but it is sufficient to prove this paper’s point; that particle

detection with the commercially available biosensors surveyed is

not practical.

The CFD model we employed is representative of the airflow in

a Boeing 767 airliner cabin. A renormalized group kinetic energy-

dissipation (RNG k-e) turbulence model, assuming air as an ideal

gas and reference pressure of 1 atmosphere, was used because of

the model’s reasonable accuracy and low computational cost [16].

The boundary conditions used in these simulations are listed in

Table 3. At the inlet, a mass flow rate of 0.313 kg/s was applied.

This was chosen on the basis of information that the plane’s

environmental control system (ECS) provides 20 cubic feet per

minute (cfm) of air per passenger [50]. We needed to apply a

boundary condition to the outlet; applying a standard ‘‘outlet’’

condition resulted in slower runtime and program warnings due to

the methods the program uses to apply an outlet condition. It

proved more effective to apply an ‘‘opening’’ condition with a

negative pressure to simulate the air being drawn from the cabin

into the outlet vents and recirculation system. The model was

tested using each of the 8’’, 4’’, and 2’’ meshes according to the

settings described in Table 3. Several mesh sizes were considered,

with the 4’’ mesh providing the greatest accuracy in a reasonable

amount of computation time. Due to turbulence and minor

variations in airflow it was difficult to track precise values for single

points or nodes, but viewing the overall velocity profile for each

mesh showed good agreement from trial to trial [3].

Scenario Descriptions
Three types of scenarios were simulated: (1) breathing and

coughing, (2) breathing and sneezing, and (3) simply inhaling

through the nose and exhaling from the mouth. Scenario 1

employed a combination of breathing and coughing where the

simulated infected passenger coughed 20 times per hour and

breathed the remainder of the time at a rate of 20 breaths per

minute. Scenario 2, like scenario 1, employed a combination of

breathing and sneezing where the simulated infected passenger

sneezed four times per hour and again breathed at a rate of 20

times per minute. In scenario 3, the simulated infected passenger

simply breathed 20 times per minute. The amount of air volume

exhaled per expiratory event was set to 0.5 liters per breath, and

3.56 liters per cough or sneeze. The simulated duration of

expiratory events was 3 seconds for each breath, and 1 second for

each cough or sneeze. The particle concentrations, shown in

Table 2, reach steady-state conditions in approximately 12

minutes, which is well within the 90-minute sampling duration

relevant to this study. Two cases were explored within each

scenario described above: an extreme case in which all seven

passengers seated in a row were sick and a case in which only one

seated passenger was sick. Two additional cases (C and D) were

explored for scenario 2 (sneezing and breathing) in which one

seated passenger sneezed 20 and 50 times per hour, respectively.

Using these input conditions, the average amount of fluid (from

saliva) and average air expelled per person during scenarios 1

through 3 are also summarized in Table 3 in columns 4 and 5,

respectively.

Particle Generation Estimates
To estimate the number of particles emitted by mouth from

human exhalations as a function of particle size, we graphically

summarized a few prior studies that measured particle size

distributions (Figure 6): Morawska [33] used a custom-designed,

pre-filtered, carefully humidity-controlled wind tunnel and report-

ed mean particle concentrations based on aerodynamic particle

sizer counts for up to 50 particle diameter ranges between 0.542

and 20 microns (number of subjects [N] = 15). Six different

scenarios were tested, including breathing through the nose (b-n-

n), breathing through the nose and exhaling from the mouth (b-n-
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m), whispered counting, voiced counting, and coughing. Figure 6

depicts b-n-m and cough, as they were the only two scenarios

relevant to the current work. Loudon and Roberts [51] used an

air-tight box and Millipore filter air sampler and reported per-

cough mean particle counts to be 120, 100, 6.2 and 1.7 for

diameter ranges (mm) 2–5.8, 5.8–11.6, 11.6–17.4, 17.4–20,

respectively (N = 3). Papineni and Rosenthal [52] used a

combination of electron microscopy and an optical particle

counter inside a biological safety cabinet and reported per-cough

mean particle counts to be 290, 50, 25, 35, 10, 10 for diameter

ranges (mm) ,0.6, 0.6–0.8, 0.8–1.0, 1.0–1.5, 1.5–2.0, and 2.0–2.5,

respectively (N = 5). We concatenated the Loudon and Roberts

and Papineni and Rosenthal particle size distributions and inferred

a total particle count of 647.9 per one cough, of which 410

particles had diameters smaller than 2 mm and 237.9 particles had

diameters between 2 and 20 mm (Figure 6). We then compared the

concatenated particle size distribution with the more recent cough

distribution and elected to use Morawska’s data for particles under

10 microns and Loudon and Roberts’ data for particles between

11.6 and 20 mm. Therefore, the cough analyses presented in this

work are based on data presented by Morawska [33], and Loudon

and Roberts as corrected by Nicas for evaporative losses [32,51].

To arrive at a reasonable total liquid volume exhaled per cough

from particles under 20 microns in diameter, we estimated the

total volume per exhalation by applying equations described by

Nicas [32] using particle size distribution from two of Morawska’s

experimentation scenarios: (i) breathing normally through the nose

and exhaling through the mouth (b-n-m) and (ii) coughing [33].

Briefly, V20 refers to total number of particles in each range of

diameters up to 20 microns, multiplied by the mean particle

volume in each respective range [32], as shown in equation 2.

V20~
X

i

Ni.vi ð2Þ

where Ni represents the number of particles observed in the ith

diameter range without assuming any evaporative losses, and vi is the

mean volume of a particle in the corresponding ith diameter range.

Because we employed data supplied by Morawska, it was necessary

to normalize mean concentration data into units that apply to one

exhalation event. To calculate the number of particles from one

breath, 0.5 liters of air was multiplied to the mean particle

concentration, which assumed complete release of tidal volume

from a typical person [53]. To calculate the number of particles from

one cough, 3.56 liters of air was multiplied by the mean particle

concentration; the 3.56 liter value was based on the forced expiratory

volume in one second reported from normal subjects [20].

In this work, we calculated the mean volume of particles in each

corresponding diameter range, based on the minimal (dmin) and

maximal (dmax) diameters within each range, consistent with prior

work. These calculations assume a uniform distribution of particle

diameters within each size range.

Table 3. Aircraft cabin boundary conditions and exhaled air for each scenario.

Total Volume Modeled = 26.9 m3 Temperature (6C) Velocity and Flow Characteristics

Supply Air Velocity 19.3 0.312 m/s

Cabin Wall 24 0 m/s

Passenger Surface 31 0 m/s

Exhaled Air per Passenger for Scenario 1 – Breathing and Coughing 35 1.8661024 m3/s

Exhaled Air per Passenger for Scenario 2 – Breathing and Sneezing 35 1.7161024 m3/s

Exhaled Air per Passenger for Scenario 3 – Breathing Only 35 1.6761024 m3/s

doi:10.1371/journal.pone.0014520.t003

Figure 6. Particle Size Distribution from Human Exhalations.
doi:10.1371/journal.pone.0014520.g006

Detecting Bio-Contaminants

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e14520



vi~
p d4

max{d4
min

� �
24(dmax{dmin)

� �
ð3Þ

Unlike prior work, our study did not assume 50% evaporative

loss for diameter ranges for cases where inputs came from the

Morawska dataset. In diameter ranges where Morawska did not

report any particles due to insufficient instrument signal (i.e., .10

microns for the cough scenario), we employed older data from

Loudon and Rosenthal (see two points on Figure 6).

The particular aerodynamic particle sizer employed by the

Morawska study (TSI model 3312A) had counting efficiencies that

deviated from 100%; only a fraction of all the particles that passed

through the sizer were counted. The sizer’s counting efficiency was

(%) 30, 100, and 60, respectively, for particle sizes (mm) 0.5, 0.9,

and 5 [54]. Because up to 50 possible diameter ranges were used to

estimate V20, we elected not to correct for particle counting

inefficiencies as a function of diameter ranges due to the sparseness

of available correction factors.

Based on the methods described in equations 2 and 3, we

estimated a V20 of 1.247610-8 ml for one breath, and a V20 of

2.04610-7 ml for one cough. Prior calculations by Nicas [32],

using data from Loudon and Rosenthal, estimated a V20 of 6610-

8 ml for one cough. We note that if we had not combined the

recent Morawska data with the older Loudon and Rosenthal data,

the V20 for a cough would be 1.88610-7 ml using only the

Morawska cough data. Since the intent of this work was to

compute the most optimistic case for biosensor detection, this work

was based on concatenated data, which resulted in a higher

volume of expellants per cough event.

To estimate the number of particles exhaled in one sneeze, we

considered Duguid (1946), who used a combination of food dye,

oiled slides, micrometry and three different test chambers to

measure the average number of droplets and droplet-nuclei

generated when subjects sneezed (,106 particles), coughed

(,56103 particles), and spoke loudly (,250 particles). As shown

in Figure 6, Duguid reported per-sneeze mean particle counts to

be 266103, 1606103, 3506103, 2806103, and 976103 for

diameter ranges (mm) 1–2, 2–4, 4–8, 8–16, and 16–24,

respectively. In addition, Duguid reported per-cough mean

particle counts to be 50, 290, 970, 1.66103, 870 for diameter

ranges (mm) 1–2, 2–4, 4–8, 8–16, and 16–24, respectively (refer to

Figure 6). Since the present study is most interested in particles

under 20 microns, we computed the ratio of total sneezed particles

under 20 microns to total coughed particles under 20 microns by

assuming that the 16–24 microns diameter range is uniformly

distributed across size and therefore only counted 50 percent of the

particles within 16–24 microns to arrive at particle counts within

16–20 micron. Using this logic, we found that a sneeze is a factor

of 258 times larger than a cough in terms of particle counts (i.e.,

ratio of 864,500/3,345). Therefore, to calculate the volume of

expellants from one sneeze, we simply multiplied the mass of one

cough at every diameter range under 20 microns by 258, which

resulted in 5.2761025ml, while the volume of air released was set

to 3.56 liters. To estimate the mean particle count under 20

microns diameter in a sneeze for the CFD simulation, we assumed

that one sneeze corresponded to approximately 8.6456105

particles, and that the particle size distribution followed those

reported by Duguid [35], also shown in Figure 6.

In summary, the amounts of fluid expelled during a single

expiratory event based on V20 for breathing, coughing, or sneezing

were 1.24761028ml, 2.0461027ml, and 5.2761025ml, respectively.

Particle Collection Estimates
To compute the total number of particles at steady-state for each

scenario modeled, the steady-state masses were divided by the

weighted sum of the unit masses expelled by the respective expiratory

activities. For the breathing and coughing scenario, the steady-state

mass was divided by the weighted sum of one cough and one breath

based on 12 minutes of sampling, where 12 minutes was the amount

of time for the model to reach a steady-state. Specifically, a passenger

coughing 20 times per hour would on average emit 4 coughs per 12

minutes (20 coughs/hr61 hr/60 min612 min). The same passenger

breathing 20 times per minute would emit ,96 breaths in the same 12

minutes. The weighted sum of the particle distribution contributions

from breathing and coughing were ,96% and ,4%, respectively.

Therefore, the V20 (described by equations 2 and 3) for one breath was

converted to mass and multiplied by 96%, while the V20 for one cough

was converted to mass and multiplied by 4%. Similarly, for the

breathing and sneezing scenario, the steady-state mass was divided by

the weighted sum of one sneeze and one breath based on 12 minutes

of sampling. For example, a passenger sneezing 4 times per hour

would emit on average 0.8 sneezes in 12 minutes. The same passenger

breathing 20 times per minute would emit just under 98 breaths in 12

minutes. In this model, the weighted contributions from breathing and

sneezing were ,99.2% and ,0.8%, respectively. Thus, the V20 for

one breath was converted to mass and multiplied by 99.2%, while the

V20 for one sneeze was converted to mass and multiplied by 0.8%. For

the breathing-only scenario, the steady-state mass was simply divided

by the mass of a breath as converted from V20.

To estimate the number of collectable biological particles,

collection efficiencies (CE) were gathered from independent wind-

tunnel testing conducted by the U.S. government using a range of

polystyrene latex beads between 0.5 and 8 microns in diameter

[36]. The aerosol collection rate employed by Kesavan et al. (2006)

was 277 liters per minute, which is sufficiently close to 300 liters

per minute. We applied CE from 3 and 0.5 microns beads

corresponding to 0.91 and 0.357 for the bacterial and viral

calculations, respectively.

To estimate the number of viable bacterial and viral particles, we

surveyed the literature and found very few studies that quantified

viability as a function of particles exhaled by size. We therefore

relied on a very old Duguid (1946) study that measured the number

of organisms per ml of saliva as a function of particle size. Duguid

reported that particle diameters ranging from 1–2 to 2–4 microns

corresponded to viability coefficients of 5.961025 and 4.761024,

respectively. For simplicity, the viability coefficient for particles with

diameters ranging from 1–2 microns was applied to viral particles,

while the viability coefficient for particles with diameters ranging

from 2–4 microns was applied to bacterial particles.

Supporting Information

Table S1 Compilation of cough statistics. Notes: Chronic cough

can include asthma, gastrooesophageal reflux, eosinophilic bron-

chitis, chronic obstructive pulmonary disease and chronic

bronchitis. 1 Italics represent cases where median values are

reported by primary literature. { Study reports cough frequency in

cough seconds per hour. In this table, 1 cough second is assumed

to be the equivalent of one cough. NR denotes not reported.

Found at: doi:10.1371/journal.pone.0014520.s001 (0.59 MB TIF)

Acknowledgments

The contents of this document reflect the views of the author and The

MITRE Corporation and do not necessarily reflect the views of the FAA or

the Department of Transportation (DOT). Neither the FAA nor the DOT

makes any warranty or guarantee, expressed or implied, concerning the

Detecting Bio-Contaminants

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e14520



content or accuracy of these views. Approved for Public Release;

Distribution Unlimited. Case Numbers 10-4599, 09-0950, 09-0888, 09-

0890, 08-0656, 08-1668. GMH thanks L. Morawska and G. Johnson for

furnishing raw data on particles concentrations from human exhalations,

and T. Korves for a critical reading of this manuscript.

Author Contributions

Conceived and designed the experiments: GMHH. Performed the

experiments: AAD. Analyzed the data: GMHH AAD GCL. Contributed

reagents/materials/analysis tools: GMHH AAD. Wrote the paper:

GMHH.

References

1. Peiris JSM, Guan Y, Yuen KY (2004) Severe acute respiratory syndrome. Nat

Med 10: S88–S97.

2. Saywell T, Fowler G, Crispin S (2003) The cost of SARS: $11 billion and rising.
Dow Jones Far Eastern Economic Review.

3. Hwang GM, DiCarlo A, Teig LJ, Lin G, Harkin M (2009) Detecting infectious
and biological contaminants aboard aircraft – is it feasible? Technologies for

Homeland Security HST ’09 Waltham, MA: IEEE. pp 477–484.

4. Mangili A, Gendreau MA (2005) Transmission of infectious diseases during
commercial air travel. The Lancet 365: 989–996.

5. Perlroth DJ, Glass RJ, Davey VJ, Cannon D, Garber AM, et al. (2010) Health
outcomes and costs of community mitigation strategies for an influenza

pandemic in the United States. Clin Infect Dis 50: 165–174.
6. National Research Council (2006) Committee on Assessment of Security Technol-

ogies for Transportation. Defending the U.S. air transportation system against

chemical and biological threats. Washington, D.C.: National Academies Press.
7. Singh A, Hosni MH, Horstman RH (2002) Numerical simulation of airflow in an

aircraft cabin section. ASHRAE Transactions: Symposia AC-02-17-3: 1005–1013.
8. Aboosaidi F, Warfield MJ, Choudhury D (1991) Computational fluid dynamics

applications in airplane cabin ventilation system design. Proceedings Society of

Automotive Engineers. pp 249–258.
9. Mizuno T, Warfield MJ (1992) Development of three-dimensional thermal

airflow analysis computer program and verification test. ASHRAE Transactions:
Symposia BA-92-2-5: 329–338.

10. Garner RP, Wong KL, Ericson SC, Baker AJ, Orzechowski JA, et al. (2004) CFD
validation for contaminant transport in aircraft cabin ventilation flow fields. US

Department of Transportation, Federal Aviation Administration DOT/FAA/

AM-04/7, Office of Aerospace Medicine. Washington, DC, 20591: 1–6.
11. Lin CH, Wu TT, Horstman RH, Lebbin PA, Hosni MH, et al. (2006) Comparison

of large eddy simulation predictions with particle image velocimetry data for the
airflow in a generic cabin model. HVAC&R Research Special Issue 12: 935–951.

12. Mazumdar S, Chen Q (2008) Influence of cabin conditions on placement and

response of contaminant detection sensors in a commercial aircraft. J Environ
Monit 10: 71–81.

13. Sun Y, Zhang Y, Wang A, Topmiller JL, Bennet JS (2005) Experimental
characterization of airflows in aircraft cabins, Part I: Experimental system and

measurement procedure. ASHRAE Transactions: Research. pp 45–52.

14. Zhang Z, Chen Q (2006) Experimental measurements and numerical
simulations of particle transport and distribution in ventilated rooms. Atmos

Environ. pp 3396–3408.
15. Zhang Z, Chen Q (2007) Comparison of the Eulerian and Lagrangian methods

for predicting particle transport in enclosed spaces. Atmos Environ. pp
5236–5248.

16. Zhang Z, Zhang W, Zhai Z, Chen Q (2007) Evaluation of various turbulence

models in predicting airflow and turbulence in enclosed environments by CFD:
Part 2: comparison with experimental data from literature. HVAC&R Research

13: 871–886.
17. Zhang Z, Chen X, Mazumdar S, Zhang T, Chen Q (2009) Experimental and

numerical investigation of airflow and contaminant transport in an airliner cabin

mockup. Build Environ 44: 85–94.
18. Mo H, Hosni MH, BW J (2003) Application of particle image velocimetry for the

measurement of the airflow characteristics in an aircraft cabin. ASHRAE
Transactions: Research. pp 101–110.

19. Zhang T, Chen Q, Lin C-H (2007) Optimal sensor placement for airborne
contaminant detection in an aircraft cabin. HVAC & R Research 13: 683–696.

20. Hsu JY, Stone RA, Logan-Sinclair RB, Worsdell M, Busst CM, et al. (1994)

Coughing frequency in patients with persistent cough: assessment using a 24
hour ambulatory recorder. Eur Respir J 7: 1246–1253.

21. Li AM, Lex C, Zacharasiewicz A, Wong E, Erin E, et al. (2003) Cough
frequency in children with stable asthma: correlation with lung function, exhaled

nitric oxide, and sputum eosinophil count. Thorax 58: 974–978.

22. Coyle M, Keenan D, Henderson L, Watkins M, Haumann B, et al. (2005)
Evaluation of an ambulatory system for the quantification of cough frequency in

patients with chronic obstructive pulmonary disease. Cough 1: 3.
23. Loudon RG, Brown LC (1967) Cough frequency in patients with respiratory

disease. Am Rev Respir Dis 96: 1137–1143.
24. Smith J, Owen E, Earis J, Woodcock A (2006) Cough in COPD: correlation of

objective monitoring with cough challenge and subjective assessments. Chest

130: 379–385.
25. Birring SS, Fleming T, Matos S, Raj AA, Evans DH, et al. (2008) The Leicester

Cough Monitor: preliminary validation of an automated cough detection system
in chronic cough. Eur Respir J 31: 1013–1018.

26. Decalmer SC, Webster D, Kelsall AA, McGuinness K, Woodcock AA, et al. (2007)

Chronic cough: how do cough reflex sensitivity and subjective assessments correlate
with objective cough counts during ambulatory monitoring? Thorax 62: 329–334.

27. Matos S, Birring SS, Pavord ID, Evans DH (2007) An automated system for 24-

h monitoring of cough frequency: the leicester cough monitor. IEEE Trans

Biomed Eng 54: 1472–1479.

28. Smith J, Earis JE, Woodcock AA (2006) Establishing a gold standard for manual

cough counting: video versus digital audio recordings. Cough 2: 1–6.

29. Smith J, Owen E, Jones A, Dodd M, Webb A, et al. (2006) Objective

measurement of cough during pulmonary exacerbations in adults with cystic

fibrosis. Thorax 61: 425–429.

30. Key A, Holt K, Hamilton A, Smith J, Earis J (2010) Objective cough frequency

in Idiopathic Pulmonary Fibrosis. Cough 6: 4.

31. Zihlif N, Paraskakis E, Lex C, Van de Pohl L-A, Bush A (2005) Correlation

between cough frequency and airway inflammation in children with primary

ciliary dyskinesia. Pediatric Pulmonology 39: 551–557.

32. Nicas M, Nazaroff WW, Hubbard A (2005) Toward understanding the risk of

secondary airborne infection: emission of respirable pathogens. J Occup Environ

Hyg 2: 143–154.

33. Morawska L, Johnson GR, Ristovski ZD, Hargreaves M, Mengersen K, et al.

(2009) Size distribution and sites of origin of droplets expelled from the human

respiratory tract during expiratory activities. J Aerosol Sci 40: 256–269.

34. Baker AJ, Erickson SC, Orzechowski JA, Wong KL, Garber RP (2006)

Validation for CFD prediction of mass transport in an aircraft passenger cabin.

ADA465914. Oklahoma City: Civil Aeromedical Inst.

35. Duguid J (1946) The size and the duration of air-carriage of respiratory droplets

and droplet-nuclei. The Journal of Hygiene 44: 471–479.

36. Kesavan JS (2006) Characteristics and sampling efficiencies of Omni 3000

aerosol samplers. ECBC-TN-028. Edgewood Chemical and Biological Center.

37. Emanuel PA, Fruchey IR (2007) Biological Detectors Market Survey. Aberdeen

Proving Ground: Edgewood Chemical Biological Center.

38. Fabian P, McDevitt JJ, DeHaan WH, Fung ROP, Cowling BJ, et al. (2008) Influenza

virus in human exhaled breath: An observational study. PLoS ONE 3: e2691.
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