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Abstract. 	The aim of the present study was to determine if the estradiol-induced luteinizing hormone (LH) surge is influenced 
by the constant exposure to TAK-683, an investigational metastin/kisspeptin analog, that had been established to depress the 
pulsatile gonadotropin-releasing hormone (GnRH) and LH secretion in goats. Ovariectomized goats subcutaneously received 
TAK-683 (TAK-683 group, n=6) or vehicle (control group, n=6) constantly via subcutaneous implantation of an osmotic 
pump. Five days after the start of the treatment, estradiol was infused intravenously in both groups to evaluate the effects on 
the LH surge. Blood samples were collected at 6-min intervals for 4 h prior to the initiation of either the TAK-683 treatment 
or the estradiol infusion, to determine the profiles of pulsatile LH secretion. They were also collected at 2-h intervals from 
–4 h to 32 h after the start of estradiol infusion for analysis of LH surges. The frequency and mean concentrations of LH 
pulses in the TAK-683 group were remarkably suppressed 5 days after the start of TAK-683 treatment compared with those 
of the control group (P<0.05). On the other hand, a clear LH surge was observed in all animals of both groups. There were no 
significant differences in the LH concentrations for surge peak and the peak time of the LH surge between the TAK-683 and 
control groups. These findings suggest that the effects of continuous exposure to kisspeptin or its analog on the mechanism(s) 
that regulates the pulsatile and surge mode secretion of GnRH/LH are different in goats.
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Kisspeptin (also known as metastin) was first discovered as a 
ligand for G protein-coupled receptor 54 (GPR54) in 2001 [1]. 

The majority of research on kisspeptin to date has focused on its 
regulatory role in reproductive function. A number of studies have 
reported that exogenous administration of kisspeptin or kisspeptin-10 
(kp-10), the C-terminal amidated 10-amino-acid sequence necessary 
for GPR54 activation, induces a rise of peripheral luteinizing hormone 
(LH) concentration in many mammalian species [2–4]. Recent studies 
showed that kp-10 directly stimulated gonadotropin-releasing hormone 
(GnRH) neurosecretion into the hypophyseal portal circulation 
accompanied by increases in the peripheral concentrations of LH in 
sheep [5] and goats [6]. In rodents, kisspeptin-induced LH release 
is blocked by pretreatment with the GnRH antagonist [7, 8]. These 
lines of evidence suggest that kisspeptin influences LH secretion by 
regulating hypothalamic GnRH secretion, which gives rise to the 
modulation of reproductive function.

TAK-683 is an investigational metastin/kisspeptin analog evaluated 

by Takeda Pharmaceutical Company Limited, Osaka, Japan [9–11]. 
Our previous study demonstrated that a bolus injection of TAK-683 
stimulates GnRH secretion into the hypophyseal portal circulation 
and peripheral LH secretion in castrated goats [10]. Moreover, 
remarkable suppression of the testicular size and the peripheral LH 
secretion was observed in male rats when TAK-683 or TAK-448, 
another investigational metastin/kisspeptin analog, was chronically 
administered [9, 12]. Several studies have shown that chronic or 
repeated administration of human kisspeptin-54 or kp-10 results in 
a reduction of the pituitary and/or gonadal function together with 
inhibition of the peripheral LH levels in rats [13], monkeys [14, 
15] and women [16]. Our recent study demonstrated in castrated 
goats that the suppressive action of chronic TAK-683 treatment on 
LH was attributable to complete suppression of pulsatile GnRH 
secretion [10]. These studies indicate that chronic administration 
of kisspeptin or its analog suppresses pulsatile GnRH/LH secretion 
after an initial stimulatory action.

An important endocrine event of the estrous cycle is a large 
continuous increase in GnRH release, namely, the GnRH surge. The 
GnRH surge is induced by a high peripheral level of estradiol from 
the preovulatory follicle, and causes an LH surge for ovulation. The 
relationship of kisspeptin signaling with the GnRH/LH surge has 
been demonstrated. Similarly to the hypothalamic location of GnRH 
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neurons, kisspeptin neurons have been identified in the hypothalamic 
anteroventral periventricular area (AVPV) and preoptic area (POA) 
in mammals [17]. POA infusion of the anti-rat kisspeptin monoclonal 
antibody blocks the estrogen-induced [18] and the proestrous LH 
surges [19] in rats. Intracerebroventricular infusion of kisspeptin 
antagonist reduced the magnitude of the estradiol-stimulated LH surge 
in ewes during the anestrous season [5]. Increased cFos and Kiss-1 
mRNA expressions in the AVPV or POA at the time of the LH surge 
have been observed in ovariectomized rats [18, 20] and mice [21], 
and in sheep [22, 23] treated with exogenous estradiol. While the 
importance of hypothalamic kisspeptin on surge mode secretion of 
GnRH/LH has been shown in many species, the effect of long-term 
exposure to kisspeptin or its analog on an estradiol-induced GnRH/
LH surge is still unclear. The present study aimed to determine if 
the estradiol-induced LH surge is also influenced by the chronic 
administration of TAK-683, which has been established to suppress 
the pulsatile GnRH and LH secretion in goats [10].

Materials and Methods

Eight long-term (>10 months) ovariectomized Shiba goats were 
used, and 4 of these animals were assigned to both groups. There 
was at least 5 months between treatment of goats with TAK-683 
in the treatment group and reassignment of the goats to the control 
group. The goats were fed a standard pelleted diet and dry hay 
or hay cubes with ad libitum access to water and supplemental 
minerals. They were kept individually in cages temporarily when 
they were subjected to treatment and frequent blood sampling. All 
procedures were approved by the Committee for the Care and Use 
of Experimental Animals at the National Institute of Agrobiological 
Sciences (#22-67).

The chemical structure of TAK-683 was described previously 
[24], and chronic treatment with TAK-683 (50 nmol/kg BW/week) 
for 5 days was confirmed to cause severe suppression of pulsatile 
GnRH and LH secretion in our previous study [10]. In the present 
study, TAK-683 was subcutaneously administered at a concentration 
ten times higher than in the previous study to induce more profound 
suppression of pulsatile LH secretion. The animals were divided 
into two groups, and the TAK-683 group (n=6) constantly received 
TAK-683 at a rate of 500 nmol/kg BW/week via an osmotic pump 
(ALZET model 2ML1, DURECT, Cupertino, CA, USA) until the 
end of the experiment. The control group (n=6) received vehicle 
(50% DMSO). The osmotic pump was subcutaneously implanted 
under brief anesthesia using ketamine chloride, and the flow rate for 
the administration was 10 μl/h. Five days after the start of TAK-683 
or vehicle treatment, estradiol (Sigma Chemical, St. Louis, MO, 
USA) dissolved in 0.3% ethanol saline (0.6 μg/ml) was infused 
with a peristaltic mini pump into the jugular vein for 16 h at a rate 
of 6 μg/h through one of the catheters (18 gauge, Medicut; Nippon 
Sherwood Medical Industries, Tokyo, Japan) fitted bilaterally into 
the jugular vein in both groups, as described previously to evaluate 
the effects on the LH surge [25].
Blood samples (1 ml) were collected via a jugular catheter into 

heparinized tubes at 6-min intervals for 4 h prior to the initiation of 
either the TAK-683 (or vehicle) treatment (Day 0) or the estradiol 
infusion (Day 5), to determine the profiles of pulsatile LH secretion. 

They were also collected at 2-h (2 ml) and 6-h (4 ml) intervals from 
–4 h to 32 h after the onset of estradiol infusion for analyses of the 
LH surge and of the plasma estradiol concentration, respectively. 
Blood samples were immediately stored on ice and centrifuged at 
3,000 rpm for 20 min, and the plasma was kept at –30 C until assayed 
for plasma LH and estradiol concentrations.

Plasma LH concentrations were measured in duplicate by a 
specific radioimmunoassay (RIA) [26] using rabbit anti-ovine LH 
serum (YM #18) [27] and expressed in terms of ovine LH standard 
(NIDDK-oLH-I-4). The sensitivity of the assay was 9.5 pg/tube, 
and the intra- and inter-assay coefficients of variation were 5.1% 
and 6.5%, respectively. Plasma concentrations of estradiol were 
assayed by a previously described method [28]. The sensitivity of 
the assays was 0.1 pg/tube, and the intra- and inter-assay coefficients 
of variation were 5.7 and 12.0%, respectively.
Data are expressed as means ± SD and statistical differences were 

determined by Student’s t-test or ANOVA. A confidence level of P<0.05 
was considered to be statistically significant. For the identification 
of LH pulses, the cluster analysis program developed by Veldhuis 
and Johnson [29] was used. The nadir and peak clusters for LH 
pulse detection were 2/2 points, and the t statistics for significant 
increase and decrease were 2/2. The LH surge was defined as the 
point when a sustained rise (for at least two consecutive points of 
blood sampling) in the plasma LH concentration exceeded twice 
the average baseline level during the pretreatment period before the 
estradiol infusion, as described previously [25].

Results

Representative patterns of pulsatile LH secretion before (Day 0) 
and after (Day 5) TAK-683 treatment in the control and TAK-683 
groups are shown in Fig. 1. The effects of chronic treatment of 
TAK-683 on LH pulses are summarized in Table 1. There was no 
significant difference in the profiles of the pulsatile LH secretion on 
Day 0 between the TAK-683 and control groups, whereas continuous 
exposure to TAK-683 for 5 days remarkably suppressed both the pulse 
frequency and amplitude of LH secretion. The frequency and mean 
concentrations of LH pulses in the TAK-683 group were significantly 
decreased on Day 5 compared with those of the control group.

The mean plasma concentrations of estradiol during estradiol 
infusion ranged from 21.7 to 67.0 pg/ml; there was no significant 
difference between the two groups (data not shown). The changes 
in the LH concentration after estradiol infusion are shown in Fig. 
2 and Fig. 3. Clear sustained rises in LH concentrations detected 
as an LH surge were observed in all animals of both groups (Fig. 
2). LH concentrations in the TAK-683 group were significantly 
lower than those of the control group from –4 to 8 h after the start 
of estradiol infusion (Fig. 3). However, no significant difference 
in the LH concentration during the LH surge (the period from 12 
to 20 h after the start of estradiol infusion) was detected between 
the two groups. The profiles of the estradiol-induced LH surge in 
both groups are summarized in Table 1. There was no significant 
difference in the peak time and peak concentration of the LH surge 
between the two groups.
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Discussion

The present study reconfirmed in ovariectomized goats that 
pulsatile LH secretion was remarkably suppressed by continuous 
exposure to TAK-683. Under this condition, a large sustained rise 
in LH secretion was observed after the start of estradiol infusion. 
The timing of its peak and the peak level of LH concentrations were 
accordance with the previous findings reported in ovariectomized 
goats given estradiol [25, 30]. The present findings indicate that the 
LH surge was induced by estradiol treatment in all animals under 
the chronic administration of TAK-683 that remarkably suppressed 
the pulsatile LH secretion.
Several studies have clearly demonstrated that hypothalamic 

input of estradiol is necessary for induction of the LH surge [31, 32]. 
GnRH secretion is substantially increased during the LH surge in 
estradiol-treated ovariectomized goats [33] and ewes [34, 35]. Our 
previous study demonstrated in castrated goats that the suppressive 
effect of chronic treatment of TAK-683 on the pulsatile LH secretion 
was due to complete suppression of pulsatile GnRH secretion without 
an influence on the responsiveness of pituitary gonadotrophs to a 
GnRH analog [10]. Taken together, the present results suggest that 

the occurrence of an estradiol-induced GnRH surge is not interfered 
with by the continuous action of TAK-683 negatively influencing 
pulsatile GnRH secretion.

The pulsatile and surge mode secretion of GnRH is considered to 
be regulated by two independent hypothalamic neural generators in 
females [36]. The present results suggest that the effects of continuous 
exposure to TAK-683 on these mechanisms are different. A different 
reaction of the estradiol-induced LH surge compared with that of 
pulsatile LH secretion has been reported under several physiological 
conditions. In ovariectomized lactating rats, the suckling stimulus 
strongly suppressed pulsatile LH secretion, whereas it did not prevent 
the occurrence of the LH surge after estradiol treatment [37]. On 
the other hand, it has been clinically reported in female goat that a 
subnormal level of progesterone in the peripheral circulation blocks 
the estradiol-induced LH surge without a suppressive influence on 
pulsatile LH secretion [25]. The present results are similar to the 
former phenomenon; it is likely that the hypothalamic generator for 
the GnRH surge functions in the case of the continuous stimulation 
of kisspeptin or its analogs.
In this case, what role does kisspeptin have in the estradiol-

induced GnRH/LH surge? One possible interpretation is that kis-

Fig. 1.	 Representative profiles of pulsatile LH secretion on Day 0 and Day 5 in the control (left) and TAK-683 (right) groups. 
Arrowheads represent LH pulses identified by cluster analysis.

Table 1.	 The effects of chronic treatment with TAK-683 on LH pulses and the estradiol-induced 
LH surge

Control (n=6) TAK-683 (n=6)
LH Pulse Pulse frequency (pulses/4 h) Day 0 6.5 ± 1.0 6.2 ± 1.3

Day 5 5.8 ± 1.6 0.8 ± 1.3*
Mean concentration (ng/ml) Day 0 1.6 ± 0.7 1.5 ± 0.4

Day 5 1.7 ± 0.9 0.3 ± 0.2*
LH Surge Peak time of LH surge (h1)) 14.7 ± 1.0 15.3 ± 1.0

Peak concentration of LH surge (ng/ml) 34.2 ± 11.3 23.8 ± 18.4

Mean ± SD. * P<0.05 vs. control. 1) Time after the start of estradiol infusion.
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speptin action is not involved in the induction of the GnRH surge. 
However, a large number of studies do not support this hypothesis. 
Immunoneutralization of kisspeptin in the POA [18] and central 
infusion of kisspeptin antagonist [5] suppressed the estradiol-induced 
LH surge. Expression of kiss1 mRNA and cFos expression increased 

concomitantly with the preovulatory LH surge [18, 20], suggesting 
that the kisspeptin neurons participate in the induction of the GnRH 
surge. It seems to be plausible that a synergistic action of estradiol 
and endogenous kisspeptin (and/or TAK-683) can drive the GnRH 
surge-generating system to release a large amount of GnRH from 
GnRH-producing neurons that have lost the ability for pulsatile 
GnRH release in response to chronic administration of TAK-683.

Two hypotheses concerning the mechanism regulating the sup-
pressive effects of long-term treatment of kisspeptin or TAK-683 
on the pulsatile GnRH/LH secretion have been drawn from the 
several studies. Firstly, the involvement of the desensitization 
of GPR54 on the GnRH neurons after continuous or repeated 
kisspeptin treatment was proposed in previous studies on rats [12, 
13] and rhesus monkeys [14]. This is similar to the fact that chronic 
administration of GnRH agonists suppresses the LH secretion due 
to the desensitization to GnRH on gonadotrophs of the pituitary 
after initial agonistic stimulation [38]. If this is the case, a possible 
explanation for the present findings is that GPR54 and its intracellular 
signal transduction relating to the GnRH surge were selectively 
prevented from undergoing desensitization. A previous study showed 
that kisspeptin cells are located in the POA and arcuate nucleus 
(ARC) in sheep [39]. The POA kisspeptin cells provide substantial 
input to GnRH cells in the POA [39], whereas the site of action of 
ARC kisspeptin cells is suggested to be on the GnRH axon terminal 
located in the hypothalamic median eminence [40, 41], which is a 
circumventricular organ lacking a blood-brain barrier [42]. Recent 
studies have suggested that pulsatile GnRH secretion is generated 
by the pulsatile release of kisspeptin at the ARC adjacent to the 

Fig. 2.	 Effects of the continuous administration of TAK-683 for 5 days on the estradiol-induced LH surge in all goats of the 
control (left 6 panels) and TAK-683 (right 6 panels) groups. A clear LH surge was observed in all animals of both groups.

Fig. 3.	 Changes in the plasma concentrations of LH after the start of 
estradiol infusion in the TAK-683 (closed circles) and vehicle 
(open circles) groups. The horizontal black bar indicates the 
period of estradiol infusion. Mean ± SD. * P<0.05 vs. control.
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median eminence [3, 43, 44]. In contrast to the median eminence, 
the blood-brain barrier of the POA appears to restrict the entry of 
large molecules, for example, kp-10 or TAK-683, into the nervous 
system. The specific anatomical component such as the blood-brain 
barrier might play a role in prevention of the desensitization of 
GPR54 located in the POA resulting from continuous exposure 
to TAK-683 circulating in the bloodstream. Another possibility 
is that the estradiol-induced GnRH surge might be modulated by 
endogenous kisspeptin through a different pathway from GPR54. 
Although the presence of a kisspeptin receptor(s) besides GPR54 
in the regulation of GnRH secretion has not been clearly identified, 
in a recent study supporting this hypothesis, kp-10 exhibited potent 
binding and activation of GPR147 and GPR74 using a binding 
inhibition assay in vitro [45].
Secondly, Matsui et al. [9, 12] hypothesized that depression of LH 

pulses after the chronic treatment with kisspeptin analogs is associated 
with the severe attenuation of GnRH storage due to the continuous 
release of GnRH by receiving continuous stimulatory signals. In 
their study, a single injection of kisspeptin analogs after chronic 
administration of the analog clearly induced cFos expression in the 
majority of GnRH neurons without inducing LH release, and GPR54 
mRNA levels were not downregulated after chronic administration in 
male rats. In this case, the present results imply that estradiol under 
the continuous activation of GPR54 might induce the initiation of 
supplemental GnRH production to stock GnRH molecules for the 
surge on the GnRH neurons. Then, the hypothalamic GnRH content 
to be released for induction of the LH surge might be restored by 
their actions during the period between the start of estradiol infusion 
and the onset of the LH surge.
In conclusion, the present study revealed that, while continuous 

exposure to TAK-683 strongly suppresses pulsatile LH secretion, it 
does not suppress the occurrence of the LH surge in ovariectomized 
goats given estradiol in the current experimental settings. These 
findings suggest that the effects of continuous exposure to metastin/
kisspeptin or its analog on the reaction of the mechanism(s) that 
regulates the pulsatile and surge mode secretion of GnRH/LH are 
different. They also suggest that GnRH surge generator activity 
is not influenced by the chronic administration of TAK-683 that 
suppresses the pulsatile GnRH secretion in goats.
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