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ABSTRACT: Accurate predictions of hyperfine structure (HFS)
constants are important in many areas of chemistry and physics,
from the determination of nuclear electric and magnetic moments
to benchmarking of new theoretical methods. We present a
detailed investigation of the performance of the relativistic coupled
cluster method for calculating HFS constants within the finite-field
scheme. The two selected test systems are 133Cs and 137BaF.
Special attention has been paid to construct a theoretical
uncertainty estimate based on investigations on basis set, electron
correlation and relativistic effects. The largest contribution to the
uncertainty estimate comes from higher order correlation
contributions. Our conservative uncertainty estimate for the
calculated HFS constants is ∼5.5%, while the actual deviation of
our results from experimental values is <1% in all cases.

■ INTRODUCTION
The hyperfine structure (HFS) constants parametrize the
interaction between the electronic and the nuclear electro-
magnetic moments. The HFS consequently provides important
information about the nuclear as well as the electronic
structure of atoms and molecules and can serve as a fingerprint
of, for example, transition metal complexes, probed by electron
paramagnetic resonance (EPR) spectroscopy,1 or of atoms,
ions, and small molecules in the field of atomic and molecular
physics, investigated by optical or microwave spectroscopy.
With the ever relentless progress in the field of atomic and
molecular precision experiments, there is a growing need for
both experimental and theoretical determination of the HFS.
Accurate calculations of the HFS parameters can serve a direct
as well as an indirect purpose, as will be elaborated in the
following.
One example of a direct application of accurate theoretical

HFS parameters is nuclear studies, where the calculated
electronic properties (magnetic induction and electric field
gradient) are used to extract the nuclear magnetic dipole and
electric quadrupole moments of the heaviest or unstable
atomic nuclei from the measured magnetic-dipole, A, and
electric-quadrupole, B, HFS constants, respectively.2,3 Another
example is in the search for even better atomic clocks where
the structure of the hyperfine levels must be known to great
accuracy in order to make reliable predictions to guide new
experiments.4

The calculated values of the HFS constants can be also used
as a means to benchmark the employed theoretical method
against existing experimental or higher level theoretical data. In

order for a theoretical method to yield accurate predictions of
the HFS constants, the electron distribution in the vicinity of
the atomic nucleus in question must be properly described;
comparison to experiment can thus give an indication of the
quality of the employed wave function. Such applications can
be considered to serve an indirect purpose.
Using HFS constants as benchmarks is particularly valuable

when one is interested in a property that is sensitive to the
interaction between electrons and nuclei and that cannot be
obtained experimentally. One such example is the interpreta-
tion of the atomic parity nonconserving (PNC) measurements
in Cs atoms, where theoretically determined PNC matrix
elements are needed in order to extract the weak charge, i.e.,
the strength of the neutral weak interaction, from the measured
transition amplitudes.5,6 These matrix elements are sensitive to
relativistic effects, which become important when the electrons
are close to the atomic nucleus. Therefore, the accuracy of the
calculated HFS constants (compared to experiment) serves as
a good indication of the reliability of the predictions for the
PNC matrix elements. In order to unambiguously test
agreement with the Standard Model prediction of the weak
charge, the uncertainty of the theoretical predictions needed to
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be smaller than 1%; such accuracy eventually was reached by
several groups using calculated HFS constants as benchmark
values.7−12 Such system-specific sensitivity or enhancement
factors are generally needed in the search for physics beyond
the Standard Model with atoms and molecules.13−15

When accurate predictions of the HFS constants for heavy
atoms or for molecules containing heavy elements are needed,
special attention must be paid to two aspects: relativistic effects
and electron correlation. In addition, it is desirable to use a
method that allows reliable uncertainty estimates. In this study
we investigate a scheme that meets these three requirements.
In the rest of this paper we will consider the magnetic-dipole

HFS constant, which we will refer to as simply the HFS
constant. We begin with an overview of the currently popular
methods used in the calculations of this property.
As we are interested in high accuracy treatment of

correlation and relativistic effects, we will limit this overview
to methods that treat relativity beyond scalar relativistic effects
and correlation beyond density functional theory (DFT). For
an overview of nonrelativistic as well as DFT based methods
we refer to the chapter by H. Bolvin and J. Autschbach.16 For
atoms, methods such as the multiconfigurational Dirac−Fock
(MCDF),17 Dirac-Hartree−Fock augmented by the many
body perturbation theory (DHF + MBPT),18,19 configuration
interaction with MBPT (CI + MBPT),20,21 all order
correlation potential,22 coupled cluster singles doubles with
partial triples (SDpT)8,23 and Fock-space coupled cluster
(FSCC)24 were shown to provide reliable results. For
molecules, the situation becomes more complicated due to
the lack of spherical symmetry and a limited number of
implementations exist. These include the multireference
configuration interaction (MR-CISD) method,25 the restricted
active space CI (RAS-CI) approach,26 and the coupled cluster
singles and doubles (CCSD) method.26,27

In this work we investigate the performance of the relativistic
coupled cluster (CC) method for calculating the HFS
constants of atoms and molecules. Where applicable, this
approach provides the highest level of theory, while still being
feasible for computations on the heaviest elements. In addition,
the systematic construction of the CC method allows for a
reliable uncertainty estimation. In this work we combine the
CC approach with the well-known finite field scheme (also
known as the finite difference method) to extract the HFS
constants. This provides us with a straightforward way to
calculate molecular properties as numerical derivatives.28 The
finite field approach is particularly useful in the framework of
CC theory, since the formulation of expectation values is
cumbersome due to the complicated form of the wave
function. That said, several implementations exist for
calculation of CC expectation values; the recent relativistic
examples are the extended CC method (ECC),26 the Z-vector
CC method,29 and analytic gradients approach.30 An advantage
of using the finite field method is that no truncation of the CC
expansion is necessary (which is the case for the ECC method
for example) and that it allows inclusion of the perturbative
triple excitations without additional complications. A drawback
of the finite field method is the increased computational cost.
Furthermore, one has to pay special attention to the numerical
stability.
The combination of the relativistic CC method and the

finite field approach has previously been applied to various
properties, such as dipole polarizabilities,31 electric field
gradients,32−34 contact densities for calculating Mössbauer

isomer shifts35 and P- and P,T-odd relativistic enhancement
factors.36−38 The combination of the CC method and the finite
field approach for calculating HFS constants has previously
been used in a nonrelativistic framework,39−41 but, to the best
of our knowledge, the extension to a relativistic framework and
application to systems with heavy atoms has not been
demonstrated before. Here, we investigate the performance
of this method and the effect of various computational
parameters (e.g., basis set quality, active space size, treatment
of higher order relativistic effects, and others) on the obtained
results. Furthermore, we employ a straightforward and reliable
scheme for assigning uncertainties of the calculated HFS
constants.
Inspired by the examples mentioned above, we have chosen

to apply our investigations to the HFS constants of the Cs
atom and the BaF molecule. Due to the atomic PNC
experiments, the HFS constant of Cs has been studied
extensively and on high levels of theory, which makes it an
ideal system for benchmark calculations. The BaF molecule is
currently used in various experiments searching for physics
beyond the Standard Model,42−44 where theoretically
determined enhancement factors are crucial for the inter-
pretation of the measurements and the calculated HFS
constants can provide an important indication of the
theoretical uncertainty.

■ THEORY
The magnetic hyperfine interaction between the electronic
spin and the nuclear spin of theMth nucleus is parametrized by
the 3 × 3 hyperfine coupling tensor, AM. It is usually defined
through the effective spin Hamiltonian:45
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where
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S ̃ is the effective electronic spin operator and IM⃗ is the

spin of nucleus M. The expectation value of this operator over
pure spin functions, with spin quantization along the v-axis,
gives the energy due the hyperfine interaction:
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This energy will be equal to the true hyperfine interaction
energy,46−48 obtained via a quantum mechanical description,
EQM
(v) (IM⃗). In other words, the result for the effective spin

Hamiltonian can be mapped onto the results of the quantum
mechanical Hamiltonian.16 In order to determine an element
of the hyperfine coupling tensor, the derivative with respect to
the uth component of the nuclear spin is taken:
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In the following, an appropriate quantum mechanical
operator describing the hyperfine interaction will be derived
starting from the relativistic Dirac Hamiltonian, with the
electron−electron interaction given by the Coulomb oper-
ator:49
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where α⃗ and β are the Dirac matrices
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and σ⃗ is the vector consisting of the Pauli spin matrices:
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The nuclear potential in eq 4, Vnuc(i), is approximated by a
finite nuclear charge distribution in the shape of a Gaussian
function.50

To derive the operator for the hyperfine interaction, the
magnetic field from the Mth nucleus is introduced in the Dirac
Hamiltonian via the minimal coupling (using the cgs system of
atomic units):51

p p
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where A⃗M is the vector potential; within a point-like
description of the magnetization distribution it is given by
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where μ⃗M is the magnetic moment of nucleus M given by μ⃗M =
gMμNI

M⃗, with gM the nuclear g-factor and μN the nuclear
magneton (μN = (2mpc)

−1).
Keeping only the term including A⃗M gives the 1-electron

hyperfine interaction operator:
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In the case of variational wave functions (such as Hartree−
Fock, DFT, CI, etc.) the derivative in eq 3 can be translated
into an expectation value using the Hellmann−Feynman
theorem. In this work we employ the finite field method,28

where the derivative is evaluated numerically. In the finite field
method the perturbation operator is added to the zeroth-order
Hamiltonian, eq 4, with a prefactor, λ, referred to as the field
strength and proportional to Iu

M:

H H Hu u
M

0
,HFSλ̂ = ̂ + ̂ (13)

An element of the hyperfine coupling matrix can now be
calculated as
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The superscript (v) on the CC energy indicates the
quantization axis of the total electronic angular momentum.
This axis is in the present work controlled by taking advantage
of the symmetry scheme employed by the Dirac program in
which (for the symmetries considered here) the quantization

axis is fixed along the z-axis.52,53 ⟨S̃v⟩ is simply the effective
electronic spin and we will denote it S̃.
Due to the axial symmetry in diatomic molecules, the

hyperfine interaction tensor can be described in terms of the
parallel and the perpendicular components, denoted A∥ and
A⊥. If the diatomic molecule is placed along the z-axis, A∥ and
A⊥ can be calculated as
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Consequently, two separate coupled cluster calculations
should be performed, the difference between them being the
quantization axis of total electronic angular momentum. This
scheme has been adopted from the approach presented in ref
54. In practice, the perpendicular component is obtained by
placing the internuclear axis on either the x- or y-axis while the
quantization axis of total electronic angular momentum is kept
along the z-axis, effectively using the expression in eq 15. A
similar scheme was recently presented in the framework of the
complex generalized Hartree−Fock and Kohn−Sham meth-
ods.55

■ COMPUTATIONAL DETAILS
All the calculations were carried out with the DIRAC17
program package.53 In addition to the relativistic four-
component (4C) calculations also the exact two-component
(X2C) method was employed.56 The bond length of the BaF
radical was taken from the NIST Chemistry WebBook and has
the value of 2.162 Å.57,58 For the two isotopes considered in
this work, 133Cs and 137Ba, nuclear spins of 7/2 and 3/2 and
magnetic moments of 2.582 μB and 0.937 μB, respectively, were
taken from ref 59.

Basis Sets. We employ Dyall’s relativistic basis sets from
the valence, vXz, and core−valence, cvXz, series, where X
denotes the cardinal numbers double-, triple-, and quadruple-
ζ.60−62 The vXz basis sets include correlation functions (of up
to d-, f-, and g-type for Cs and Ba) for the valence region which
is defined as 5s5p6s6p. The cvXz basis sets include additional
correlation functions (of up to f-, g- and h-type for Cs and Ba)
for the core−valence region, which includes the 4d shell in
addition to the 5s5p6s6p shells. The effect of adding particular
types of tight functions, i.e., basis functions with large
exponents, was investigated by adding functions in an even-
tempered fashion.

Correlation Treatment. The unrestricted CC module
(RELCC) of DIRAC was employed with different types of
perturbative triples:63 the widely used CCSD(T) method,64

which includes some fifth-order triples contributions, the
CCSD+T (also called CCSD[T]) method,65 in which triples
contributions only up to the fourth order are included, and the
CCSD-T method,66 where one further fifth-order triples
diagram is added to the ones included in the CCSD(T)
method.63 The CCSD-T method is therefore formally the most
complete method of the three, but its performance was shown
to be very similar to CCSD(T).32,66 In addition, we have
employed the multireference Fock-space CC method
(FSCC).67,68 We have tested the (0,1) sector with varying
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size of the model space. In sector (0,1) a manifold of singly
excited states are obtained by adding an electron to a closed
shell singly ionized reference state. The additional electron can
occupy those orbitals contained in the so-called model space.
We will distinguish between two model spaces: A minimum
model space (min) only including the valence orbital and an
extended model space (ext) that includes the valence orbital as
well as the five lowest virtual orbitals.
In both the single-reference CC and the FSCC calculations

all electrons were included in the correlation calculation and
consequently a high virtual space cutoff of 2000 au was used if
not stated otherwise.
Finite Field Method. As a consequence of the

introduction of the perturbation in eq 13, the total energy
can be written as a Taylor series in λ:

E E
E E

( )
( ) 1

2
( )

...(0)

0

2

2
0

2λ λ
λ

λ λ
λ

λ= + ∂
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The magnitude of λ should be chosen such that higher order
terms will be negligible, i.e., E(λ) behaves linearly with small
variations in λ. If indeed E(λ) is linear with respect to the
variations in λ the two-point formula can be used to obtain the
derivative:

E E E( ) ( ) ( )
20

λ
λ

λ λ
λ

∂
∂

≈ − −

λ= (18)

With this two-point formula, any quadratic terms cancel out,
resulting in an error proportional to λ2, as shown in ref 69 and
the Supporting Information. Field strengths should be chosen
large enough so that numerical instabilities are avoided and
small enough so that higher order terms can safely be
neglected. Therefore, a strict convergence criterion of 10−12 au
for the CC amplitudes was used in the calculations.
Procedure. Since the HFS operator introduced above (eq

12) is odd with respect to the time-reversal symmetry, it
cannot be added directly on the DHF level, which in the
DIRAC program is based on the Kramers-restricted formalism
(krDHF). Instead, we add the operator on the CC level, which
uses the unrestricted formalism. Consequently, both spin-
polarization as well as correlation effects are accounted for by
the CC iterations. In order to disentangle spin polarization and
correlation effects, we also performed calculations on the
Kramers-unrestricted DHF level (kuDHF) using the ReSpect
program.70 For a description of the kuDHF method, we refer
to refs 71−73.
For clarity we outline the procedure of the calculation below.

We note that the finite field scheme has long been available in
the DIRAC program but has not, to our knowledge, been
applied to HFS constants. In order to construct the HFS
operator we simply employ operators from the catalogue of 1-
electron operators included in the DIRAC program. The
scheme is as follows:

1. Perform an unperturbed Kramers-restricted DHF
calculation.

2. Carry out the integral transformation including integrals
over the HFS operator, eq 12.

3. Determine the DHF energy in the presence of the field
from the recomputed Fock-matrix. This will correspond
to the Kramers-restricted DHF energy.

4. Perform two Kramers-unrestricted CC calculations in
the presence of the positive and negative field to get the
field dependent CC energies.

5. Calculate the numerical derivative of the CC energy
using the two-point formula, eq 18.

■ RESULTS AND DISCUSSION
Numerical Accuracy. Before turning to the effects of basis

set, electron correlation, and relativity, we devote a section to
the investigation of the numerical stability of the scheme
presented above. In the case of the finite field method, special
care must be taken to avoid numerical instabilities. For this
purpose the X2C method and the vdz basis set have been used
and only the parallel component, A∥, of the

137BaF HFS tensor
has been considered, as the behavior is expected to be the same
for the perpendicular component, A⊥.
In order to determine the appropriate field strengths to use

with the finite field method, we investigated the dependence of
the calculated HFS constants on the field strength. The HFS
constants of 137BaF and 133Cs on the DHF, CCSD, and
CCSD(T) level are shown in Table 1 for the field strengths

10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, and 10−1 au. In
all cases, the results for the lower field strengths of 10−9, 10−8,
and 10−7 differ slightly from those obtained with the larger
field strengths, indicating numerical instability. Whereas
calculations with larger fields all yield the same values of the
HFS constant (to the digits shown in the table) at the DHF
level, the results on the CC level begin to deviate again at field
strengths of ≥10−2. Note that the different dependence of the
Hartree−Fock and CC results on the field strengths was also
observed and discussed in detail in ref 74. The results for field
strengths between 10−6 and 10−3 are stable for all methods,
which indicates that the terms in the Taylor expansion (eq 17)
higher than quadratic are negligible (recalling the cancellation
of quadratic terms by the 2-point formula). We have checked
this by fitting the total energy as a function of λ to a third-order
polynomial and found that the third order terms only become
significant for field strengths above 10−3 au (see Supporting
Information for further details). From the same fit the error
due to neglecting the third order terms (by using the 2-point
formula) at field strengths of 10−6 au can be estimated to be on
the order of 10−10 au. We have thus chosen to use the two-
point formula with a field strength of 10−6 au for all further
calculations.

Table 1. Calculated A∥ and A Constants (MHz) of 137Ba in
BaF and 133Cs for Different Field Strengthsa

137BaF 133Cs

field DHF CCSD CCSD(T) DHF CCSD CCSD(T)

10−9 1650.2 2244.9 2244.9 1500.6 2114.8 2097.3
10−8 1644.3 2244.9 2230.0 1493.6 2110.4 2099.0
10−7 1645.3 2247.0 2233.3 1493.0 2109.6 2097.8
10−6 1645.2 2246.7 2233.2 1493.0 2109.5 2097.6
10−5 1645.2 2246.7 2233.2 1493.0 2109.5 2097.7
10−4 1645.2 2246.7 2233.2 1493.0 2109.5 2097.7
10−3 1645.2 2246.7 2233.2 1493.0 2109.5 2097.7
10−2 1645.2 2246.4 2232.9 1493.0 2109.2 2097.4
10−1 1645.2 2216.8 2203.1 1493.0 2087.3 2075.1

aThe calculations were performed using the X2C method and the vdz
basis set.
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It should be emphasized that the analysis described above
should be performed for any new system in consideration. As
an example take instead the 19F HFS constant in BaF, which is
around 30 times smaller than the 137Ba and 133Cs HFS
constants. The range of numerical instability is consequently
larger (up to 10−6 au) for the Ba19F results and one would
need to use larger field strengths (see Supporting Information).
To test the numerical accuracy further, we have performed a

series of tests with the results listed in Table 2. The first test is

related to the dependence of the CC HFS constants on the
Hartree−Fock orbitals. We tested two different SCF
convergence criteria of 5 × 10−9 and 1 × 10−8, resulting in a
minor change of 0.05 and <0.01 MHz for BaF and Cs,
respectively.
Next we tested the effect of two computational approx-

imations that are commonly employed to speed up the SCF
calculations. The first is related to the inclusion of Coulomb
integrals. The integrals involving only small-component wave
functions, (SS|SS), have in all calculations been replaced by a
simple Coulombic correction75 and the effect of including
them is here seen to be −0.24 MHz for both systems. This
corresponds to less than 0.02% of the total values and is similar
to that observed in previous studies of contact densities.35

Second, we tested the effect of screening the 2-electron
integrals used in the Fock matrix, that is, neglecting those
estimated to be below a given threshold.49 A threshold of 10−12

au is used as default in the DIRAC program and we find that
turning the screening off (and thus including all 2-electron
integrals) has a negligible effect of 0.02 MHz for both systems.

Using field strengths of 10−6 au and employing the
approximations described above, we conclude that we can
safely include four digits in the following discussions.

Basis Set Effects. Here we investigate the effect of the
basis set on the calculated HFS constants. In order to reach the
highest possible accuracy, we need to choose a basis set that is
sufficiently converged with respect to additional functions. We
consider the convergence sufficient when additional basis
functions do not change the HFS constants by more than
∼0.5%, since we expect the total uncertainty of a few percent.
At the same time the basis set should be small enough to allow
for realistic CC calculations with large active spaces. The
following basis set studies were carried out at the four-
component CCSD level correlating all electrons and using a
virtual cutoff of 2000 au, which will be justified in the section
Correlation Effects.
In Table 3 the HFS constants of 137Ba in BaF and 133Cs are

shown with increasing quality of the valence and core−valence
basis set series, vXz and cvXz (X = d (double), t (triple), q
(quadruple)). For both series and both systems a converging
behavior is observed upon increasing basis set quality, with the
Cs results converging notably faster than the BaF results.
The addition of one diffuse function for each angular

momentum to the vqz basis set, denoted s-aug-vqz, has
negligible effect on the calculated HFS constants. This is as
expected since the HFS constants describe the interaction of
the unpaired electron with the Ba or the Cs nuclei and thus
should not be strongly affected by the quality of the description
of the region far away from the nuclei. Note that this is not the
case for the HFS constants of excited states, where diffuse
functions are of great importance.
The difference between the (c)vtz and (c)vqz results (of

approximately 1%) indicates, however, that the basis set is not
yet saturated with respect to this property. This can be
attributed to the slow basis set convergence of the CC
methods.76 In contrast, previous studies using four-component
DFT methods and the same basis sets showed convergence
already at triple-ζ level for the HFS constants.71,73

In Table 3 we also show the deviation of the calculated HFS
constants from the experimental results.77,78 For both systems
the cvXz HFS constants are higher than the vXz ones,
corresponding to a smaller deviation from experiment. On the
quadruple-ζ level the difference between the vqz and the cvqz
values is ∼2%. The cvXz basis sets include large exponent
(tight) functions with high angular momenta, which are
needed to correlate the 4d shell (in the case of Ba and Cs)

Table 2. Calculated A∥ and A Constants (MHz) of 137Ba in
BaF and 133Cs for Various Computational Tests (Further
Details in the Text)a

test 137BaF 133Cs

SCF convergence 1 × 10−8 2233.59 2098.10
5 × 10−9 2233.54 2098.10

(SS|SS) exclude 2233.54 2098.10
include 2233.30 2097.86

screening 1 × 10−12 2233.54 2098.10
1 × 10−15 2233.56 2098.10
off 2233.56 2098.12

aThe calculations were performed using the X2C method and the vdz
basis set.

Table 3. Calculated A∥, A⊥, and A Constants (MHz) of 137Ba in BaF and 133Cs for Increasing Basis Set Qualitya

137BaF 133Cs

A∥ %(expb) A⊥ %(expb) A %(expc)

vdz 2247 −5.4 2168 −5.8 2110 −8.2
vtz 2316 −2.5 2238 −2.7 2206 −4.0
vqz 2342 −1.4 2264 −1.6 2232 −2.9
s-aug-vqz 2342 −1.4 2265 −1.6 2232 −2.9
cvdz 2292 −3.5 2214 −3.8 2161 −6.0
cvtz 2363 −0.5 2285 −0.7 2264 −1.5
cvqz 2383 0.3 2305 0.2 2283 −0.7
aeqz 2386 0.4 2308 0.3 2287 −0.5
exp 2376(12) 2301(9) 2298.16

aThe calculations were performed using the 4C CCSD method. Deviation from the experimental values is also shown. bReference 77. cReference
78.
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which can be considered as the core−valence region. Since we
are correlating all the electrons and considering a property that
involves interaction between the valence electrons and the
nucleus it is to be expected that core−valence correlation
functions are needed for obtaining high accuracy results.
In Table 4 we show the effect of adding tight functions of

different symmetries individually to the vqz basis set (the

corresponding exponents are listed in Table S4 in Supporting
Information). Since the behavior of the parallel and
perpendicular component of the 137BaF HFS tensor with
respect to basis set is very similar we only considered A∥ in this
case. The conclusion is that only the addition of tight f-
functions has an influence on the calculated values. The
addition of one tight f-function has the largest effect of 1.0%
and 1.4% for 137BaF and 133Cs, respectively. The addition of
another three tight f-functions has a smaller additional effect of
0.8% and 1.0% and further tight f-functions are not expected to
change the results by more than 0.2%.
As the cvqz basis set differs from the vqz basis set by three

tight f-, two tight g-, and one tight h-functions, we can
conclude that the differences between the vqz and cvqz results
are governed by the addition of the tight f-functions. To test
that the cvqz is indeed converged with respect to the addition
of tight functions, we used the all-electron quadruple-ζ basis
(aeqz) set which includes correlation functions for all shells,
resulting in a minor increase in the HFS constant of ∼0.2%. If
not stated otherwise, we have thus chosen to use the cvqz basis
sets in our further investigations of other computational
parameters.
It has been shown previously that the addition of tight s-

functions to standard correlation consistent basis sets is
necessary to accurately calculate the HFS constants.79,80 This is
not the case here as seen in Table 4, indicating that the size of
the Dyall vqz basis set in the vicinity of the nucleus is already
sufficient.
Correlation Effects. Table 5 and Figure 1 contain the HFS

constants of 137BaF and 133Cs, obtained at different levels of
theory. In addition to the total HFS constants, the correlation
contribution compared to the krDHF result is shown explicitly
along with the deviation from experiment.

As expected, the lack of correlation treatment as well as of
spin polarization in the krDHF method results in a significant
underestimation of more than 30% compared to the
experimental results. The inclusion of spin polarization in the
kuDHF method leads to a significant increase in the HFS
constants resulting in a deviation around 20%. However, one
certainly needs to go to the CC methods for high accuracy.

Table 4. Calculated A∥ and A Constants [MHz] of 137Ba in
BaF and 133Cs with Different Tight Functions Added to the
vqz Basis (Corresponding Exponents in Table S4)a

137BaF 133Cs

X A∥

i
k
jjjjj

y
{
zzzzz%

X vqz
vqz

100
−

·
A

i
k
jjjjj

y
{
zzzzz%

X vqz
vqz

100
−

·

vqz 2342 0.0 2232 0.0
+s 2342 0.0 2231 0.0
+p 2342 0.0 2232 0.0
+d 2342 0.0 2232 0.0
+f 2366 1.0 2262 1.4
+2f 2376 1.4 2274 1.9
+3f 2380 1.6 2281 2.2
+4f 2383 1.8 2285 2.4
+g 2343 0.0 2232 0.0
+h 2343 0.0 2232 0.0

aThe calculations were performed using the 4C CCSD method. The
effect (in %) with respect to the vqz basis is also shown.

Table 5. Calculated A∥, A⊥, and A Constants (MHz) of 137Ba
in BaF and 133Cs at Different Levels of Correlationa

137BaF

A∥ Δ %(expb) A⊥ Δ %(expb)

krDHF 1598 0 −32.8 1553 0 −32.5
kuDHFd 1905 307 −19.8 1817 260 −21.0
CCSD 2383 785 0.28 2305 752 0.19
FSCCSD min 2399 801 0.96 2323 770 0.94
FSCCSD ext 2403 806 1.16 2328 775 1.16
CCSD+T 2425 827 2.06 2350 797 2.14
CCSD(T) 2358 760 −0.77 2282 729 −0.85
CCSD-T 2365 767 −0.45 2288 735 −0.56

133Cs

A Δ %(expc)

krDHF 1496 0 −34.9
kuDHFd 1798 302 −21.8
CCSD 2283 787 −0.65
FSCCSD min 2302 806 0.18
FSCCSD ext 2302 806 0.18
CCSD+T 2330 834 1.39
CCSD(T) 2262 766 −1.58
CCSD-T 2270 773 −1.24

aThe cvqz basis sets were used in the calculations. bReference 77.
cReference 78. dResults obtained with the ReSpect program.70,71

Figure 1. Calculated A∥, A⊥, and A constants (MHz) of 137Ba in BaF
and 133Cs at different correlation levels, compared to experiment. The
shaded areas indicate experimental uncertainties.
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With the CCSD method the HFS constants are thus
significantly higher, resulting in a deviation from experiment of
less than 1%. The multireference Fock-space CC method
(FSCCSD) produces results between the CCSD and CCSD+T
values, which is due to the fact that the FSCCSD method takes
part of higher order contributions (beyond the double
excitations of CCSD) into account due to its multireference
formalism. Extending the model space used with FSCCSD
(FSCCSD ext, see the section Correlation Treatment for a
description of the employed model spaces) has a negligible
effect, indicating good description of the two systems by a
single reference determinant, 2Σ1/2 in the case of BaF and 2S1/2
in the case of Cs.
The inclusion of perturbative triples has a small effect, with

the CCSD+T results slightly overestimating and the CCSD(T)
and CCSD-T slightly underestimating the experimental values
(see inset of Figure 1). A similar nonsystematic behavior was
observed in ref 32 for electric field gradients. However, the
present findings are unusual in that the fluctuations in the size
of the perturbative triples contributions obtained with the
different approximations are comparable with their total values
(that is, the difference between the CCSD and CCSD+T/
(T)/-T results). For the effective field gradients32 and in the
recent studies of various P- and P,T-odd interaction
constants,37,38 these fluctuations were significantly smaller
than the total contribution of the perturbative triple
excitations.
Our results indicate that the triple excitations are more

important for the HFS constants than for the other properties
mentioned above. This has been recognized in the past, by, for
example, Safronova et al.,8 or more recently by Tang et al.,81

who identified this issue from the relatively large difference
between the linearized and the full CCSD method.
Consequently, we choose to continue our analysis with
CCSD and to base our recommended values and uncertainty
estimates on this method.
The correlation contributions to the HFS constants are

almost identical for A∥ in BaF and A in Cs whereas the
correlation contribution to A⊥ in BaF is slightly lower. It is
interesting to note that the trends and differences between the
different methods are very similar in BaF and Cs, Figure 1.
This indicates that the two system have a similar electronic
structure. In BaF one of the two valence electrons of Ba is
participating in the bonding to F leaving a Ba + like system,
which is iso-electronic to the Cs atom.
The results presented until now have included correlation of

all the electrons and a cutoff of 2000 au of the virtual
correlation orbitals. As shown for example in ref 82, a high
virtual cutoff is needed in order to capture the correlation
contributions to HFS constants associated with the core
electrons. In Figure 2 we present in detail the dependence of
the HFS constants on the virtual space cutoff when correlating
all electrons in BaF and Cs. In both cases only specific virtual
orbitals have a significant influence on the correlation
contribution to the HFS constants. Inspection of the orbitals
in question (see Supporting Information) reveals that the
contributing orbitals are all of s-function character (s-functions
of Ba in the case of BaF). From the deviation with respect to
results obtained when all the virtual orbitals were included in
the correlation space (designated “no cutoff” on the Figure 2 y-
axis) it can be seen that choosing a cutoff of 2000 au will result
in an underestimation of the HFS constants of approximately
0.5%. Since this uncertainty is smaller than the expected

uncertainty of the method we choose to proceed with a cutoff
of 2000 au

Relativistic Effects. So far we have presented results on
the four-component Dirac−Coulomb (DC) level of theory.
The last part of this analysis is dedicated to the investigation of
the dependence of the calculated HFS constants on the
treatment of relativistic (and related) effects. The results
obtained using different models are shown in Table 6.

As expected, the X2C and DC Hamiltonians give practically
identical results, confirming the excellent performance of the
former.
In the DC Hamiltonian the 2-electron interaction is

approximated by the Coulomb potential, which can be
considered as a nonrelativistic description (it is instantaneous
and not Lorentz invariant). For a proper relativistic description
of this interaction one needs to turn to the theory of quantum
electrodynamics (QED), where one takes into account the
finite speed of light resulting in a noninstantaneous interaction.
The lowest order one-photon exchange interaction in the static
approximation can be derived in the Feynman gauge or the
Coulomb gauge, referred to as the Gaunt and Breit
interactions, respectively.83 Whereas the Breit interaction is
correct to ( )2α , the Gaunt interaction is correct to ( )α and
simpler to implement and calculate. The current implementa-
tion allows us to include the Gaunt interaction on the DHF
level (DCG); these results are shown in Table 6. We observe a
negligible effect of the Gaunt contribution of ∼−1 MHz on the
HFS constants. Previous studies on 133Cs have considered the
Gaunt9 or the full Breit interaction8,10,84,85 at different stages of
the calculations. For a thorough comparison and discussion of
some of these efforts we refer to ref 10. In comparison to the
majority of the results (4.87 MHz,10 5.0 MHz,9 and 6.00
MHz85), we, however, predict the wrong sign as well as too
small an effect for the Gaunt interaction contribution, which
might be due to several factors: first of all, we calculate the

Figure 2. Calculated A∥ and A constants (MHz) of 137Ba in BaF and
133Cs at the CCSD/vtz level for different virtual space cutoffs. See text
for further details.

Table 6. Calculated A∥, A⊥, and A Constants (MHz) of 137Ba
in BaF and 133Cs at Different Levels of Treatment of
Relativistic Effectsa

137BaF 133Cs

A∥ A⊥ A

CCSD DC 2383 2305 2283
CCSD X2C 2382 2305 2283
CCSD DCG 2382 2305 2282
CCSD PN 2414 2337 2312

aThe cvqz basis sets were used in the calculations.
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Gaunt contribution on the DHF level only, lacking any Gaunt
contribution on the correlated level. Second, we employ the
restricted DHF formalism, which might lack relaxation effects.
Indeed, the negative Breit contribution obtained in ref 8 was
attributed to the neglect of relaxation effects due to the
perturbative approach.
Finally, we test the dependence of the HFS constants on the

employed nuclear model. In Table 6 we present results
obtained using a point-like description of the nuclear charge
(PN). Despite the seemingly big physical difference between
the point-like and Gaussian description of the nuclear charge,
the effect on the calculated HFS constants is relatively small
(1.3% for A∥ in BaF and A in Cs and 1.4% for A⊥ in BaF).
Nonetheless, the Gaussian model should be employed if high
accuracy is desired. In previous studies on the DFT level,71,86

the effect of the finite size of the nuclear charge distribution
was found to be ∼1% for Zn HFS constants, ∼1.5% for Cd
HFS constants and as large as ∼10−15% for Hg HFS
constants.
The authors of ref 71 also investigated the effect of a

Gaussian description of the nuclear magnetic moment
distribution, which turned out to be negligible for lighter
elements and as large as ∼2% for Hg. This effect was also
studied by Ginges et al.85 who found contributions ranging
from 0.18(15)% for 133Cs to 4.35(131)% for 225Ra, which
shows that a finite distribution of the magnetic moment should
be included if a small uncertainty is desired for the HFS
constants of the sixth row elements. The fact that we neglect
this effect in the present calculations is one of the main sources
of uncertainty, especially for 137BaF (see the section
Uncertainty Estimation).
Uncertainty Estimation. On the basis of the inves-

tigations presented in the previous sections, we consider the
results on the CCSD DC/cvqz level to be our recommended
values. On this level of theory the convergence with respect to
basis set was sufficient and the correlation treatment was the
most reliable.
In addition to the comparison with experimental results, we

perform an uncertainty analysis based purely on theoretical
considerations. In cases where no experimental data are
available, a theoretical uncertainty estimate is crucial for direct
applications of the calculated properties in experimental
research. Here we follow a similar procedure to that in our
previous work on symmetry breaking properties.37,38 In this
scheme we estimate the error that is introduced by the
different approximations employed in the treatment of the
basis sets, electron correlation, relativistic effects and nuclear
description. The individual sources are added in a quadratic
fashion, which assumes the considered effects to be
independent. While it is well-known that computational
effects, associated with for example the treatment of electron
correlation and choice of basis set, depend strongly on each
other, this assumption can be considered good enough as long
as the individual uncertainties are small which is the case here.
These sources of uncertainty are presented in Table 7 and
discussed in the following.
Basis Set. In section Basis Set Effects we investigated the

effect on the HFS constants of increasing the basis set size in
three aspects; the addition of tight functions, diffuse functions
and the general quality. We finally chose to use the cvqz basis
set and we estimate the uncertainty that is introduced by
truncation at the quadruple-ζ level to be not larger than the
difference between the cvtz and cvqz results. The effect of

adding additional tight (aeqz) and diffuse (s-aug-vqz)
functions turned out to be very small but we include them
here for the sake of completeness. Adding all three effects
together amounts to 23, 24, and 23 MHz for both A∥ and A⊥ in
137BaF and A in 133Cs, which corresponds to a bit more that
1%.

Electron Correlation. In our previous studies we used the
spread in the perturbative triples results (i.e., the difference
between the CCSD+T and CCSD-T results) times 2 as an
estimate for the order of magnitude of the missing higher order
correlation contributions.37,38 In both cases this was close to
half of the difference between CCSD and CCSD(T). However,
in the case of the HFS constants the difference between CCSD
+T and CCSD-T is ∼60 MHz for both systems, about 3 times
larger than the difference between CCSD and CCSD(T). This
is an indication that higher order correlation contributions are
more important in the case of HFS constant. As a conservative
estimate, we use again the spread in the perturbative triples
results multiplied by 2, which is the major source of
uncertainty and contributes ∼5% in both cases.
In the section Correlation Effects we found that neglecting

the virtual orbitals above 2000 au introduces an error of ∼0.5%
and we add this contribution to the uncertainty estimate.

Relativistic Effects (Breit and QEDVP+SE). In order to
estimate the magnitude of the higher order relativistic
corrections to the 2-electron interaction, we rely on previous
works and in particular on the recent study by Ginges et al.85

who systematically investigated various contributions to the
ground state HFS constants of a few atoms and ions.
A thorough discussion on the previous calculations of the

Breit contribution to the HFS constant in 133Cs can be found
in ref 10 where also the, at the time, most rigorous calculation
of the Breit contribution at the level of third-order many-body
perturbation theory (MBPT) was presented being 4.9 MHz. In
the recent study by Ginges et al.85 this contribution was
estimated to be 6.0 MHz at the level of the random phase
approximation (RPA). We use the larger value of Ginges et al.
to estimate the effect of neglecting the Breit interaction.
To our knowledge, no study of the Breit contribution to the

137BaF HFS constant was published to date. Due to the similar
electronic structure and nuclear charge of 137BaF and 133Cs the

Table 7. Summary of the Sources of Uncertainty (MHz) of
the Calculated A∥, A⊥, and A Constants (MHz) of 137Ba in
BaF and 133Cs

source 137BaF 133Cs

δA∥ δA⊥ δA

basis set
quality 20.00 20.00 19.0
tight functions 3.00 3.00 4.00
diffuse functions 0.00 1.00 0.00

correlation
higher order −120.00 −124.00 −120.00
virtual cutoff 8.18 8.18c 12.78

relativistic effects
Breit 5.72a 5.53a 6.00b

QEDVP+SE −10.01a −9.68a −10.30b

Bohr−Weisskopf −39.56a −38.26a −7.60b

quadratic sum 128.74 132.07 123.05
% 5.40 5.73 5.28
aBased on 135Ba+ results from ref 85. bTaken directly from ref 85.
cUsed A∥ results.
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Breit contribution is expected to be similar and we could use
the 133Cs results as an estimate for the effect in 137BaF. We
choose instead to estimate this effect from the result in ref 85
for the 135Ba+ HFS constant. The electronic structure of the
Ba+ ion is a good approximation to that in BaF, where one of
the two valence electrons of Ba participates in the bonding to F
leaving Ba effectively with a positive charge. The isotope effect
on the Breit contribution is negligible. The Breit contribution
was determined in ref 85 to be 0.24% of the total HFS constant
of 135Ba+. Taking this to be representative for the 137BaF HFS
constant, we estimate the Breit contribution as 5.72 MHz for
A∥ and 5.53 MHz for A⊥, which indeed is very similar to that in
133Cs.
For higher order corrections to the 2-electron interaction,

one has to turn to quantum electrodynamics (QED) where the
lowest order diagrams (beyond Breit) are the single photon
one-loop diagrams, namely, the vacuum polarization and the
self-energy, QEDVP+SE.
Two predictions of the QEDVP+SE contributions to the HFS

constant of Cs are available. One is from Sapirstein et al.87 of
−9.7 MHz, and the other from Ginges et al.85 of −8.8(15)
MHz, which agree within the uncertainty provided for the
latter. As an estimate, we choose the latter value, including the
provided uncertainty. For 135Ba+ Ginges et al. predicted
−0.38(4)%, which translates to −10.01 and −9.68 MHz for
A∥ and A⊥ in 137BaF.
Bohr−Weisskopf Effect. Finally, we consider the Bohr−

Weisskopf effect, which accounts for the finite distribution of
the nuclear magnetization compared to a pointlike model
employed in this work. Again we use the results from ref 85,
which, unlike the Breit and the QEDVP+SE effects, turn out to
be quite different for the two systems, i.e., −0.18(14)% for
133Cs and −1.26(38)% for 135Ba+. This difference originates
from the different nuclear properties of the two isotopes. We
have also investigated this effect on the kuDHF level using the
approach described in ref 71, where the nuclear magnetic
moment distribution is described by a simple Gaussian
function. The results are shown in Supporting Information
and the effect is ∼−0.8% for both systems. While the sign and
order of magnitude are similar to the higher level results from
ref 85, this method is not able to take the different nuclear
structures into account. However, this method will be very
useful in cases where higher level reference results are not
available and in particular for larger molecules.
The similar nuclear properties of the 135Ba and 137Ba

isotopes result in a similar Bohr−Weisskopf effect88 and we use
the estimate for 135Ba+ also from ref 85 in our uncertainty
estimate. We note that besides nuclear structure the Bohr−
Weisskopf effect also strongly depends on the electronic state
of the system, which was recently demonstrated by Prosnyak et
al. for Tl.89

Comparison with Previous Studies. Before we conclude,
we compare our results with earlier theoretical values and with
experimental results. Since the Gaunt contribution was
seemingly unreliable, i.e., predicting the wrong sign, and the
perturbative triples contributions seemed unreliable due to
their relatively large spread, we choose the DC CCSD results
(using the cvqz basis set) to be our best estimate for the HFS
constant in these two systems, with the associated uncertainties
presented in Table 7.
For both systems the deviation of the DC CCSD results

from the experimental values is below 1%, as can be seen in
Tables 8 and 9. This deviation is well below the estimated

uncertainty of >5%, Table 7. It illustrates the conservative
nature of our error estimate, in particular in the higher order
correlation corrections, but it is also a result of cancellation
between the uncertainties stemming from basis set, correlation,
and Breit interaction (positive) and the QEDVP+SE and Bohr−
Weisskopf effects (negative).

BaF. Two previous studies have reported calculations of the
137BaF HFS constant; these results are presented in Table 8.
The first study by Kozlov et al.90 reported results obtained with
the self-consistent field (SCF) and restricted active space SCF
(RASSCF) methods with and without core-polarization
included with the aid of effective operators (EO). The effect
of including core polarization (∼780 MHz for A∥ and ∼740
MHz for A⊥) was seen to be very similar to the effect of going
from SCF to CCSD discussed in section Correlation Effects.
Furthermore, the RASSCF-EO show little difference to SCF-
EO, which agrees with the small difference between CCSD and
FSCCSD. The restricted active space configuration interaction
(RASCI) result of Nayak et al.91 is very similar to the
(RAS)SCF-EO results, both underestimating the HFS constant
by about 5% compared to the experimental value. The use of
MBPT offers a significant improvement compared to the
RASCI results.
From the results listed in Table 8 the present DC CCSD

result has the smallest deviation from the experimental value
and offers an improvement of accuracy compared to the earlier
investigations.

Table 8. A∥ and A⊥ of 137Ba in BaF (MHz)
137BaF

method A∥ %(exp) A⊥ %(exp)

GRECP SCF-EO90 2264 −4.71 2186 −5.00
GRECP RASSCF-EO90 2272 −4.38 2200 −4.39
DF RASCI91 2240 −5.72 2144 −6.82
DF MBPT91 2314 −2.61 2254 −2.04
DC CCSD (this work) 2383(129) 0.29 2305(132) 0.17
exp77 2376(12) 2301(9)

Table 9. A of Cs in MHza

method 133Cs %(exp)

MBPTb+B7 2291.00 −0.31
SDpT+B8 2278.5 −0.85
MBPTb7+B10 2295.87 −0.10
MBPTb+OE+G9 2302 0.17
CCSDvT11+B10+QEDVP+SE 87 2306.6 0.36
CCSD (ECC)26 2179.1 −5.18
CCSD (Z-vector)27 2218.4 −3.47
MBPTb+B+QEDVP+SE 85 2294.4 −0.16
CCSD (LCCSD)81 2345.9 2.08
CCSD (finite field, this work) 2283(123) −0.66
exp78 2298.16

aAll methods employed the four-component formalism. +B and +G
denote the inclusion of the Breit and Gaunt interaction, respectively.
For the CCSD methods the procedure used to extract the HFS
constant is given in parentheses. bMBPT has been used as a general
term for atomic many-body methods. While the MBPT results were
all obtained using Brueckner orbitals in the evaluation of HFS matrix
elements (at the RPA level) there are some smaller differences
between the methods.
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Cs. The HFS constant of Cs has been studied extensively
due to its relevance for atomic parity violation experiments.5,6

Interpretation of such experiments requires sub 1% accuracy
for the theoretical predictions. As can be seen from Table 9,
this goal has been achieved by several groups over the years
using various many-body methods.7−11,85 Most of the results
with less than 1% deviation from experiment were obtained
with atomic codes, where use of the radial symmetry can
practically eliminate basis set errors. Another feature of these
results is that they all include a subset of triple excitations as
well as estimates for the Breit and/or QEDVP+SE corrections.
Therefore, while the present DC CCSD values have a similar
error with respect to experiment, a direct comparison with the
earlier high accuracy studies is not meaningful.
In recent years Sasmal and co-workers have reported the

HFS constants of a large set of atoms and molecules on the
CCSD level using the extended CC (ECC) and Z-vector
frameworks.26,27 The ECC uses a variational CC ansatz that
allows for calculating HFS constants as expectation values. The
Z-vector technique, however, is a way to evaluate the energy
derivative of nonvariational CC energies. Due to the
cumbersome truncation scheme in the case of ECC the Z-
vector approach is expected to perform better. Indeed, the
deviation with respect to experiment is smaller for the Z-vector
result compared to the ECC result but still significantly larger
than the aforementioned many-body methods. There can be
several reasons for this; first of all, these results were obtained
with molecular codes that would suffer from similar basis set
uncertainties as presented in this work. Second, the ECC as
well as the Z-vector results were obtained with a virtual cutoff
of 60 and 40 au, respectively. This cutoff corresponds to the
first few points in Figure 2, which indeed leads to an
underestimation of ∼3%. The advantage of the present finite
field approach over the ECC and Z-vector methods is that it
allows for the inclusion of perturbational triples. Even though
the perturbational treatment of the triple excitations turned out
to be too unstable to include in the recommended value, it still
provides an important contribution to the uncertainty
estimation.
Recently, an additional study on the DC CCSD level was

reported by Tang et al.81 In their approach the linearized
expression for the CCSD expectation value was employed
while the amplitudes were obtained from a CCSD calculation
taking all terms into account. The overestimation of ∼2% was
attributed to the missing nonlinear terms in the expectation
value expression.

■ CONCLUSION
We calculated the HFS constants of 137BaF and 133Cs on the
relativistic coupled cluster level using the finite-field method as
a straightforward way to evaluate the energy derivative. This
scheme has been previously applied to various properties, but
the present work is the first application to HFS constants.
Consequently, a detailed investigation of computational
parameters has been performed and presented. The effect of
including different types of perturbative triples on the
calculated HFS constants was seen to be more irregular than
in the previous studies. We thus expect triple excitations to be
important and conclude that a perturbational treatment is
insufficient.
On the basis of the computational investigations, a

transparent theoretical uncertainty estimate has been per-
formed. Because of the irregular behavior of the perturbative

triples, the largest contribution to the uncertainty estimate
comes from the higher order correlations. Higher order
relativistic as well as nuclear magnetization distribution effects
were included in the estimate by using results from the
literature. The estimated uncertainties amounted to 129 MHz
(5.4%) and 132 MHz (5.7%) for A∥ and A⊥ in 137BaF and 123
MHz (5.28%) for 133Cs. These uncertainties are notably larger
than those predicted for the P,T-odd interaction constants
(∼2%) that were obtained using the same scheme as in the
present work.37,38,92

The estimated uncertainties were found to be well above the
deviation from experimental results which for both systems was
below 1%. This discrepancy is partly due to the conservative
nature of the uncertainty estimate (especially in the case of the
higher order correlation effects), but it also reflects a fortunate
cancellation of the missing contributions. An important task for
the future is consequently to improve the description of higher
order correlations that would enable more reliable uncertainty
estimates.
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