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Abstract: Six empirical force fields were tested for applicability to calculations for automated
carbohydrate database filling. They were probed on eleven disaccharide molecules containing
representative structural features from widespread classes of carbohydrates. The accuracy of each
method was queried by predictions of nuclear Overhauser effects (NOEs) from conformational
ensembles obtained from 50 to 100 ns molecular dynamics (MD) trajectories and their comparison
to the published experimental data. Using various ranking schemes, it was concluded that explicit
solvent MM3 MD yielded non-inferior NOE accuracy with newer GLYCAM-06, and ultimately
PBE0-D3/def2-TZVP (Triple-Zeta Valence Polarized) Density Functional Theory (DFT) simulations.
For seven of eleven molecules, at least one empirical force field with explicit solvent outperformed
DFT in NOE prediction. The aggregate of characteristics (accuracy, speed, and compatibility) made
MM3 dynamics with explicit solvent at 300 K the most favorable method for bulk generation of
disaccharide conformation maps for massive database filling.

Keywords: carbohydrate; disaccharide; glycosidic bond conformation; molecular dynamics; NOE
simulation; database filling; nuclear Overhauser effect; force field

1. Introduction

The role of polysaccharides in biological phenomena, such as cell–cell interaction and inflammatory
processes and immunity, can be hardly overestimated [1,2]. Oligo- and polysaccharide conformations
are crucial for understanding of their biological functions. The conformation data are utilized in
the studies of glycan interaction with proteins and other biomolecules, and in calculation of the
macroscopic molecular parameters, such as NMR observables. There are no direct physical methods to
probe conformation, while in silico determination of saccharide conformation, in general, is still an
unsolved task. Despite there being plenty of molecular dynamics (MD) simulation methods, [3] the
software tools in which these methods are implemented for glycans require users to be specialists in
the field, and are difficult to learn for non-informaticians [4,5]. Moreover, many existing molecular
mechanic force fields dedicated to carbohydrates are parameterized for a limited set of monosaccharide
building blocks not covering the natural diversity of glycans, especially beyond mammalian class [6].
Our challenge is to implement the accurate saccharide conformation prediction (1) easily available to all
glycochemists and glycobiologists and (2) not limited to specific structural features such as particular
monomeric components of a molecule. As one of demands, there is a need for a reliable, fast, and easily
available method for saccharide conformation simulation. Easy accessibility can be achieved by an
automated procedure for conformation simulation in the framework of an existing glycoinformatics
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project. We plan usage of the Carbohydrate Structure Database (CSDB, http://csdb.glycoscience.ru) [7]
as a host project and a source of data on molecular geometry.

In the majority of natural glycans, at least of those composed mainly of pyranoses, saccharide
conformational behavior implies relatively stable monosaccharides occupying a few (often, one)
predominant conformations and flexible inter-residue bridges [8]. Disaccharides are the simplest
carbohydrate molecules presenting all the types of rotational degrees of freedom characteristic for
oligo- and polysaccharides. This observation allows one to split a glycan molecule into pairs and triples
of monosaccharides (for linear and branched nodes, respectively) and subsequently combine small
fragment conformations into conformations of a bigger glycan. Such resulting conformations can be
further optimized, used as initial geometries in calculations at higher levels of theory, or used as rough
approximations representing a conformational ensemble of a saccharide. Moreover, disaccharides
were proven to be adequate benchmark systems for simulation methodology validation in the context
of subsequent usage as models for larger molecules [9].

Distribution of geometrical parameters of constituent fragments, such as sustainable
monosaccharide conformations and favorable glycosidic and exocyclic linkage configurations, can be
pre-calculated and stored in a database, thus increasing simulation performance for any given glycan.
While the majority of natural monosaccharide residues adopt a few ring conformations, e.g., 4C1 for
most D-hexapyranoses, determination of a glycosidic bond conformation is more complicated,
since its populated torsion angles tend to have different values depending on a particular pair
of linked monosaccharides.

In this study, we aimed at finding out a best method for quick, reliable, and maximally automated
prediction of the glycosidic bond conformation in disaccharides. The criteria for the comparison are
the simulation accuracy and speed, compatibility with abundant structural features, and easiness
of implementation in bulk computer simulations. They follow from the planned usage of a chosen
method, which is filling a sub-database of disaccharide conformation maps at CSDB platform. In the
future, this database will store data on several thousands of disaccharides most abundant in natural
glycopolymer and glycoconjugate sequences, as ranked by the statistical analysis of glycomes [10].
The accuracy of the methods we tested was ranked by predictions of nuclear Overhauser effects (NOEs)
from each conformational ensemble and their comparison to the experimental data on a sampling of
disaccharides, for which steady state NOE data were published. We also included quantum mechanical
Density Functional Theory (DFT) calculations as a reference method.

2. Results

The reliability of the predicted conformational behavior of disaccharides can be probed by
comparison of properties predicted theoretically and measured experimentally. In solution, the method
of choice to study the 3D structure of saccharides is NMR. Through coupling constants, it allows one
to evaluate the magnitude of the torsion angles and nuclear Overhauser effects (NOEs) and estimate
distances between protons located in close proximity. For saccharides built of relatively rigid building
blocks linked by flexible bonds, the key parameters are those measured through the glycosidic bonds.
All these NMR parameters represent average values, as all of the rapidly interconverting conformations
are accessible to the molecule on the NMR timescale due to rotational freedom of glycosidic bond
torsions. This means that a straightforward interpretation of experimental data leads to the elucidation
of a “virtual conformation” with only a limited physical meaning. It was reported that NOEs predicted
from an average conformation showed poorer accuracy than NOEs averaged from a sampling of
individual NOEs in each conformational minimum [11].

We compared a number of force fields most demanded in carbohydrate molecular simulation [12]
by prediction of glycosidic bond conformation in disaccharides and validation of predictions against
experimental NOEs. Four all-chemical (MM3-2000 [13], MMFF94 [14], OPLS-aa [15], and Amber
ff14SB [16–18]) and two dedicated (GLYCAM-06 [6] and CHARMM [19,20] with C36-carb parameter
set) force fields were used. We used the Tinker software package, as it was freely available, convenient
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for learning, and had easy features for batch programming [21]. Moreover, Conformational Analysis
Tools (CAT) software exists [22] for automatic analysis of Tinker output, including generation of
conformation maps from MD trajectories. It was shown that Tinker MM3 can be used to estimate
carbohydrate energies and geometries accurately, and to pursue studies on the potential energy surfaces
of di- and trisaccharides [23]. Amber [24] and Gromacs [25] were chosen as a well-known and popular
software packages providing calculations in Amber ff14SB and carbohydrate-dedicated force fields.
In cases requiring de novo molecule parameterization or manual topology manipulation, we used
Gromacs software [26], as it employed convenient human-readable topology format, and produced
results merely distinguishable from other simulation packages, such as Amber (see Figure 4). It should
be noted that charged disaccharides pose a significant parameterization challenge in both protein and
carbohydrate force fields. Even dedicated carbohydrate fields such as GLYCAM lack ready-to-use
parameters for certain residues (e.g., Rhap4N; see molecules 7, 8, 9, and 11), and require topology
manipulation to accomplish simulation for all molecules under study (see Table 1).

In further discussion, dihedral angles that form glycosidic bonds were defined as follows:
ϕ = H1–C1–O–Cx (C1–C2–O–C4′ for α-Kdo-(2-4)- α-Kdo-O-Allyl), ψ = C1–O–Cx–Hx(pro-S)
(C1–O–C2′–C1′ for α-D-Glcp-(1-2)-β-D-Fruf ), and ω = H(x–1)–C(x–1)–Cx-Hx(pro-S). C1/C2 stands for
the anomeric center in the glycosidic bond donor in aldose/ketose, respectively, and Cx stands for the
substituted position in the glycosidic bond acceptor. If there are more than one Hx protons, pro-S one
is used. If a donor and acceptor cannot be distinguished (e.g., in sucrose), the residue located at the left
side in CSDB Linear encoding [27] was considered as a donor. The used hydrogen-based definition for
Ramachandran plotting was pointed out as optimal for graphic representation torsional maps [28].

In order to compare force fields, eleven disaccharides were chosen as models (see details in
Methods). We compared glycosidic bond torsion population from MD trajectories obtained with
implicit solvation model default for each force field, and with explicit water. Conformation map
minima derived from DFT calculations were used as an example of achievable accuracy. We chose NOE
comparison for the experimental validation since this NMR observable depends on the inter-glycosidic
proton distances over the whole ensemble of conformations, accounting for all torsions involved in
energy distribution. Besides force field, accuracies of predicted NOE values critically depend on the
quality of the configurational space sampling affected mainly by the simulation temperature and
duration (number of steps). However, increasing simulation duration is often impractical due to
associated increase in computational cost, especially in bulk high-throughput simulations, which are
the intended applications of the method under choice. Temperature increase can lead to deterioration
of conformational ensemble, since NOE relates to the conformational ensemble at the experimental
temperature. We have studied the effects of both parameters (simulation duration and temperature)
on the accuracy of predicted NOEs.

If a limited number of conformational states exist in an MD trajectory, NOE can be calculated
as a trajectory average of individual NOEs depending on the inverse sixth power of inter-proton
distance [29]. However, such trajectory averaging requires that distance variations between protons
are uncorrelated, which, in turn, requires that transitions between conformational states occur much
slower than molecular fluctuations. Newer approaches that calculate NOEs from trajectory-derived
correlation functions exist [30]; however, they require lengthening MD trajectories even further and
were not considered in this study due to inapplicability for bulk calculations.

To begin, we took 100 ns trajectory length [31] and compared performance of each force field at 300 K,
as it was the average temperature of NOE measurement, and at 1000 K, as a deliberately high temperature
ensuring the appearance of all transitions and enhancing sampling statistics. To substantiate that this
trajectory length is enough to model all transitions in the conformational space of glycosidic torsions,
we probed dynamics of a molecule with two torsions (α-D-Glcp-(1-2)-β-D-Fruf, 1) and of one with
three torsions (α-D-Manp-(1-6)-β-D-Manp-OMe, 4). As a typical example (Figure 1a), sucrose (1) in
GLYCAM showed time-stable ϕ dihedral in explicit-water dynamics, while ψ dihedral tended to
occupy a local minimum for ~0.7 ns every ~15 ns. Water model did not affect location of minima
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but changed their relative population (1: ψ, GB: 56.5 ± 16.5 (88%), −47.9 ± 12.0 (11%), 168 ± 9.2 (1%);
ψ, Transferable Intermolecular Potential 3 Point (TIP3P): 56.4 ± 13.5 (97.3%), −47.4 ± 12.6 (2.7%)).
Implicit water dynamics showed more often transitions and shorter lifetime of conformations, as well
as an additional minor minimum. This observation is in agreement with a hypothesis that disaccharide
conformations are stabilized by hydrogen bonds with solvent. In a glycosidic linkage with three
rotational degrees of freedom, ψ transitions were more frequent, andω torsion (pro-S H6-C6-C5-H5)
occupied one or more of the three stable conformations (gg, gt, and tg) (Figure 1b), as often happens in
1-6-linked disaccharides [32,33]. From the considerations mentioned above, we conclude that 50 ns
trajectory length is acceptable for further simulations. Identification of plausible conformations fits the
purpose of this study, even without achieving a truly converged MD trajectory, which can require a
microsecond or millisecond timescale [34].
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Figure 1. Transitions of a glycosidic bridge conformation in sucrose 1 (a) and 1-6-dimannose 4 (b) in
molecular dynamics in GLYCAM force field with explicit water at 300 K. First 30 ns of 100 ns trajectory
part is depicted for clarity

We analyzed the obtained ensembles in two ways: by comparison of the conformational plots
as ϕ, ψ, and ω torsion distributions in all the obtained frames (Figures 2 and 3, and superimposed
data in Supplementary Figure S1 for reference) and by the prediction of NOE values (Figure 4, Table 1,
and Supplementary Tables S1–S7). The distribution of results agrees with the earlier observation [35]
that second generation force fields, including GLYCAM, provided similar results in energy minimization
of disaccharides, while older force fields yielded highly dispersed results. The remarkable exclusion
had been MM3, which outperformed other old force fields, and was less sensitive to the medium
permittivity. It should be noted that the above conclusion was made from energy calculation on a
bulk set of disaccharide conformers, in vacuum, with various permittivity values and subsequent
comparison of energies with crystal state DFT calculations.



Int. J. Mol. Sci. 2020, 21, 7626 5 of 20Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 19 

 

 
Figure 2. Glycosidic bond conformation plots modeled at 300 K (blue) and 1000 K (red) with implicit solvent models. Columns are eleven molecules under study; rows are 
force fields, as indicated on the right. Dihedrals are defined as φ = H1–C1–O–Cx (C1–C2–O–C4′ for α-Kdo-(2-4)-α-Kdo-OAllyl) and ψ = C1–O–Cx–Hx (C1–O–C2′–C1′ for 
α-D-Glcp-(1-2)-β-D-Fruf), ω = Cx–Cx–C(x+1)-H(pro-S). Blue (300 K) and red (1000 K) dots (φ, ψ) and lines (ω) stand for starting geometries after minimization (MOL files 
are available in Supplementary materials). The density plots were obtained from full molecular dynamics (MD) trajectories. Contour levels denote equal difference in 
density of sampling. Dotted lines in molecules 3, 4, and 5 denote ω angle distribution. Root mean square deviation (RMSD) between experimental and calculated NOEs 
averaged on all interacting protons is provided in the upper left corner of each plot. 

Figure 2. Glycosidic bond conformation plots modeled at 300 K (blue) and 1000 K (red) with implicit solvent models. Columns are eleven molecules under study;
rows are force fields, as indicated on the right. Dihedrals are defined as ϕ = H1–C1–O–Cx (C1–C2–O–C4′ for α-Kdo-(2-4)-α-Kdo-OAllyl) and ψ = C1–O–Cx–Hx
(C1–O–C2′–C1′ for α-D-Glcp-(1-2)-β-D-Fruf ), ω = Cx–Cx–C(x+1)-H(pro-S). Blue (300 K) and red (1000 K) dots (ϕ, ψ) and lines (ω) stand for starting geometries after
minimization (MOL files are available in Supplementary materials). The density plots were obtained from full molecular dynamics (MD) trajectories. Contour levels
denote equal difference in density of sampling. Dotted lines in molecules 3, 4, and 5 denote ω angle distribution. Root mean square deviation (RMSD) between
experimental and calculated NOEs averaged on all interacting protons is provided in the upper left corner of each plot.



Int. J. Mol. Sci. 2020, 21, 7626 6 of 20Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 19 

 

 

Figure 3. Glycosidic bond conformation plots modeled at 300 K with explicit solvent models. Columns are eleven molecules under study; rows are force fields. Dihedrals 
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Figure 3. Glycosidic bond conformation plots modeled at 300 K with explicit solvent models. Columns are eleven molecules under study; rows are force fields.
Dihedrals are defined as ϕ = H1–C1–O–Cx (C1–C2–O–C4′ for α-Kdo-(2-4)-α-Kdo link) and ψ = C1–O–Cx–Hx (C1–O–C2′–C1′ for α-D-Glcp-(1-2)-β-D-Fruf),
ω = Cx–Cx–C(x+1)-H(pro-S). Black points (ϕ, ψ) and lines (ω) stand for starting geometries after minimization (MOL files are available in Supplementary materials).
The density plots were obtained from full MD trajectories. Contour levels denote equal difference in density of sampling. Dotted lines in molecules 3, 4 and 5 denoteω
angle distribution. RMSD between experimental and calculated NOEs averaged on all interacting protons is provided in the upper left corner of each plot.
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solvation model is to the left of a dashed line, MD with explicit solvent is on the right. In each column, 
data for all NOEs (left bar, stars) and for transglycosidic NOEs only (right bar, diamonds) are given 
separately. Outliers are encircled and supplied with molecule numbers. (b) Comparison of model 
structures in regard to NOE predictive power of all tested force fields. Temperature and solvent 
models are reflected by color as shown in the legend. Quantum mechanical calculation results (black 
dots) are given for reference. Worst outliers are (molecules in A and force fields in B) are labeled. 
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Figure 4. (a) Comparison of force fields on a sampling of eleven molecules (means; interquartile ranges).
Data for 300 K (blue) and 1000 K (red) molecular dynamics are shown. MD with implicit solvation
model is to the left of a dashed line, MD with explicit solvent is on the right. In each column, data for
all NOEs (left bar, stars) and for transglycosidic NOEs only (right bar, diamonds) are given separately.
Outliers are encircled and supplied with molecule numbers. (b) Comparison of model structures in
regard to NOE predictive power of all tested force fields. Temperature and solvent models are reflected
by color as shown in the legend. Quantum mechanical calculation results (black dots) are given for
reference. Worst outliers are (molecules in A and force fields in B) are labeled.

In general-purpose force fields, as well as in Amber ff14SB, topology generation was a
straightforward procedure that could easily be automated. In CHARMM and GLYCAM, manual
manipulations with input files had to be applied for the generation of topologies of the unsupported
residues (see Methods, Section 3.2). In case of CHARMM, we started from an existing topology of a
residue structurally close to that under study. After that, we reassigned atom names, types and partial
charges analogously to recognized residues, keeping the total charge of a fragment equal to the integer
formal charge.

In case of GLYCAM, the approach above could be replaced by less labor intensive semi-automated
procedure. Topology generation for GLYCAM was done by stock features of AmberTools [36]; however,
calculation of the partial charges became a problem. In the original publication on GLYCAM-06 [6]
atomic charges were ensemble averaged from restrained electrostatic potential (RESP) [37]/HF/6-31G*
charges over 100–200 representative structures from a 50 to 100 ns long MD trajectory. This approach is
anyway unacceptable for database filling due to its high resource cost, so we studied two simplified
approaches: (1) single point RESP/6-31G* charges based on initial geometry followed by dynamics in
Amber package; and (2) AM1-BCC charges [38] followed by dynamics in Gromacs package.
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Table 1. Deviations between experimental NOEs and NOEs calculated from MD trajectories in different force fields. Absolute RMSD is provided for all observed
proton-proton correlations. Average values are arithmetic means from eleven molecules, calculated separately on a sampling of all observed NOEs, and transglycosidic
NOEs only.

# Force Field MM3 2000 MMFF94 OPLS aa GLYCAM 06 CHARMM 36 Amber ff14SB DFT a NOE
Reference

solvation model b HCT TIP3P c HCT HCT GB TIP3P d GB TIP3P d GB TIP3P d SMD
Temperature, K e 300 300 1000 300 300 300 300 300 300 300 300

1 α-D-Glcp-(1-2)-β-D-Fruf 0.17 0.22 0.23 0.23 0.18 0.20 0.15 0.28 0.17 0.15 0.18 [39]
2 α-D-Manp-(1-3)-α-D-Manp-OMe 0.09 0.13 0.30 0.30 0.05 0.03 0.24 0.37 0.11 0.18 0.05 [40]
3 α-D-Manp-(1-6)-α-D-Manp-OMe 0.14 0.14 0.22 0.22 0.17 0.18 0.15 0.03 0.15 0.15 0.17 [40]
4 α-D-Manp-(1-6)-β-D-Manp-OMe 0.03 0.02 0.10 0.10 0.06 0.07 0.04 0.51 0.04 0.06 0.07 [41]
5 β-D-GlcpNAc-(1-6)-α-D-Manp-OMe 0.04 0.05 0.05 0.05 0.05 0.05 0.12 0.23 0.05 0.04 0.03 [41]
6 β-D-GlcpNAc-(1-2)-α-D-Manp-OMe 0.09 0.08 0.07 0.07 0.13 0.13 0.08 0.20 0.13 0.15 0.08 [41]
7 α-D-Rhap4N-(1-2)-α-D-Rhap4N-OMe 0.10 0.07 0.29 0.29 0.28 f 0.15 0.41 0.13 0.09 0.15 0.04 [42]
8 α-D-Rhap4N-(1-3)-α-D-Rhap4N-OMe 0.16 0.10 0.32 0.32 0.16 f 0.13 0.17 0.26 0.18 0.18 0.07 [42]
9 α-D-GalpA-(1-3)-α-D-FucpNAc4N-OMe 0.16 0.16 0.18 0.18 0.29 f 0.20 0.31 0.31 0.32 0.17 0.18 [43]
10 α-L-Rhap-(1-2)-α-L-Rhap-OMe 0.10 0.10 0.16 0.16 0.14 0.14 0.21 0.38 0.16 0.14 0.13 [44]
11 α-KDO-(2-4)-α-KDO-OAllyl 0.15 0.16 0.25 0.25 0.20 f 0.08 0.25 0.18 0.20 0.12 0.10 [45]

average (all NOEs) g 0.11
(0.33)

0.11
(0.33)

0.20
(0.60)

0.13
(0.41)

0.15
(0.47)

0.12
(0.40)

0.19
(0.64)

0.26
(0.92)

0.15
(0.53)

0.13
(0.42)

0.10
(0.36)

average (transglycosidic NOEs) 0.10 0.10 0.22 0.10 0.14 0.11 0.18 0.21 0.14 0.13 0.10

overall rank h 4 1 5 11 8 3 10 7 12 6 2

software i Tinker Tinker Tinker Amber,
Gromacs Gromacs Gromacs Gaussian

supplementary table S1 S1 S2 S3 S4-1 S4-1 S5 S5 S6 S6
trajectory length, ns 50 50 50 50 100 100 50 50 50 50

a Theory level and basis set: PBE0-D3/def2-TZVP (Triple-Zeta Valence Polarized). b For universal force fields, HCT solvation model was selected for presentation as it produced better
results than Still. c 20 × 20 × 20 Å water box. d 30 × 30 × 30 Å water box. e In implicit solvent calculations, 300 and 1000 K were tested; better results (regarding absolute and relative
RMSD) were presented. f Gromacs was used for charged molecules instead of default Amber, as Gromacs topologies are more convenient for manipulation. g Absolute RMSD (regular
font). Average values for relative RMSD are given in italics for reference. Full data on relative RMSD are in Supplementary Table S9. h Absolute RMSD, quadratic ranking (see text).
i Software versions: Tinker 8.6.1, Amber 12.0, Gromacs 2018.8, Gaussian 09. DFT = Density Functional Theory; HCT = Hawkins, Cramer and Truhlar; TIP3P = Transferable Intermolecular
Potential 3 Point; GB = General Born; SMD = Solvation Model based on Density.
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On both α-D-Manp-(1-3)-α-D-Manp-OMe (2) and α-D-Rhap4N-(1-2)-α-D-Rhap4N-OMe (7),
as representative examples of an uncharged and charged molecule, respectively, explicit solvent
conformation maps obtained from the two schemes of charge assignment (Figure 5) were very close
to each other. On the contrary, implicit solvent maps from Gromacs (i.e., in CHARMM, Amber,
and GLYCAM force fields) showed auxiliary populated areas and were generally more diffuse than
those from Amber (GLYCAM force field). Probably, this could be attributed to peculiarities of
implementation of the implicit solvation in Gromacs, and Gromacs has stopped support of such solvent
models since version 2019.1.
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2 (a) and α-D-Rhap4N-(1-2)-α-D-Rhap4N-OMe 7 (b) obtained in dedicated carbohydrate force fields.
Solid lines depict explicit TIP3P water simulations, dashed lines are for GB solvation model. Contours
encircle an area within +2 kcal/mol from a global minimum. All minima are plotted by using symbols:
circles for explicit TIP3P water simulations, and diamonds for GB solvation simulations. Circle area and
diamond size correspond to 2 + log10 (minimum occupation related to total frame count, in percent).
Colors reflect the force field and its software-dependent modification, as indicated in the legend.

Table 1 shows root mean square deviation (RMSD) values for NOE comparison using different
force fields on eleven models. For each force field, the best results from the two temperatures (300
and 1000 K) are given. For universal force fields, HCT solvation model was selected for presentation
as it produced better results than Still. More details and calculation of RMSD are available in
Supplementary Tables S1–S7; experimental conditions and other details on published NOEs are in
Supplementary Table S8.

The top three methods revealed by ranking are shown in Table 2. According to quadratic ranking
with absolute RMSD, MM3 with explicit water was the most accurate, DFT calculation occupied the
second rank with virtually similar accuracy, and the third place was given to Glycam with explicit water.
The results from ranking match those from a common sense, as each of the first two methods occupied
the first rank twice, and the second rank once, while the sum of third ranks showed better accuracy
of MM3. Usage of a linear scale left two best methods untouched, placing implicit solvent MM3
simulation to the third place. Usage of relative RMSD with linear scale rearranged top three methods,
but the top-three list itself has not changed. Quadratic scale virtually equalized implicit solvent MM3
and MMFF at 1000 K as most accurate predictors outperforming MM3 with explicit solvent and DFT
(fourth rank). Upon all ranking models, the gap between DFT and MM3 was not dramatic.
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Table 2. Top three methods in different ranking schemes.

Ranking Scheme 1st Rank 2nd Rank 3rd Rank

Absolute RMSD, quadratic scale MM3, explicit DFT Glycam, explicit
Absolute RMSD, linear scale MM3, explicit DFT MM3, implicit

Relative RMSD, quadratic scale MM3, implicit DFT MM3, explicit
Relative RMSD, linear scale MM3, implicit MM3, explicit DFT

There has been no clear answer published on whether the relative RMSD (Supplementary Table S9)
was more adequate metrics than the absolute RMSD (Table 1) in NOE simulation accuracy tests.
Pearson’s correlation coefficient between absolute and relative RMSDs is only 0.3. On the one hand,
the normalized relative RMSD fits a common sense and was reported as a good estimator of NOE
prediction power [46]. On the other hand, the normalized metrics tended to overestimate the value of
errors, when they were low in absolute scale but experimental NOE was weak, and to ignore higher
absolute error values when NOE itself was strong. For a deeper view, we compared distributions of
individual NOE simulation errors (Figure 6) from four methods that showed generally better accuracy:
DFT sampling, GLYCAM, and MM3 dynamics with explicit and implicit solvent models. As judged
from these distributions, the choice of metrics virtually did not affect the quantitative estimation of a
method accuracy. In a discussion below, we used absolute RMSD. The calculations and ranking based
on relative RMSD is available in Supplementary Materials for reference.
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With a few exceptions (CHARMM36, molecules 2, 8, 9, 11), ensembles obtained by implicit
solvent molecular dynamics at 300K occurred inside the populated regions of 1000K distributions,
as expected. For CHARMM36, this means that these molecules occupy a deep local minimum
at 300K, however a global minimum is located elsewhere. Since only molecules 9 and 11 of the
abovementioned ones required topology manipulation, this issue requires further attention. In most
cases, ensembles with explicit solvent resembled those with implicit solvation at 300K, however
exceptions exhibited a clear correlation with molecular peculiarities. 7, 9, and 11 contain residues,
for which no standard parameters were present in the dedicated force fields. They displayed a
visible ϕ-ψ distribution mismatch between explicit and implicit solvation models; for these molecules,
a better performance of explicit solvent dynamics in NOE prediction was most remarkable (see
Supplementary Tables S10 and S11). We suppose that explicit solvation compensated for the absence
of torsion angle parameters in atypical residues.

Comparison of results from general purpose force fields (MM3, MMFF, and OPLS) obtained at high
and low temperature showed that MM3 performed best of them with both implicit and explicit solvent
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models. For all molecules the distribution at 300 K occupied the area of greatest probability in a 1000 K
distribution, except a single outlier (9, OPLS). Amber, CHARMM36, and GLYCAM population tended
to display the same pattern but with some exceptions (Supplementary Table S11, upper block). In most
samples, the predominant state of a molecule on a ϕ-ψ conformation map occupied minima different
from conformations of the initial geometry (dots and vertical lines in Figures 2 and 3), thus proving
that results were not distorted by the initial geometry choice.

Explicit solvation drastically increases the number of atoms in simulation, thus affecting the
computer resource cost. Taking into account that our intended further usage of a best method is very
sensitive to computational performance due to a large number of objects to process, the choice of
explicit solvation is reasonable only if it is proven to produce much more accurate results. In the case
of MM3, the solvation model effect was contradictory: Explicit solvation improved the NOE prediction
accuracy in four cases, deteriorated it in four other cases, and made no valuable change in three cases.
The similar pattern was observed for Amber and CHARMM; introduction of explicit solvent improved
the result only in two cases for CHARMM and five cases for Amber (Supplementary Table S11, lower
block). GLYCAM 06 was designed especially for usage with explicit solvent model, and, expectedly,
it showed better or at least not worse accuracy of results from explicit solvation. Another notable feature
was demonstrated by explicit solvent simulations: In most cases, glycosidic dihedral distributions
had a very similar visual appearance under different force fields; however, they yielded drastically
different NOE accuracy (i.e., in 2, 4, 6, 10). This might result from differences in molecular motion,
such as ring dynamics, which had no direct effect on ϕ-ψ Rhamachandran plots; however, it still needs
to be addressed in further studies.

Although more convenient from the point of view of compatibility and potential automation,
general-purpose force fields generally performed worse than the dedicated ones, except for MM3.
The comparison of NOE simulation accuracy from dynamics in these force fields is available in
Supplementary section “Comparison of General-Purpose Force Fields between Each Other” for
reference. A special note should be made about MMFF, as it is most compatible with arbitrary structural
features and, probably, most convenient in automated calculations due to wide support in programming
libraries. In MMFF dynamics, the most populated conformations had inter-glycosidic torsions at 300 K
close to that at 1000 K for a few molecules only. It can be concluded that a high temperature is critical
for obtaining sufficient conformational space in MMFF force field, while MM3 and OPLS-aa achieve
enough transitional freedom at 300 K. Extra molecular dynamics calculations at 400 and 500 K were
carried out for one exemplary disaccharide to analyze the temperature effect on the conformational
space (Supplementary Figure S2 and Supplementary Table S12). 400 K appeared to be the minimal
temperature to achieve a representative ensemble in MMFF and OPLS-aa, while MM3 did not have this
limitation. In all force fields tested, high temperature led to pyranose “de-chairing” and diffusion of
population to non-predominant conformations of monosaccharides (Supplementary Figures S3 and S4).
In implicit solvent simulations, this behavior could be avoided by applying restraints on intra-glycosidic
torsions. In explicit solvent simulation, usage of 1000 K made no sense, as expected due to moving of
water molecules away from a disaccharide and a loss of solvation effects. As it was mentioned earlier,
this behavior could be avoided by the usage of constant volume simulations; however, we chose to
stay within a physically correct isothermal-isobaric (NPT) ensemble.

NOEs predicted from DFT-derived minima was still the closest to the experimental values.
However, the difference was not dramatic: RMSD averaged over all molecules was 0.10 from DFT
minima, 0.11–0.20 from full conformational space of MD trajectories with implicit solvent, and 0.11–0.26
from those with explicit solvent. On the other hand, even a limited sampling from a conformational
space (from four to twelve [ϕ,ψ]-minima after clustering, see Supplementary Figure S5) required
much more computer resources than molecular dynamics simulation in any molecular mechanic force
field. Taking into account the purpose of this study, we concluded that, for database filling, the better
accuracy of quantum mechanical calculations was not worth the computational costs.
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The simulated NOEs, as well as their RMSD (simulated vs. experimental), are given in
Supplementary Tables S1–S7. Figure 4 summarizes matching between the conformational plots
and predicted NOEs. Panel A shows that DFT sampling and MM3 gave most accurate predictions.
GLYCAM and Amber with explicit solvent performed little worse, and CHARMM and MMFF were
clear outsiders.

Most problematic molecules, especially in implicit solvent and MMFF simulations, were 2, 7
and 8 (Figure 4B), with the two latter being composed from an atypical residue (α-D-Rhap4NH2)
only. Introduction of explicit water molecules helped in both cases, especially for 7, which has a
1-2-linkage keeping residues spatially closer to each other, like in branched structural fragments. NOEs
in molecules with an exocyclic linkage (3, 4, 5) could be predicted generally better (or equally good,
for 3) than NOEs in molecules with two rotational degrees of freedom of a glycosidic bridge. As NOE
characteristic time is longer than a trajectory length, additional degree of freedom could improve
accuracy by easier access to a global energy minimum. For molecules 1, 2, 3, 4, 9, 10, and 11, at least one
empirical force field with explicit solvent model outperformed the DFT sampling. Explicit solvation
provided considerably more accurate NOE simulation than the implicit solvation at 300 K for four
of eleven molecules. In the other seven cases, explicit solvation was not worse than the implicit one;
however, its advantage was not obvious.

The computational performance of all molecular mechanic force fields in Amber and Gromacs
did not differ significantly; for disaccharide dynamics, it ranged from one to four hours per every
25 nanoseconds of a trajectory per graphic processor unit (Nvidia Tesla K20m or Nvidia 2080Ti
class). Surprisingly, models with implicit and explicit solvent did not show even a two-fold
difference in execution time. This can be attributed to the insufficient parallelization capabilities in
implicit-solvent calculations. As a qualitative estimation, quantum-mechanical calculations showed
ten- to thousand-fold performance decrease. At present, it rendered it inapplicable for the purpose of
massive simulations.

3. Materials and Methods

3.1. Selection of Objects and Starting Geometries

Disaccharides and their modifications, for which the quantitative equilibrium NOEs were reported,
were used for the MD simulation (see Supplementary Table S8). Of published data found by keywords
on WebOfScience and PubMed, we picked molecules containing representative structural features
from various classes of carbohydrates (widespread constituents, uronic acids, furanoses, bonds with
two or three torsions, atypical residues, etc.). Another requirement was that the data collection was
well documented and performed at a temperature near 300 K, as steady-state NOE measurement.

Starting geometries (Supplementary Materials, section “Initial Geometries”) were generated
by MMFF94 relaxation of inter-residue bridges with unconstrained initial geometry of monomers,
corresponding to their predominant conformations (as implemented in CSDB modeler, http://csdb.
glycoscience.ru/csdb2atoms.html) [47]. Prior to any molecular dynamics simulation, starting geometry
for a single disaccharide molecule was energy-minimized with a 0.01 kcal/mol/Å gradient cutoff in
the same force field as used for MD tests. For the dedicated force fields, molecules were further
equilibrated, heated during preprocessing, and saved in the second frame in each trajectory.

3.2. Force Fields

Molecular dynamics simulations in the universal force fields (MM3-2000, MMFF94, and OPLS-AA)
were performed, using TINKER 8.6.1 software [48] (https://dasher.wustl.edu/tinker/). Parameters for
the OPLS-AA force field were calculated with freely available LigParGen [49] OPLS/CM1A parameter
generator (http://zarbi.chem.yale.edu/ligpargen/); three molecule optimization iterations were chosen.

MD simulations in CHARMM36 force field [19,20] were performed by using GROMACS 2018.8
software [26]. To generate topologies, “Glycan reader & modeler” module of CHARMM-GUI

http://csdb.glycoscience.ru/csdb2atoms.html
http://csdb.glycoscience.ru/csdb2atoms.html
https://dasher.wustl.edu/tinker/
http://zarbi.chem.yale.edu/ligpargen/


Int. J. Mol. Sci. 2020, 21, 7626 13 of 20

parameter generator [50] was used. In case of inability to generate parameters automatically (namely
for α-D-Glcp-(1-2)-β-D-Fruf glycoside linkage, α-D-Rhap4N, α-D-FucpNAc4N, and α-KDO-OAllyl),
topology for the closest structural analogue was generated and further manipulated manually.

MD simulations in Amber ff14SB [18] (as an all-purpose force field; all molecules) and GLYCAM-06
(molecules containing non-parameterized residuesα-D-Rhap4N,α-D-FucpNAc4N, andα-KDO-OAllyl)
force fields were performed, using GROMACS 2018.8 software. To generate topologies, antechamber [51]
program from AmberTools 19 package [36] was used for AM1-BCC [38] charge calculation and atom
type assignment, followed by tleap program from the same package to generate Amber topology
with GLYCAM or ff14SB parameters. Amber topologies were converted to GROMACS format, using
Acpype [52,53].

In case of GLYCAM-06 force field, [6] which can be considered as Amber ff14SB extension for
carbohydrates, topologies were constructed via Carbohydrate Builder module at http://glycam.org
for disaccharides with constituents having a GLYCAM three-letter code naming and explicitly
parameterized within the force field. Calculations were carried out in Amber12 [24].

3.3. Solvation Models

In the universal chemical force fields, HCT [54] and Still [55] models were used for implicit
solvation. Of them, HCT showed better results and was used further. For the MM3 force field, a
molecular dynamics simulation was also carried out with explicit water solvation (20 × 20 × 20 Å box
of ca. 240 water molecules).

Calculations in the dedicated biomolecular force fields (Amber ff14SB [18], Charmm 36 [19,20],
and GLYCAM 06 [6]) in Amber 12.0 [24,56] were conducted, using Generalized Born solvent model [57]
and, additionally, explicit water box. For Amber, 10 Å minimal distance between a solute molecule and
a bound of a periodic box was used. In three trials starting from 6Å, this water box was found as the
smallest one enough to avoid minimization errors persistent through multiple iterations. For CHARMM
and GLYCAM, periodic box size provided a 15 Å minimal distance between a solute molecule and a
box face, typically at least 30 × 30 × 30 Å.

3.4. Simulation Parameters

MD simulations were performed by using 2 fs integration time-steps. P-LINCS [58] was employed
to constrain bond lengths. Non-bonded interactions were truncated at 12 Å, and Particle Mesh Ewald
algorithm [59] was used for long-range electrostatics. Temperature was controlled by using Berendsen
thermostat [60], and a Parrinello–Rahman barostat [61] was used for constant pressure.

Calculations with explicit solvent were performed by using TIP3P [62] water model at 300 K,
but not at 1000 K, as the latter is well above water-boiling temperature and requires switching to an
NVT ensemble. Calculations with implicit solvent were performed at 300 and 1000 K for all molecules
under study, and additionally at 400 and 500 K for selected molecules (1, α-D-Glcp-(1-2)-β-D-Fruf and
9, α-D-GalpA-(1-3)-α-D-Fucp2NAc4NH2-OMe, see Supplementary Table S12).

In unrestrained 1000 K simulations with implicit solvation, model ring conformation underwent
continuous transitions as expected for this high temperature. To stabilize pyranose rings, restrains
on C1-C2-C3-C4 were applied. Details on ring puckering in constrained and unconstrained
high-temperature simulations were exemplified on sucrose (Supplementary Figure S6).

MD trajectories had a length of 50 or 100 ns (see details in Table 1) with snapshots written each
2 ps, thus producing 25,000 or 50,000 structures (frames) per simulation. To prove a writing step of
2 ps is enough, molecular dynamics with geometries recorded each 0.05 ps was also carried out for one
of disaccharides (4, α-D-Manp-(1-6)-β-D-Manp-OMe). Calculated NOEs were virtually identical to
those obtained from 2 ps frame rate (see RMSD values in Supplementary Table S13).

http://glycam.org
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3.5. DFT Calculations

Quantum mechanical processing of every trajectory frame is too resource-greedy to be used in
multiple MD simulations. In order to obtain a realistic representation of the modeled conformation
ensembles with minimal DFT calculations, all frames obtained in the MM3 force field at 300 K for
each molecule were aligned by all non-hydrogen atoms and clustered using k-means algorithm as
implemented in NbClust [63] package (distance = “Euclidean”, index = “silhouette”). All cluster counts
between 25 and 50 were taken into consideration, and the cluster assignment corresponding to the
optimal index was used at the next stage. Optimal number of clusters was 29 for 1, 27 for 6, 26 for 4 and
11, and 25 for all other molecules. Structures closest (by Euclidean distance) to the cluster centers were
used as initial geometries in DFT calculations. DFT calculations were performed at PBE0-D3 theory
level [64,65] in def2-TZVP basis set [66] with water solvation effects included, using the solvation
model based on density (SMD) [67] and standard convergence criteria of 1.5 × 10−5 Harthree/Bohr in
Gaussian09 D.01 [68] software. PBE0 functional is known to provide accurate results in carbohydrate
modeling [9,69] and was recently shown to be well-grounded in theory [70,71]. After optimization
convergence, harmonic frequencies were computed at the same level of theory to ensure that located
structures correspond to the expected types of stationary points (minima) and were subsequently
utilized to compute quasi-harmonic [72,73] free energies, using GoodVibes program [74]. Boltzmann
analysis was done by using the resulting free energies to estimate which conformations contribute the
most to the NOEs via weighted averaging. Relative quasi-harmonic free energies of all located minima,
their ratios in solution at 300 K and their 3D structures are provided in Supplementary Materials,
section “DFT-Derived Minima”.

3.6. NOE Simulation and Comparison

All obtained geometries were analyzed by using R scripting language [75] with tidyverse [76]
package. For NOE calculation, values for each pair of protons were computed separately for each
frame, using the following equation [77]: NOEa(b) = r−6

ab /2
∑

i,a r−6
ai , where r is H–H distance, a is

an observed proton, and b is a saturated proton. Exchangeable protons (-OH, -NH2, and -COOH)
were not counted in this summation. Then NOEs were averaged from these values in all frames:
NOE =

∑
NOEa(b)/n, where n is a number of frames (typically 25,000). Prior to comparison,

both experimental (Supplementary Table S8) and simulated NOEs were normalized to the sum
of all NOEs observed upon saturation of a certain proton. This approach was undertaken to
improve reliability of comparison between calculated and experimental values in terms of RMSD.
When the sum of NOEs was presented, the simulation values were also validated by summing the
indicated proton intensities. The simulated NOEs were compared with the experimental ones using
root-mean-square deviation (RMSD) and relative RMSD according to the following formula [46]:

RMSDrel =
√∑

((NOEi −NOEiExp)/NOEiExp)
2/N, where N is a number of NOEs observed in

a molecule.

3.7. Ranking of NOE Simulation Results

The method score was derived from individual ranks of RMSD between calculated and
experimental NOEs of individual molecules: 64 points for 1st rank, 32 points for 2nd rank, etc.,
and 1 point for 7th rank; 8th and lower ranks produce a zero addend; the sum of points produces the
overall score. More details are available in Supplementary Table S10. This ranking scheme originates
from a multi-agent knapsack problem [78] with eleven voting molecules and arbitrary budget size. If each
molecule voted for a single best method only, the winner could not be revealed. To simplify the problem,
we assigned points to the seven top methods, using quadratic and linear models. In a quadratic model,
top rank gives more points than all other ranks together. In a linear model we used progression value
9, as it gave the highest rank (63) closest to that of quadratic model (64) (see Supplementary Table S10,
right side).
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3.8. Presentation

All plots were obtained with plotnine [79] and OriginPro (OriginLab Corp, Northampton, MA,
USA) [80].

A Microsoft Excel 2010 template (Supplementary Figure S7, and section “Trajectory Visualization”
in Supplementary Materials) was designed for quick visualization of abundance and energy maps;
their projections on ψ, ϕ, and ω axes and on ϕψ, ϕω, and ψω planes; dihedral scatter data; and
transition rate. The input data to be pasted into the template are dyads or triples of torsions, one per
trajectory frame. Excel 3D Scatter Plot 2.1 (https://www.doka.ch/Excel3Dscatterplot.htm) scripts were
used for [ψ,ϕ,ω]-scatter.

4. Conclusions

The ideal saccharide conformation prediction method for massive and unmanned database filling
should fit the following criteria: simulation accuracy, computational performance, and easiness
of automation. We probed the simulation accuracy of methods by comparison of predicted
and experimental NOEs of model disaccharides, and selected four candidates with maximal
accuracy: quantum-mechanic sampling, MM3 molecular dynamics with explicit and implicit solvent,
and GLYCAM with explicit solvent. Although accuracy of MM3 dynamics with explicit and implicit
solvent models did not differ dramatically, we gave preference to explicit water simulations, as they
were more chemically correct.

In comparison to DFT sampling, which required much more computational resources,
execution-time difference between individual MD methods could be neglected. Moreover, DFT
required initial geometries generated by MD anyway.

From the point of view of automation, CHARMM was the least convenient, as it required
manual adjustment of parameter files for atypical residues. Meanwhile, almost half of the residue
types in bacterial saccharides are atypical in this context [81]. Amber and GLYCAM allowed easier
implementation of the calculation pipeline; however, it was impossible to avoid manual operations
fully, especially for charged molecules. Older general-purpose force fields outperformed the dedicated
ones in this viewpoint, as they allowed fully automatic parametrization.

Due to a combination of the above criteria, we have chosen MM3 molecular dynamics with explicit
water at 300 K as most favorable method for bulk conformational computations of disaccharides for
the automated database filling.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/20/
7626/s1.
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Abbreviations

CSDB Carbohydrate Structure Database
DFT density functional theory
GB general born
HCT Hawkins, Cramer and Truhlar
MD molecular dynamics
NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
NPT isothermal-isobaric (substance (N), pressure, and temperature are conserved)
QM quantum mechanics
PBE Perdew, Burke, and Ernzerhof
RESP restrained electrostatic potential
RMSD root mean square deviation
SMD solvation model based on density
TIP3P transferable intermolecular potential 3 point
TZVP triple-zeta valence polarized
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