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Considering reducing the airspace congestion and the flight delay simultaneously, this paper formulates the airway network flow
assignment (ANFA) problem as amultiobjective optimizationmodel and presents a newmultiobjective optimization framework to
solve it. Firstly, an effective multi-island parallel evolution algorithm with multiple evolution populations is employed to improve
the optimization capability. Secondly, the nondominated sorting genetic algorithm II is applied for each population. In addition, a
cooperative coevolution algorithm is adapted to divide the ANFA problem into several low-dimensional biobjective optimization
problems which are easier to deal with. Finally, in order to maintain the diversity of solutions and to avoid prematurity, a dynamic
adjustment operator based on solution congestion degree is specifically designed for the ANFA problem. Simulation results using
the real traffic data from China air route network and daily flight plans demonstrate that the proposed approach can improve the
solution quality effectively, showing superiority to the existing approaches such as the multiobjective genetic algorithm, the well-
known multiobjective evolutionary algorithm based on decomposition, and a cooperative coevolution multiobjective algorithm as
well as other parallel evolution algorithms with different migration topology.

1. Introduction

With the development of civil aviation, the permanently
increasing air traffic and the limited airspace resource have
resulted inmore andmore serious congestion and flight delay
[1–3]. Meantime, heavy congestion challenges the airspace
safety and the flight delay costs the airline industry billions
of dollars every year [4]. Hence, how to safely accommodate
high levels of demand and to maximize the use of capacity-
limited airspace and airport resources has become a major
concern to both researchers and practitioners in air traffic
management (ATM).

In recent years, FAA proposed the 4D-trajectory (4DT)
operation concept in next generation air transportation sys-
tem (NextGen), which includes three dimensions of position
and a time description of the flight. Under the 4DT environ-
ment, flights can be accurately planned in both space and

time.The airway network flow assignment (ANFA) approach
can provide solutions from a global point of viewwith the aim
of alleviating airspace congestion and reducing time cost by
optimizing the 4D trajectories of all flights considered in the
entire airspace. Therefore, it has become a focus of research
interests.

However, the ANFA problem is a large-scale combina-
torial optimization problem with complicated constraints as
well as tightly coupled variables, which is difficult to solve
in general. For instance, there are more than ten thousand
flights flying over China every day on the air route network
with more than one thousand waypoints, which generates
a large number of tightly coupled decision variables and
constraints. Hence, in order to get optimal flight plans for
all flights, the ANFA problem has a very high computational
complex. Besides, with consideration of reducing congestion
and minimizing the induced delay, the problem usually has
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multiple objectives which are all nondifferentiable or even
noncontinuous.

Due to the importance of the ANFA problem, it has
drawn a mass of attention of researchers [5]. Earlier work
has focused on the slot-time allocation, known as ground
holding in a single ormultiple airport setting, in which delays
propagate through the network [6, 7]. Besides, the flight level
allocation has been considered to the flights in this problem
[8, 9]. In addition, Bertsimas et al. [10, 11] considered the
time slots and routes assignment simultaneously through an
efficient deterministic approach. From a stochastic optimiza-
tion point of view, Delahaye and Odoni proposed a genetic
algorithm to solve the problem [12]. However, it often falls
into the local optimum because of the large-scale decision
variables. More recently, a cooperative coevolution (CC)
algorithm was introduced into the resolution of the ANFA
problem [13]. It adopted the divide-and-conquer strategy to
divide the complex problem into several low-dimensional
subproblems which becomes easier to deal with.

So far these works took the minimization of the airspace
congestion or the flight delay as the sole objective [14, 15].
However, it might be more appropriate to consider both
airspace congestion and extra flight cost and try to seek
a good trade-off between them. Hence, Daniel et al. [16]
formulated the problem into a biobjective optimization prob-
lem and solved it with the multiobjective genetic algorithm
(MOGA). However, the application of existingmultiobjective
evolutionary algorithms (MOEAs) to the ANFA problem
might lead to poor performance due to the scale of the prob-
lem. To the best of our knowledge, fewworks could effectively
solve complicatedmultiobjective optimization problemswith
thousands of variables.

With the consideration of the reduction of the airspace
congestion and the flight delay simultaneously, this paper
formulates the ANFA problem as a multiobjective optimiza-
tion model. Then, an efficient multiobjective optimization
framework is presented to solve it. This framework employs
the parallel computation and population diversity adjustment
techniques to improve the optimization capability. Firstly,
an effective multi-island parallel evolution algorithm (PEA)
with multiple evolution populations is adopted. Besides,
one-way ring migration topology is applied to exchange
individuals among populations to improve the efficiency of
the cooperation of populations. Secondly, the multiobjective
evolutionary algorithm NSGA2 is used to optimize each
population. In addition, a cooperative coevolution algorithm
is adapted to divide the ANFA problem into several low-
dimensional biobjective optimization problems which are
easier to deal with. Finally, in order to maintain the diversity
of solutions and avoid prematurity, a dynamic adjustment
operator based on solution congestion degree is specifi-
cally designed. It can greatly improve the distribution of
the nondominated solutions in the archive and maintain
the population diversity by inheriting the nondominated
solutions with low congestion degree in a high probability.
Simulation results using the real traffic data from China
air route network and daily flight plans demonstrate that
the proposed approach can improve the solution quality
effectively, showing superiority to the existing approaches

such as the multiobjective genetic algorithm, the well-known
multiobjective evolutionary algorithm based on decomposi-
tion (MOEA/D), and a CC-based multiobjective algorithm
as well as other parallel evolution algorithms with different
migration topology.

The rest of this paper is organized as follows. Section 2
introduces the formulation of the investigated biobjective
ANFA problem. Section 3 describes the proposed multiob-
jective optimization framework in detail. Experimental study
is presented in Section 4 to evaluate the effectiveness of
our algorithm. Finally, Section 5 concludes this paper and
discusses directions for further research.

2. Problem Formulation

The airway network can be modeled as a directed graph
including the waypoints as nodes and segments as edges.
Each flight can be considered as a single commodity on
the network with a defined pair of origin-destination nodes.
Besides, each flight has its predefined departure time slots and
the optional routes. In this paper, with the consideration of
safety and efficiency, the ANFA problem is formulated as a
biobjective problem to reduce the airspace congestion and the
total flight delay simultaneously.

Each flight (flight 𝑘) is associated with a pair of decision
variables (𝑟𝑘, 𝜏𝑘), where 𝑟𝑘 is a possible route and 𝜏𝑘 is a
feasible departure time slot. In addition, they are subject to
the following:

(1) 𝑟𝑘 ∈ Path𝑘 = {𝑟


1
, 𝑟


2
, . . . , 𝑟



max}, where Pathk is the set
of all possible paths of flight 𝑘;

(2) 𝑡min
𝑘

≤ 𝜏𝑘 ≤ 𝑡
max
𝑘

, where 𝑡
max
𝑘

is the latest departure
time slot and 𝑡

min
𝑘

is the earliest departure time slot.

We can see that constraint (1) denotes a feasible route of each
flight from a defined route set, while constraint (2) enforces
the flight to depart at a predefined departure time slot.

The first objective function is the minimization of the
airspace congestion. Here the workload of the sectors is
used to indicate the airspace congestion, which is defined as
follows.

It is generally known that the workload of a sector mainly
depends on the monitoring workload and the coordination
workload. Hence, the total workload of a sector 𝑆𝑘 at time 𝑡

can be roughly expressed by the following [16]:

𝑊
𝑡

𝑆𝑘
= 𝑊
𝑡

mo𝑆𝑘 + 𝑊
𝑡

co𝑆𝑘 , (1)

where 𝑊𝑡mo𝑆𝑘 is the monitoring workload and can be numer-
ically estimated by

𝑊mo𝑠𝑘 = {
1 + 𝑀

𝑡

𝑆𝑘
− 𝐶
𝑡

𝑚𝑆𝑘
, if 𝑀𝑡

𝑆𝑘
> 𝐶
𝑡

𝑚𝑆𝑘

0, else,
(2)

where 𝑀𝑡
𝑆𝑘
is related to the number of aircraft in sector 𝑆𝑘 at

time 𝑡 and𝐶
𝑡

𝑚𝑆𝑘
is themonitoring critical capacity of the sector

at time 𝑡.
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BEGIN
Initialize𝑀 populations of size ps each. 𝑔 = 0. Archive = NULL
WHILE 𝑔 < max gen

FOR population 𝑗 = 0 : (𝑀 − 1)
Divide the problem into 𝑛 subcomponents based on cooperative co-evolution

FOR each subcomponent
Use the NSGA2 framework and differential evolution as the evolutionary
algorithm to solve the subcomponent

END FOR
Archive = Obtain and update the non-dominated solutions based on the dynamic
adjustment operator for solutions congestion degree

END FOR
IF (migration condition meet)

Exchange individuals selected among populations based on a migration topology
END IF
𝑔 = 𝑔 + 1

ENDWHILE
END

Algorithm 1: The framework of the proposed algorithm.

Besides, 𝑊𝑡co𝑆𝑘 is the coordination workload and can be
numerically estimated by

𝑊co𝑠𝑘 = {
1 + 𝐶
𝑡

𝑆𝑘
− 𝐶
𝑡

𝑐𝑆𝑘
, if 𝐶𝑡

𝑆𝑘
> 𝐶
𝑡

𝑐𝑆𝑘

0, else,
(3)

where 𝐶
𝑡

𝑆𝑘
is related to the flights passing through the

boundary of sector 𝑆𝑘 at time 𝑡 and 𝐶
𝑡

𝑆𝑘
is related to the

number of aircraft passing the boundaries of sector 𝑆𝑘 at time
𝑡.

The goal of the optimization is to minimize the airspace
congestion via spreading the congestion over several sectors.
Hence, the objective is defined by the following [16]:

min𝐴𝐶 =

𝑘=𝑛𝑆

∑

𝑘=1

((∑

𝑡∈𝑇

𝑊
𝑡

𝑆𝑘
)

1−𝜑

× (max
𝑡∈𝑇

𝑊
𝑡

𝑆𝑘
)

𝜑

) , (4)

where 𝜑, (1 − 𝜑) ∈ [0, 1] indicates the relative importance of
the maximum congestion and the average congestion.

The second objective is the minimization of the extra
flight cost (EFC) which includes the departure delay and the
airborne delay caused by choosing a longer path than the
shortest one. Then the second objective can be expressed as
follows [16]:

min EFC = ∑

𝑖∈𝐹

(

𝜏𝑖 − 𝑡

prf
𝑘


+ (𝑡𝑟𝑖

− 𝑡
𝑟
prf
𝑖

))
2

, (5)

where 𝑡𝑟𝑖 and 𝑡
𝑟
prf
𝑖

denote the flight time of 𝑟𝑖 and the preferred

shortest path, respectively, and 𝑡
prf
𝑘

indicates the preferred
departure time. The first part is the airborne delay, and the
second part is the ground delay.

3. Optimization Method
It can be seen that the ANFA problem is a large-scale com-
binatorial optimization problem, and the objective functions
are nonlinear and nondifferentiable. Black-box optimization
methods such as EAs appeared to be promising to deal with
this kind of problem [15–19]. Given the multiobjective model
of the ANFA problem, basically any existing MOEA for
discrete multiobjective optimization can be readily utilized.
However, the ANFA problem involves thousands of tightly
coupled decision variables which are difficult to solve. In
addition, few existing MOEAs have been extensively inves-
tigated on problems of such a large scale while the scalability
of EAs with respect to the number of decision variables is in
general deemed to be poor; therefore a direct application of
existing MOEAs might not obtain satisfactory solutions.

With the aim of avoiding prematurity and improving the
convergence rate of this complex problem, a newmultiobjec-
tive optimization framework is proposed. Firstly, an effective
multi-island parallel evolution algorithm with multiple evo-
lution populations is employed and one-way ring migration
topology for exchange individuals among populations is
applied to improve the efficiency of the cooperation of popu-
lations. Secondly, the multiobjective evolutionary algorithm
NSGA2 is used to optimize each population. In addition, this
paper introduces the idea of cooperative coevolutionary (CC)
into the resolution of the multiobjective ANFA problems.
The main idea is to divide the high-dimensional problem
into low-dimensional subcomponents. The subcomponents
work cooperatively to obtain better solutions. Finally, all the
nondominated solutions are stored in an archive. As the
ANFA problem is of such a large scale with thousands of
variables, the main difficulty is how to maintain the diversity
of the population to get better solutions and to improve the
distribution of the solutions in the archive. Hence, in order to
maintain the diversity of solutions and to avoid prematurity,
a dynamic adjustment operator based on solution congestion
degree is specifically designed for the ANFA problem. The
framework is presented in Algorithm 1.
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3.1. Multi-Island Parallel Evolution Algorithm. As parallel
computers become more commonplace in scientific com-
puting, it becomes more feasible to harness their power for
use with evolutionary algorithms (EAs) [20]. Multi-island
PEAs consist of several populations, which can optimize
simultaneously to avoid premature convergence. They have
been successfully applied to find acceptable solutions to
problems in different engineering domains [21, 22].

Suppose that there are𝑀 islands and𝑁 flights.Then each
population can be denoted as

pop
𝑖
= {𝑖𝑑𝑖V𝑖1, 𝑖𝑑𝑖V𝑖2, . . . , 𝑖𝑑𝑖V𝑖𝑝𝑠} , 1 ≤ 𝑖 ≤ 𝑀, (6)

where 𝑖𝑑𝑖V𝑖𝑗 is defined by

𝑖𝑑𝑖V𝑖𝑗 = (𝑟𝑖𝑗1, 𝜏𝑖𝑗1, 𝑟𝑖𝑗2, 𝜏𝑖𝑗2, . . . , 𝑟𝑖𝑗𝑁, 𝜏𝑖𝑗𝑁) , 1 ≤ 𝑗 ≤ ps, (7)

where ps is the size of population.

3.2. Migration Topology. The migration topology is a key
feature of the island model which determines the destination
of the migrants, and it could greatly affect the quality of the
solutions and the efficiency of algorithms. If two populations
rarely communicate with each other, it is difficult for the best
solution to spread which may prevent populations finding
better solutions.

Currently, themainmigration topologies are the one-way
ring topology and the random topology [22]. The random
topology delivers the migrants to a randomly selected pop-
ulation. However, it may result in inefficient communication.
After many times of migration under the random topology,
the best solution cannot be spread effectively among popu-
lations. In the one-way ring topology, populations are num-
bered, and the worst individual of a population is replaced
by the best individual of the next population. The one-way
ring topology can provide sufficient communication among
populations and maintain the population diversity, which
can effectively avoid premature convergence and improve the
optimization capability.

3.3. Cooperative Coevolution for Each Population. Though the
multi-island PEA uses several populations simultaneously,
in fact each population is hard to avoid falling into a local
optimum because the ANFA problem involves large-scale
tightly coupled decision variables as presented in the previous
sections. Hence, we introduce the cooperative coevolution
algorithm for the optimization of each population to further
improve the solution quality. The cooperative coevolution
(CC) algorithm, adopting the divide-and-conquer strategy,
divides the complex problem into several low-dimensional
subproblems [23–25]. There are two critical issues in this
approach.

(1) Decomposition Strategy. The decomposition strategy is a
key feature of the cooperative coevolution framework which
can greatly affect the capability and the efficiency of algo-
rithms. In this work, the random grouping strategy is used
which has been both theoretically and experimentally proved
to be effective for the large-scale complex problem [23].

At each generation, each population is randomly divided into
𝑛𝑠 disjoint subpopulations with the same population size:

pop
𝑖
= {sp1
𝑖
, . . . , sp𝑛𝑠

𝑖
} , 1 ≤ 𝑖 ≤ 𝑀

sp𝑗
𝑖
= {𝑠𝑖𝑑

𝑗1

𝑖
, 𝑠𝑖𝑑
𝑗2

𝑖
, . . . , 𝑠𝑖𝑑

𝑗ps
𝑖

} , 1 ≤ 𝑗 ≤ 𝑛𝑠

𝑠𝑖𝑑
𝑗𝑘

𝑖
= (𝑟


𝑗𝑘1
, 𝜏


𝑗𝑘1
, 𝑟


𝑗𝑘2
, 𝜏


𝑗𝑘2
, . . . , 𝑟



𝑗𝑘(𝑁/𝑛𝑠)
, 𝜏


𝑗𝑘(𝑁/𝑛𝑠)
) ,

1 ≤ 𝑗 ≤ ps,

(8)

where 𝑠𝑖𝑑 denotes the individual of each subpopulation and
sp𝑗
𝑖
indicates the subpopulation 𝑗 of population 𝑖.

(2) Subpopulation Optimization. Another critical point is
optimization for each subpopulation. In this paper, the
well-knownmultiobjective evolutionary algorithmNSGA2 is
employed by each subpopulation [26]. Besides, differential
evolution (DE) [27] is used in the framework to generate new
solutions, because it is a simple yet effective algorithm for
global optimization. DE is a randomized parallel searching
algorithm. It begins with a random population, according to
specific rules, for example, selection, crossover, and muta-
tion. An optimized resolution is reached by retaining good
individuals and discarding bad individuals. Compared with
other optimization algorithms, DE has the advantages in
global optimization as well as easy operation. Its operators are
described below.

Suppose that 𝑓(𝑥) is the objective function and the goal
is to minimize it.

In mutation, if current chromosome is 𝑥𝑖,𝐺, then choose
three different chromosomes from current generation popu-
lation named 𝑥𝑟1,𝐺, 𝑥𝑟2,𝐺, and 𝑥𝑟3,𝐺. The mutation operator is
defined by

𝑉𝑖,𝐺+1 = 𝑥𝑟1,𝐺 + 𝐹 ⋅ (𝑥𝑟2,𝐺 − 𝑥𝑟3,𝐺) , 𝐹 ∈ [0, 2] , (9)

where𝐹 is a parameter which decides the scale ofmutation. A
new chromosome is generated by the crossover of 𝑉𝑖,𝐺+1 and
𝑥𝑖,𝐺 as follows:

𝑈𝑖,𝐺+1 = (𝑢1𝑖,𝐺+1, 𝑢2𝑖,𝐺+1, . . . , 𝑢𝑁𝑖,𝐺+1)

𝑢𝑗,𝑖,𝐺+1 = {
V𝑗𝑖,𝐺+1, rand (𝑗) ≤ 𝐶𝑅 ∨ 𝑗 = rnbr (𝑖)
𝑥𝑗𝑖,𝐺, else,

(10)

where rnbr(𝑖) is a random integer number between 1 and
𝑁, which ensures that 𝑈𝑖,𝐺+1 gets at least one component
from V𝑖,𝐺+1 component from𝑉𝑖,𝐺+1 and rand(𝑗) is a uniformly
distributed random number between 0 and 1.

After the evaluation of each chromosome, the chro-
mosomes of next generation are chosen according to the
following rule:

𝑥𝑖,𝐺+1 = {
𝑢𝑖,𝐺+1, 𝑓 (𝑢𝑖,𝐺+1) ≤ 𝑓 (𝑥𝑖,𝐺)

𝑥𝑖,𝐺, else.
(11)

3.4. Dynamic Adjustment Operator Based on Solution Con-
gestion Degree. As the optimization generation increases,
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Figure 1: (a) Airspace sectors in China. (b) Flights operation in China.

the population diversity decreases rapidly for more solutions
congested at a local searching space [28, 29]. On the one hand,
too crowded solutions will cause premature convergence.
On the other hand, some local searching space with sparse
solutions is not explored enough andneedsmore attention for
better solutions. Hence, the more evenly the nondominated
solutions distribute, the better the optimization is. In this
paper, we propose a dynamic adjustment operator to improve
the distribution of solutions and maintain the population
diversity based on the congestion degree of solutions.

(1) Congestion Degree of the Nondominated Solutions in the
Archive. The distance between solution 𝑖 and 𝑗 in archive is
defined by

𝑑𝑖,𝑗 =
1

2
√(𝑃

fit[1]
𝑖

− 𝑃
fit[1]
𝑗

)
2

+ (𝑃
fit[2]
𝑖

− 𝑃
fit[2]
𝑗

)
2

, (12)

where 𝑝
fit[1]
𝑖

and 𝑝
fit[2]
𝑖

denote the value of the first and the
second objective functions of solution 𝑖, respectively. Besides,
the average distance of all solution pairs in the archive is
described by

𝑠 =
2

𝑛 (𝑛 − 1)

𝑖=𝑛

∑

𝑖=1

𝑗=𝑛

∑

𝑗=𝑖+1

𝑑𝑖,𝑗, (13)

where 𝑛 is the number of the solutions in archive.
Then the congestion degree of a nondominated solution

can be expressed as

𝑑𝑖 =
1

𝑛 − 1

𝑗=𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝛿𝑖,𝑗, (14)

where

𝛿𝑖,𝑗 = {
1 if 𝑑𝑖,𝑗 ≤ 𝛾 ⋅ 𝑠

0 if 𝑑𝑖,𝑗 > 𝛾 ⋅ 𝑠,
(15)

where 𝛾 is a parameter which can be predefined. We can see
that the larger 𝑑𝑖 is, the closer to other solutions solution 𝑖 is.

(2) Update the Archive. The solutions in the archive will be
constantly updated during the evolution of the subpopu-
lations. When the number of the nondominated solutions
exceeds the maximum size of the archive, the solutions 𝑖 will
be moved out from the archive in a probability

𝑝𝑖 =
𝑑𝑖
𝛼

∑
𝑛

𝑗=1
𝑑𝑗
𝛼
, (16)

where 𝛼 is a positive regulation factor. Equation (16) indicates
that the higher 𝑑𝑖 is, the higher probability it will be moved
out from the archive.

4. Experimental Studies

4.1. Database and Experimental Setup. The national route
network of China consists of 1706 airway segments, 940
waypoints, and 150 airports. Note that the takeoff and
landing phases of flights are truncated within a given radius
(usually 10NM) around airports. The traffic around airports
is managed with specific procedures by the terminal control
area (TCA) control services in these zones. The airspace
is divided into many sectors, and Figure 1(a) shows the
sectored airspace in China. The air traffic data was extracted
from flight schedule database (FSD) of the summer in
2009 released by Civil Aviation Administration of China
(CAAC). In order to better describe the difference between
the algorithms’ performances, we consider two scenarios: 960
flights (the busiest one hour) and 1664 flights (the busiest
three hours).

The parameters are set as follows: the number of popula-
tions𝑀 = 5, 𝜙 = 0.9, 𝜑 = 0.1, 𝑟 = 0.3, 𝛾 = 1/25, and 𝑛𝑠 = 10.
Themutation probability and the crossover probability of DE
are 0.15 and 0.85.

The algorithms, such as our proposed method, MOGA,
MOEA/D [30], and cooperative coevolution based algorithm,
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Figure 2: Comparison of different algorithms for 960 flights (a) and 1664 flights (b).

Table 1: Parameters of the experiments.

Parameters Description MOGA MOEA/D CCMA PEA

ps Population
size 100 100 100 20 ∗ 5

(IM = 5)

max gen Max
generation 150 150 150 150

𝑝𝑐
Crossover
probability 0.9 0.9 0.9 0.9

𝑝𝑚
Mutation
probability 0.1 0.1 — —

in this work were implemented in C++, and the simulations
were performed on a server with an E5620 2.4GHzCPUwith
12GB RAM. For each algorithm, the results were collected
and analyzed on the basis of 15 independent runs. Besides,
the proposed approach was realized by multithreaded pro-
gramming. Then, the optimization of all islands and all
subcomponents of each population can proceed separately
and simultaneously which can reduce the computation time.

The parameters used in all experiments are listed in
Table 1.

In order to evaluate the performance of the solutions
obtained by each of the algorithms, three typical metrics
are adopted: the convergence metric (𝛾) [26], the spread
metric (Δ) [31], and the hypervolume metric 𝐼𝐻 [32, 33]. 𝛾
suggests the average Euclidean distance from the obtained
nondominated solution set to the actual Pareto front. Note
that it is difficult to find the actual Pareto front for most real-
world optimization problems; so we use the best solution
set obtained by these algorithms in 15 runs. Δ indicates the
diversity of solutions along the Pareto front. 𝐼𝐻 can evaluate
the convergence and the extent of spread of the solutions

Table 2: Comparison of different algorithms for 960 flights (𝐼𝐻, 𝛾,
Δ).

Algorithm 𝐼𝐻 𝛾 Δ

MOGA 1.1156𝑒 + 13 6.6865𝑒 + 06 1.0078
MOEA/D 1.9054𝑒 + 13 1.8715𝑒 + 06 1.2554
CCMA 3.1758𝑒 + 13 3.3631𝑒 + 05 1.0540
PEA 3.2575e + 13 3.1237e + 04 1.0047

simultaneously without the real Pareto front. The smaller the
first two indexes are, the better the algorithm is. On the con-
trary, the larger the third index is, the better the algorithm is.

4.2. Comparison with the Existing Methods. In order to test
the effectiveness of the proposed multi-island PEA frame-
work, in this part, we will compare it with some existing
algorithms, including the classical multiobjective genetic
algorithm (MOGA), multiobjective evolutionary algorithm
based on decomposition (MOEA/D), and a CC-based mul-
tiobjective algorithm (CCMA).

Tables 2 and 3 show the average value of 𝐼𝐻, 𝐼𝐷, and
Δ over 15 independent runs of the algorithms for the two
scenarios, respectively. In each row of the table, the best value
is highlighted in boldface. It can be seen from the tables that
PEA outperforms the other three algorithms in terms of 𝐼𝐻,
𝐼𝐷, and Δ. Moreover, when the number of flights increases,
PEA performs much better. It can be concluded that PEA has
superiority to solve this large-scale problem.

Figure 2 shows the nondominated solutions obtained by
the four algorithms. Specifically, the nondominated solu-
tions of each algorithm were obtained over 15 runs. From
Figure 2, it can be concluded that PEA performs the best
because its solutions can dominate those obtained by other
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Figure 3: Comparison of PEA and PEA without DAO for 960 flights (a) and 1664 flights (b).

Table 3: Comparison of different algorithms for 1664 flights (𝐼𝐻, 𝛾,
Δ).

Algorithm 𝐼𝐻 𝛾 Δ

MOGA 3.3979𝑒 + 12 2.1876𝑒 + 07 1.0113
MOEA/D 7.4733𝑒 + 13 1.1361𝑒 + 07 1.0452
CCMA 1.8763𝑒 + 14 4.7800𝑒 + 06 0.9897
PEA 2.1909e + 14 2.6247e + 05 0.8029

algorithms. Besides, it can be seen that MOGA has the worst
performance, and CCMA performs better than MOEA/D,
but MOEA/D has good performance in terms of diversity.

From the experimental results, we find that PEAperforms
better than the other three methods for the two scenarios. It
adopts an effective multi-island parallel evolution framework
which can improve the optimization capability. Besides, the
one-way ringmigration strategy can further avoid premature.
In addition, this paper introduces the cooperative coevolu-
tionary (CC) into each population optimization via divid-
ing the high-dimensional problem into low-dimensional
subcomponents. The subcomponents work cooperatively to
obtain better solutions.With the help of parallel computation,
the computation is just about 30 minutes which is feasible for
the ANFA problem.

4.3. Investigation of the Effectiveness of the Dynamic Adjust-
ment Operator. In the previous section, the first set of
experiments has justified the superiority of PEA to existing
methods. The next experiment is designed to further investi-
gate whether the dynamic adjustment operator (DAO) based
on solution congestion degree contributes to the success of
PEA.

Table 4: Comparison of different algorithms for 960 flights (𝐼𝐻, 𝐼𝐷,
Δ).

Algorithm 𝐼𝐻 𝐼𝐷 Δ

PEA without DAO 9.2026𝑒 + 10 7.0467𝑒 + 04 1.2471

PEA 1.3937e + 11 3.3957e + 04 1.0050

Table 5: Comparison of different algorithms for 1164 flights (𝐼
𝐻
, 𝐼
𝐷
,

Δ).

Algorithm 𝐼𝐻 𝐼𝐷 Δ

PEA without DAO 7.3890𝑒 + 6 3.4212𝑒 + 05 0.9395
PEA 1.3107e + 7 1.2861e + 05 0.7091

Tables 4 and 5 show the results obtained by PEA and
PEA without DAO in terms of the values of the metrics over
15 independent runs of the algorithms when the number of
flights is 996 and 1664, respectively. It is seen from the tables
that PEA always outperforms the other algorithm in terms of
𝐼𝐻, 𝐼𝐷, and Δ.

Furthermore, like the first experiment, the nondominated
solutions of the algorithms are shown in Figure 3. It shows
that PEAperformsmuch better than the othermethod and its
nondominated solutions can dominate the solutions obtained
by PEA without DAO. For the scenario of 1664 flights, PEA
has the most nondominated solutions and spreads nicely in
the objective space.

As the optimization generation increases, more solutions
will be congested in some local searching space which may
cause premature convergence.The dynamic adjustment oper-
ator based on the congestion degree can effectively improve
the distribution of solutions by inheriting the nondominated
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solutions with low congestion degree in a high probability.
Hence, it can avoid decreasing the diversity of all populations.

5. Conclusion and Future Work

With the aim of reducing the airspace congestion and the
flights delay simultaneously, this paper formulates the airway
network flow assignment (ANFA) problem into a multiob-
jective optimizationmodel and presents a newmultiobjective
optimization framework to solve it. Firstly, an effective multi-
island parallel evolution algorithm is employed to solve the
problem by multiple evolution populations. Besides, one-
way ring migration topology is applied to improve the
efficiency of the cooperation of populations by exchanging
individuals among populations. Secondly, the multiobjective
evolutionary algorithm NSGA2 is used to optimize each
population. In addition, a cooperative coevolution algorithm
is adapted to improve the optimization capability by dividing
the ANFA problem into several low-dimensional biobjective
optimization problems. Finally, in order to maintain the
diversity of solutions and avoid prematurity, a dynamic
adjustment operator based on solution congestion degree is
specifically designed. Simulation results using the real traffic
data from the China air route network and daily flight plans
demonstrate that the proposed approach can improve the
solution quality effectively, showing superiority to the exist-
ing approaches such as the multiobjective genetic algorithm,
the well-known multiobjective evolutionary algorithm based
on decomposition, and a CC-based multiobjective algorithm
as well as other parallel evolution algorithms with different
migration topology. For future research, the ANFA problem
with the influence of severe weather will be considered.
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