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The influence of Coulomb 
interaction screening 
on the excitons in disordered 
two‑dimensional insulators
E. V. Kirichenko & V. A. Stephanovich*

We study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in 
two‑dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic 
(polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We 
consider 2D screened hydrogenic problem with Rytova–Keldysh interaction by means of so‑called 
fractional Scrödinger equation. Our main finding is that above synergy between screening and 
disorder either destroys the exciton (strong screening) or promote the creation of a bound state, 
leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the 
degeneracy (with respect to index µ ) of the exciton eigenenergies at certain discrete value of screening 
radius. Latter effects may also be related to the quantum manifestations of chaotic exciton behavior 
in above 2D semiconductor structures. Hence, they should be considered in device applications, where 
the interplay between dielectric screening and disorder is important.

In the last decade, the quest for ultra-thin, low-cost photovoltaic cells, light-emitting diodes, and other electronic 
 devices1,2 has stimulated much research on amorphous and disordered  semiconductors3–10. While significant 
progress has been made in the understanding many features of exciton diffusion and dissociation in them, 
important questions remain pertaining to the fundamental physics underlying devices functionality, especially 
for the geometrically confined structures like surfaces, interfaces, and quantum wells. For example, the role of 
Coulomb interaction and its screening in two-dimensional systems needs to be  addressed11. This is especially 
true for semiconductors, where the dielectric screening is particularly strong. The disordered semiconductors 
envisioned for photovoltaic applications, are primarily  polymers3,10,12–14. There are different kinds of disorder in 
these materials—even if the molecular composition of a sample is well controlled, there are still many kinds of 
unavoidable imperfections (like conformational and structural disorder, presence of chemical impurities, etc, 
see, e.g.15), which adversely influence the functionality of a corresponding electronic device.

To describe the above disorder, one usually invokes Gaussian distributions, which are sufficient for a not 
high concentration of disordered constituents. This is because such case corresponds to a weak (or absence of) 
disorder, where the width of the distribution function is always small, corresponding to an “almost deterministic” 
situation. If the concentration of defects and/or impurities is large, the randomness becomes high so that the 
width of the corresponding distribution elevates. In such case, the Gaussian approximation is often insufficient 
(see also below, "Disorder and heavy-tailed Lévy distributions" section) so that more general, Lévy-type distribu-
tions should be  utilized16. The random elementary trajectories of Lévy processes consist of continuous motions 
interspersed with long excursions, which are “responsible” for the so-called long tails of such distributions, see, 
e.g.17 and references therein. Under long tails we mean that Lévy distributions usually have power-law decay 
x−1−µ ( 0 < µ < 2 is so-called Lévy index), i.e. much slower than  Gaussian17. As the decay law of probability 
density function determines its width, we can see that the Lévy index µ is actually responsible for the width of 
the corresponding distribution. We note here, that at µ = 2 the Lévy distribution coincides with  Gaussian16,17, 
thus corresponding to weak disorder case. Since the width is directly proportional to the “degree of disorder” 
(i.e. “how random” our system is), we can assert, that the Lévy index µ determines that degree. In other words, 
the “more random” is our system, the more µ deviates from 2 (Gaussian case). The above weak decay implies 
that Lévy distributions have divergent variance, which is the subject of the generalized central limit theorem, 
proved by Lévy18. It turns out that Lévy distributions occur in many  physical19–22,  biological22,23, and  financial24,25 
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systems. Technically, latter non-Gaussian distributions appear in the solutions of so-called pseudo-differential 
equations with fractional  derivatives22,23, see below for mathematical details.

One more interesting application of Lévy processes is so-called fractional quantum  mechanics26, dealing 
in short with the substitution of the ordinary Laplacian with the fractional one in the stationary Schrödinger 
equation. The solution to such a problem, if it exists, represents the spectrum of a quantum system, subjected 
to the above strong disorder.

In the present paper, we account for disorder in 2D hydrogenic problem by substitution of the ordinary 
Laplacian by its fractional analog of order µ , in the corresponding Scrödinger  equation26. This implies, that we 
consider the disorder phenomenologically substituting the conventional Laplacian by the fractional one in the 
Schrödinger equation, describing the structure of an exciton.

Our main motivation is that while the influence of disorder on the excitons motion (like diffusion, which may 
become sub- or superdiffusion in disordered substances) is rather well studied, there is no model, describing the 
influence of disorder on the exciton spectrum by itself. The detailed discussion of this supposition is presented 
in the next "Disorder and heavy-tailed Lévy distributions" section.

As we pointed out above, the dielectric screening of Coulomb interaction plays the most fundamental role in 
semiconductors, determining, for instance, the exciton binding energy. On the other hand, it has been  shown27 
that in 2D case the screening, determined by Rytova–Keldysh  interaction28,29, is spatially nonlocal, which in the 
disordered case gives many nontrivial effects. In the present paper we study the synergy between disorder and 
dielectric screening in 2D semiconductor structures. For that we consider a 2D hydrogenic model with screened 
Coulomb potential, determined by Rytova–Keldysh  interaction28,29. Also, in our model, all kinds of disorder 
are mimicked by the introduction of the fractional Laplacian in the corresponding Schrödinger equation. For 
instance, if a substance has a small number of almost isolated (weakly interacting and sparsely located) defects 
or impurities, each of them serves as a trap for excitons. The same is true for excitons localization at the different 
inhomogeneities like dislocations, grain boundaries, interfaces, etc. In this case, the potential of inhomogeneity 
(or single defect as for small concentration they can be considered non-interacting) plays a role of additional 
localization factor for exciton. For such kind of problems, ordinary (i.e. nonfractional) Schrödinger equation 
gives a pretty good description of existing experimental  data30. On the contrary, when we are dealing with sub-
stantial substance amorphization (strong disorder), the exciton spectrum cannot be described adequately by the 
ordinary Schrödinger equation. Needless to say, that the synergy between dielectric screening (which is especially 
important in 2D dielectrics) and strong disorder may lead to unexpected outcomes.

Note that electrons in highly disordered substances are located not in an ordered crystalline potential, but 
in the random field of impurities. This implies that in this case, the potential is no more periodic so that Bloch’s 
theorem is no longer valid. Therefore, electronic states are not expected to be periodic (with ideal ordered lat-
tice potential periodicity) Bloch functions. This means, in turn, that in amorphous substance, the band theory 
of solids, based on the above translational symmetry, is inapplicable, see, e.g.31. In other words, strong disorder 
destroys any symmetry of the initial (before, say, doping) crystalline structure. Thence, highly disordered (say, 
amorphous) semiconductors of any original symmetry behave similar to each other, resembling, say, isotropic 
ceramics. That is why for our purposes it is sufficient to consider the simplest possible two-band effective mass 
model of an exciton.

Here we consider theoretically the joint action of disorder and Coulomb interaction screening in the 2D 
dielectrics. The special emphasis is made on the above considered semiconductor interfaces and heterostructures.

Disorder and heavy‑tailed Lévy distributions
The most important question of the present consideration is how fractional derivatives, generating heavy-tailed 
(i.e. decaying slower than Gaussian, typically in a power-law fashion x−1−µ , where x is any physical quantity 
like energy or potential barrier height) Lévy distributions, are related to the disorder. The common wisdom is 
that disorder is a lack of regularity. In this case, the above physical quantities are not under precise control so 
that the properties of such disordered systems are described in terms of distribution functions. The goal now 
is to predict global properties shared by almost all such systems, i.e. to acquire knowledge of universal features 
independent of the precise realization of the disorder. If the disorder is weak (i.e. a crystal has a small number of 
noninteracting defects and/or impurities), its properties are well described by the Gaussian distribution func-
tion. As this distribution falls off rapidly, its width is usually modest so that uncommon, “highly disordered” 
configurations have (very) small statistical weights and do not contribute to the observable properties of such 
(ordered or weakly disordered) systems. In a highly disordered material, atoms are not arranged in crystalline 
periodic patterns but appear in random positions. This means that the actual statistical weight of the above 
“highly disordered” configurations grows, sometimes enormously. This large statistical weight is indeed described 
by the above non-Gaussian, heavy-tailed distributions. As we discussed above, in an amorphous substance, the 
electronic states are no more Bloch functions due to severe violation of the translational symmetry. The simplest 
model that describes the electronic states in the highly disordered matter was introduced by  Anderson32 and 
leads to the famous Anderson localization phenomenon.

Namely, the main theorem of  Anderson32 states that if the breadth of energy distribution W is around mean 
value V of the interaction potential between disorder constituents (i.e. the particles like electrons, excitons, spins) 
located at the sites of some lattice, the transport in such system is absent. Note that to this end, the specific form 
of the above energy distribution is not given, the only condition is that it should be sufficiently broad. In other 
words, in a system with the aforementioned strong disorder, having a wide enough distribution of its physical 
characteristics, all states are strongly localized. In our context, the above “disordered lattice” means considerable 
substance amorphization or other types of strong disorder, when defects or impurities, having large concentra-
tion, start to strongly interact with each other. Such a strong disorder implies that the above distribution function 
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of the energy or any other physical characteristic is strongly non-Gaussian. At this point, it is reasonable to 
assume that this distribution is Lévy one.

The next observation is that the Eq. (1) of seminal Anderson’s  paper32 is very similar (with respect to substitu-
tion t → it , i is an imaginary unit) to Langevin equation, governing the stochastic dynamics of the (in our case 
two-dimensional) coordinate r(t) of a particle

Here m is a particle mass and γ is a friction coefficient. Also, z(t) is a noise function, responsible for stochastic 
behavior. Once more, we assume that z(t) obeys Lévy statistics with probability distribution, most conveniently 
defined by its Fourier image or characteristic function f (k) = exp(−σµkµ/µ) , where k ≡ |k| and 0 < µ < 2 
is Lévy index,  see22,23,33 and references therein. The case µ = 2 corresponds to Gaussian distribution with vari-
ance σ . This characteristic function is valid for any space dimensionality. In 2D it generates following explicit 
expression

where J0(x) is Bessel  function34. Note that the distribution (2) at µ < 2 have an infinite variance as the corre-
sponding integral becomes divergent. For such heavy-tail distribution to have higher moments, we need some 
external potential (like in Fokker–Planck or Schrödinger equation), which “tames” the corresponding Lévy flight 
(common name for the processes, described by distribution (2)),  see35 and references therein. Both Eq. (1) of the 
 paper32 and Langevin equation (1) are stochastic differential equations. The probability density p(r, t) for the Eq. 
(1) is given by the (fractional for µ < 2 ) Fokker–Planck equation

Here |�|µ/2 is the fractional Laplacian, which in two dimensions reads

Here Ŵ(x) is Ŵ—function34, r is a two-dimensional vector. For µ = 2 the operator (4) gives ordinary 2D 
 Laplacian36. The details of the derivation of fractional Fokker–Planck equation (2) from Langevin equation with 
Lévy noise (1) can be found, for instance, in Ref.37. Such derivation reduces to the “extraction” of probability 
density from the noise characteristics. This “extraction” procedure is also present both in the derivation of 
ordinary Schrödinger equation from Feynman path  integral38 and in the derivation of fractional one by Laskin 
using the same construction but with Lévy  measure26. Moreover, the free versions (at potential V = 0 ) of both 
equations can be reduced to each other by obvious transformations t → it and D = �

2/(2m) . This means that 
we can safely assume that the substitution of the underlying Gaussian distribution by slowly decaying, heavy-
tailed one in the Schrödinger equation is equivalent to phenomenological account for (strong) disorder. In this 
case, the Lévy index µ serves as an indicator of the degree of disorder. Note that such suppositions have been 
made in Ref.39 in the context of spectral narrowing of nuclear magnetic resonance lineshape. The seminal paper 
of Sher and  Montroll40 is dealing actually with the same situation. Here we note one more pioneering  work41, 
considering the mesoscopic phenomenon of conductance of 1D quantum wire with the strong disorder. Namely, 
the randomness in the scatterers ensemble had Lévy distribution. It had been shown in Ref.41 that the conduct-
ance statistics in this case is governed primarily by the Lévy index (the scaling exponent in the notations  of41), 
which also signifies the degree of disorder.

The pictorial demonstration of this fact is shown in Fig. 2, where the radial part ψ00(r) of the ground state 
wave function of the 2D screened fractional hydrogen atom is reported. The main panel of Fig. 2 shows the pro-
gressive localization of ψ00(r) at Lévy index diminishing. At the same time, the inset shows the width W of initial 
Lévy distribution (2). The comparison of the inset and main panel of Fig. 2 demonstrates that as initial width W 
increases, the wave function becomes more localized, tending to Dirac δ function as µ → 1 . This shows that for 
our system the conditions of Anderson  theorem32 is fulfilled, which supports our assumption that the introduc-
tion of fractional Laplacian in the Schrödinger equation effectively describes disorder. Note, that the breadth of 
1D Lévy distribution, realizing for scalar quantities like energy, behaves qualitatively similar to the inset in Fig. 2. 
Moreover, our preliminary studies of continuous spectrum in the problem under consideration show that the 
corresponding wave functions start to localize at µ ≈ 1.9 , which is also related to the disorder. This means that 
as µ deviates from 2, the lower bound of the continuous spectrum starts to shift so that at µ → 1 only the small 
portion of continuous spectrum (if any at all) may remain. The answer to this question is so far unclear as we 
are dealing with the 2D system. It is well known (see, e.g.42) that in the 1D system at strong disorder all states are 
localized. This problem, however, is out of the frame of present consideration and will be published elsewhere.
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Theoretical approach
To model the problem of an exciton in 2D disordered dielectric, here we consider 2D fractional (mimicking 
disorder) hydrogenic problem, where the exciton “resides” in the xy plane. Geometry of our problem is shown 
in Fig. 1. The question about the form of interaction potential U(r) in the structure, shown in Fig. 1, is usually 
thought of as a solution of Poisson equation (see, e.g.43) �U(r) = −4πρ(r) , where ρ(r) is a total charge density 
at the point r , which is responsible for screening of the Coulomb interaction. The explicit form of the screened 
interaction potential U(r) had been found by  Rytova28 and subsequently by  Keldysh29. It reads

where r = |r| , β = e2/ε (e is electronic charge, ε is the dielectric permittivity of middle layer in Fig. 1),

(6)U(r) = −
πβ

2r0

[

H0

(

r

r0

)

− Y0

(

r

r0

)]

,

Figure 1.  Geometry of the problem under consideration. Thin semiconducting film of thickness d and 
dielectric permittivity ε is placed between substances with dielectric constants ε1 and ε2 . 2D radius-vector r in 
the xy plane is also shown.
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Figure 2.  Shown in the main panel is the radial part of ground state wave function for dimensionless screening 
radius ξ = 0.1 (see Eq. (27)) and different Lévy indices µ , shown in the legend. It is seen that as Lévy index 
decreases from µ = 2 (corresponding to the case of ordinary Laplacian in the Schrödinger equation) to µ = 1.4 , 
the ground state wave function becomes progressively more localized. It can be shown (see below) that at µ → 1 
the wave function tends to Dirac δ function. The inset reports the breadth of initial Lévy distribution (2) as the 
function of Lévy index µ . The breadth has been taken at the point, when the corresponding Gaussian (Lévy 
distribution at µ = 2 ) normalization equals to 0.999. This approximately corresponds to 3 σ in Eq. (2), where 
σ = 1.
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is the screening radius, see Fig. 1. Here H0(z) and Y0(z) are Struve and Neumann functions  respectively34. At zero 
screening r0 → 0 , the argument z = r/r0 of the functions H0(z) and Y0(z) tends to infinity so  that34

and

which corresponds to the ordinary 3D Coulomb interaction. As demonstrated  in43, in 2D layers of finite thick-
ness, the solution of the Poisson equation has the above 1/r form (rather than well-known logarithmic law, 
inherent in 2D  systems44) due to the presence of a hole (which, say, is our exciton “component”) at the origin. 
The case of fractional 2D exciton in the layers of finite thickness with unscreened interaction (9) has been con-
sidered in Ref.45.

At r0 → ∞ , the argument of the functions in (6) z = r/r0 → 0 . The asymptotics  reads34

where γ ≈ 0.5772 is the Euler’s  constant34. It is easy to see that this asymptotics corresponds to ordinary 2D 
Coulomb interaction in the form ln r , signifying the Green’s function of 2D Poisson  equation44. In other words, 
the Rytova–Keldysh interaction (6) gives the transition from ordinary 2D Coulomb interaction ln r in the case 
of infinite screening r0 → ∞ to the case of 3D one (“ordinary” Coulomb ∼ 1/r ) at zero screening r0 → 0.

Having potential (6), we can write down the fractional Scrödinger equation for our 2D fractional hydrogenic 
problem. It reads

where U(r) is defined by Eq. (6) and Aµ by (5). The Eq. (11) is a (singular as the integral in it exists in the sense of 
Cauchy principal value only) two-dimensional integral equation with fractional Laplacian having Lévy index µ . 
Latter index, in a sense, defines how far the fractional Laplacian deviates from ordinary one so that the eigenvalue 
problem (11) deflects from conventional 2D hydrogenic  one46. Note that if we define the fractional Laplacian (4) 
in 3D (1D) space, the Eq. (11) with properly tailored potential (that is to say, 3D or 1D Coulomb interaction) 
will give 3D (1D) fractional hydrogenic problem.

Indices n and m denote, respectively, the principal and orbital quantum numbers, which are different for any 
specific µ value. Below we shall see that for µ < 2 , the so-called Coulomb degeneracy is lifted and that is the 
reason why the eigenenergy E has now two subscripts. To be more specific, it can be shown that in the fractional 
case, the “accidental” Coulomb degeneracy (stemming from Runge–Lenz vector conservation for µ = 247,48) is 
lifted so that the eigenenergy starts to depend on the orbital quantum number. Note, that this feature does not 
preclude the rotational (around z or kz axis in our case) invariance of the Schrödinger equation so that its solu-
tions can still be separated on the radial and angular parts.

Here we use modified (for the fractional case µ < 2 ) Rydberg  units26, i.e. we measure the energy E and 
coordinates r in the units

respectively. Parameter β = e2/ε , while Dµ is a mass  term26. At µ = 2 units (12) convert into standard Rydberg 
units. Note that at µ = 1 both E01 and r01 in Eq. (12) are divergent. This is one more manifestation of the fact, 
that discrete spectrum of 2D quantum fractional hydrogenic problem exists at µ > 1  only45.

The Eq. (11) is indeed an integral equation, sometimes called pseudo-differential  one33. Moreover, the integral 
(4) exists only in the sense of Cauchy principal  value33,36, which is a source of additional difficulties in such equa-
tions solutions. To bypass this, here we transit to k = (kx , ky) space as the operator (4) becomes −kµ , where 
k ≡

√

k2x + k2y  . Although the second term in (11) converts to the integral in momentum space, it proves to be 
much easier to handle then initial one (4). This becomes clear if we consider the Fourier image of the potential 
U(r), which is much simpler, then initial expression (6):

The particularly simple expression (13) permits to do the angular integration exactly, i.e. without expansion 
over spherical harmonics,  see49 and references therein. Latter fact permits us to solve the corresponding fractional 
Schrödinger equation by the method similar to the case without  screening45.
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In dimensionless variables (12), the Fourier image of the Scrödinger equation (11) assumes the form

where V(q) = −4π/[q(1+ qr0)] is a dimensionless version of the Fourier image (13). Substitution of this image 
into the Eq. (14) generates following form of the Eq. (11) in momentum space

where ϕ and ϕ′ are asimuth angles of the vectors k and k′ respectively. Here, generalizing the case of ordinary 
( µ = 2 ) 2D hydrogen  atoms49, we denote

It can be seen that at µ = 2 and r0 = 0 , Eq. (15) gives the well-known momentum space representation of 2D 
hydrogenic problem with µ = 2 and unscreened “sheet” Coulomb interaction (9)49.

For any central (i.e. spherically symmetric) force potential (which is also the case for potential (13)), the 
angular and radial variables (in k space in our case) can be separated so that we can look for a solution of the 
Eq. (15) in the form

As usual in hydrogenic problems, radial functions ψnmµ(k) are real. The normalization condition for these 
functions read

Substitution of ansats (18) into Eq. (15) yields

Here for clarity, we suppress the subscripts n,µ.
Note that in “ordinary” (non-fractional) 3D quantum hydrogenic problem, the corresponding Scrödinger 

equation is usually solved by stereographic projection method, which is due to  Fock48 (see also Ref.49 for 2D 
case and Ref.50 for multidimensional case). In this method, the problem can be solved exactly using spherical 
harmonics  expansion48–50. It can be shown that in 2D screened case (13), such stereographic projection is impos-
sible. The same is true for fractional case µ < 2 . It turns out, however, that the simple form of Fourier image 
of Rytova–Keldysh potential (13) admits the possibility of exact analytical calculation of the integrals Im(k, k′) 
(21) for each specific m. This permits to easily solve the problem numerically as it now reduces to the effective 
one-dimensional integral  equation51. The integral for m = 0 yields

where �(m, n) is a complete elliptic integral of the third  kind34. The asymptotics of the integral I0(k, k′) (23) for 
unscreened case r0 = 0 has the  form45

where K(m) is a complete elliptic integral of the first  kind34. Note that at k = k′ the argument of the complete 
elliptic integral in (24) equals to 1, which implies that K is divergent. This reflects the spherical harmonic series 
divergence at k = k′ for unscreened case. In the screened case (23) the situation is more complicated as func-
tion �(m, n) is divergent at both m = 1 and n = 1 . However, as it can be shown, these divergences are well 
compensated by other parts of corresponding integrands. We note also, that function �(m, n) has different 
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representations at different values of its parameters, see Ref.34 for details. This fact should be taken into account 
in numerical calculations.

The expressions for the integrals Im(k, k′) at arbitrary m can also be obtained in closed form, although the 
expressions for higher m’s become more and more cumbersome. After lengthy calculations, we arrive at the 
following form for I1(k, k′)

The set of Eq. (20) define (for each specific m) the spectrum of fractional 2D screened hydrogen atom for 
that particular m and all n ≥ m . To be specific, the equation for m = 0 (see (20) and (23)) defines the wave func-
tions ψ00µ (ground state), ψ10µ , ψ20µ etc. The equation for m = 1 determines ψ11µ , ψ21µ , etc. The same is true 
for higher m.

Equation (20) is the main theoretical result of the present consideration. As we shall see below, it is especially 
useful in our case of screened Coulomb interaction as it reduces the problem solution to the 1D integral equation, 
which numerical solutions behave well, see below.

Solution of the spectral problem
Let us pass to numerical solution of the set (20) for each specific m. For that we introduce k/k0 = x , k′/k0 = y , 
which yields

where κ0 = k
µ−1
0  so that the eigenenergy E = −κ

µ
µ−1

0  . The functions Im(x, y) are defined by the expression (21). 
The Eq. (26) has been solved numerically by discretization and subsequent solution of the spectral problem for 
the obtained matrix, see Ref.51 for details. The explicit form of the equation for m = 0 reads

The same for m = 1 has the form

where the parameters ξ , n and m are defined by (27).
It is instructive to consider the known case of “ordinary” (i.e. with normal Laplacian in the Schrödinger equa-

tion) 2D hydrogen atom with unscreened Coulomb interaction. Such spectral problem is well studied  (see46 for 
coordinate space  and49 for momentum space) and its energy spectrum in our Rydberg units reads

Figure 3 shows the ground state energy (proportional to exciton binding energy) as a function of Lévy index 
µ (a) and dimensionless screening radius ξ (b). Similar to the case without  screening45, the discrete spectrum in 
our problem exists at 1 < µ < 2 . Also, at µ = 2 and ξ = 0 (case of “ordinary” 2D quantum mechanical hydrogen 
atom) the exciton ground state energy equals to -4, which follows from Eq. (29). It can be shown that at ξ = 0 
and µ = 2 our numerical calculation gives correct values for the entire spectrum (29) within 1% accuracy. This 
fact can be thought of as a consistency check for our numerical solution.

It is seen from Fig. 3a that for relatively small screenings 0 < ξ < 1.5 the ground state energy goes to minus 
infinity at µ = 1 . At the same time at ξ = 1.5 , this energy goes to zero which means that strong screening “kills” 
the bound state between electron and hole in an exciton. Our analysis shows that this is the consequence of 
the competition between disorder (defined by fractional Laplacian) and screening effects. Namely, while the 
former deepens the “potential well”, where the bound state exists (say, it promotes the bound state), the latter (at 
large screenings) makes this well become shallow so that the bound state becomes progressively “less bound” 
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as ξ increases. It can be shown that at ξ ≤ 1.42 the ground state energy goes to minus infinity at µ = 1 (weak 
screening, disorder prevails, making the exciton particularly stable), while at ξ > 1.42 (strong screening) the 
situation is opposite, which is shown by the curve for ξ = 1.5 . At ξ > 1.5 the ground state energy in the entire 
domain 1 < µ < 2 tends to zero.

The second important effect is energy levels  crossing52, which is seen in Fig. 3b. The crossing occurs around 
ξ = 1.18 for all admissible 1 < µ < 2 . That is to say, in the point ξ = 1.18 we have the infinitely degenerate (for 
all continuously varying 1 < µ < 2 ) ground state energy of an exciton in a 2D system. As the ordered case cor-
responds to the only µ = 2 , we can assert that the energy level crossing in our system occurs as a result of the 
synergy between disorder (mimicked by fractional Laplacian with Lévy index µ ) and screening. Note that there 
is no energy levels crossing without screening in the disordered 2D  excitons45.

Figure 4 portrays the energies of the first excited state, corresponding to n = 1 and m = 0, 1 . The main effect 
here is lifting of orbital degeneracy due to nonconservation of the Runge–Lenz  vector47. To be specific, if for 
µ = 2 and ξ = 0 , the energy is independent of orbital quantum number m (see Eq. (29)), this is not true for µ < 2 
(disorder) and ξ  = 0 (finite screening). In other words, in our problem, the Runge–Lenz vector nonconservation 
comes from both disorder and finite screening effects. This fact should be taken into account while designing 
optoelectronic devices based on disordered heterostructures, interfaces and other 2D semiconductor structures. 
Note, that nonconservation of Runge–Lenz vector does not mean the nonconservation of z -projection of angular 
momentum, i.e. central symmetry of the problem. Latter conservation law is reflected in the independence of 
energy of the sign of orbital index m, i.e En,m = En,−m ; it is lifted, when time inversion symmetry is broken by, 
e.g., external magnetic  field47.

The energy level crossing is also present for the states with n = 1 . They occur both for different ξ at µ ≈ 1.95 
(Fig. 4a) and different µ at ξ ≈ 0.3 for energy level E10 as well as ξ ≈ 1.25 for energy level E1,±1 , Fig. 4b. The 
electron-hole bound state destruction by strong screening is also present in the first excited state, although the 
picture is more diverse (then in the ground state) as now orbital index m comes into play. Namely, if the energies 
E10 are less susceptible to screening (they go to zero at µ = 1 for quite strong screening ξ = 1.5 ), the levels E1,±1 
go to zero already at ξ = 0.5 , showing higher sensitivity to screening effects. This feature becomes especially 
notable at strong disorder around µ = 1 , where (for instance for small screenings ξ = 0.5 ) the energy E10 goes 
to zero, while E1,±1—to minus infinity. This means that at strong disorder and finite screening, our 2D excitons 
are more stable for higher values of orbital quantum number m. Our numerical analysis shows that this effect 
realizes for higher excited states also. Of course, for higher n this effect is even more diversified as now we have all 
m < n at our disposal. The latter feature is also important for the proper functioning of different optoelectronic 
devices, based on disordered 2D structures. It can also be shown, that energy level crossing (having again much 
more crossing points than for n = 1 ) occurs also for higher n > 1.
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Figure 3.  Ground state energy (in the units E0µ (12)) as a function of Lévy index µ (a) and dimensionless 
screening radius ξ (b). Figures near curves define the screening radius (panel (a)) and Lévy index (panel (b)). 
Inset to panel (b) details the behavior of ground state energy at ξ > 0.9 , where energy levels crossing occurs 
approximately at ξ ≈ 1.15 . Levels crossing point is the same for all 1 < µ < 2 and occurs for finite screening 
only.
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One more interesting feature is seen in Fig. 4b. Namely, while E10 grows monotonously at screening radius 
ξ increase, the energy E1,±1(ξ) is notably nonmonotonous having minimum around ξ = 0.5 , which depends 
on Lévy index µ . The higher is µ deviation from 2, defining the degree of disorder, the deeper is minimum. In 
other words, we see that the branch E1,±1 has lower energy than that of exciton in the ordered 2D model without 
screening. It can be shown that this feature occurs also for E2,±2 , E3,±3 and possibly higher excited states. This 
shows that the synergy between disorder and  (nonlocal27) screening in two dimensions minimizes the energy 
(as compared to the ordered unscreened case) for some values of orbital quantum number m. This effect is also 
very important for the devices, using transitions (like dipole ones between m and m± 1 ) between levels with 
different m’s.

The remark about the validity of our fractional hydrogenic model is in place here. We recollect Laskin’s 
construction of fractional quantum  mechanics26, which uses Feynman path integration but with Lévy measure. 
Since the tails of Lévy distributions are much “heavier” than Gaussian, the corresponding distribution func-
tion (which in resulting Schrödinger equation yields a wave function) spans over many lattice constants. In the 
preceding discussion, we have shown that one of the sources of Lévy (rather than Gaussian) distributions is 
strong disorder, i.e. the situation when almost all lattice sites are occupied by impurities and the lattice by itself 
is highly distorted. In this case, Laskin’s construction generates the “enveloping function” giving a good aver-
age description of such systems. In that sense our model, based on fractional quantum mechanics, presents the 
result of “smearing” the microscopic disorder in a 2D semiconductor, representing it as some effective medium. 
The price which we pay for that is the substitution of the ordinary Laplacian by its fractional counterpart in the 
corresponding Hamiltonian. Note, that the present approach is complimentary to microscopic  one53,54, where 
the explicit averaging over disorder had been performed within the so-called fluctuating field method. There, for 
the case of strong disorder, the distribution function also appeared to be non-Gaussian. However, in the above 
microscopic treatment, additional suppositions about averaging over impurity configurations had been made, 
see Refs.53,54 for details. At the same time, present construction, being phenomenological by its nature, does not 
make any assumption about specific properties of (strong) disorder constituents.

The smallest distance between the above disorder constituents in a crystal lattice is lattice constant, which is 
around 5 Å. This implies that our model is valid at the distances, where the lattice discreteness is unimportant 
(which is true at strong disorder), i.e. around 50 Å, which is 10 lattice constants. At such distances, due to dis-
order averaging, also the Anderson  localization32 occurs. Likewise, in our model, at µ ≈ 1.2 , the disorder yields 
so much localization (exciton collapse), that our model breaks down. Note that the Rytova–Keldysh model also 
does not describe screening correctly at distances around lattice constant. This is because this model utilizes a 
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continuous approach to the charges interaction. In this approach, the notion of dielectric permittivity is used, 
which is macroscopic (or at least mesoscopic such that lattice discreteness does not enter) in its nature. To be 
specific, in order to describe a substance in terms of its permittivities (dielectric, magnetic, etc), the effective 
averaging over underlying lattice discreteness should be  performed55. In momentum space, this corresponds 
to small wave vectors as compared to the size of the Brillouin zone. In real space, this length-scale is different 
for different substances and by order of magnitude corresponds to screening  radius43. For instance, for layered 
transition metals dichalcogenides like WS2 such radius is around 40Å56, i.e. once more about 10 lattice constants.

Our analysis shows that the qualitative shape of the exciton wave functions is different for strong (when 
corresponding energy goes to zero at µ = 1 signifying the exciton ionization, i.e. bound state destruction, see 
Figs. 3, 4) and weak screenings, where, on the contrary, exciton collapses as its energy tends to minus infinity. In 
both screening regimes, the wave functions are sensitive to the Lévy index µ . Namely, for weak screening, as µ 
diminishes from 2 to 1, the wave functions become progressively less localized in k space. Also, their amplitudes 
diminish as µ → 1 so that the wave functions become almost delocalized with zero amplitude. This situation 
corresponds to “extra strong” localization in coordinate space, where ψ(r) degenerates into (almost) Dirac δ
—function, reflecting the exciton collapse, i.e. “falling” of the electron on the hole in it. The situation is opposite 
for strong screening, where in momentum space the wave function acquires Dirac δ function shape as µ → 1 , 
which in coordinate space correspond to the almost delocalized wave function, corresponding to exciton ioni-
zation. Hence, the interplay between screening effects and disorder (mimicked in our approach by fractional 
Laplacian with Lévy index µ ) may lead either to exciton ionization or its collapse for the strong disorder. That is 
to say, the synergy between screening and strong disorder (like substance amorphization, which is common for 
semiconductor interfaces, where high mechanical stresses occur) may destroy (either ionize or collapse them, 
depending on the relation between screening radius ξ , Lévy index µ and orbital quantum number m, see above) 
the excitons, which may preclude the functionality of the devices like solar cells and/or light emitting diodes.

Discussion: relation to experiment
The above solution permits calculation of the observable characteristics of the excitons. One of the important 
characteristics is the exciton binding energy. This quantity is proportional to the exciton ground state energy and 
defines the work needed to remove a bound electron to infinity. The latter quantity has been already calculated 
and is reported in Fig. 3. One more important physical characteristic is the exciton localization radius. This 
parameter is a mean value of exciton radius-vector r in the ground state n = m = 0

To obtain the expression (30), we have integrated over the angle ϕ . The results of numerical calculations 
of r̄ are reported in Fig. 5. It is seen that while at screening radii ξ < 1.5 the exciton localization radius decays 
monotonously as µ (mimicking the degree of disorder in our problem) approaches 1, at ξ = 1.5 it starts to grow 
signifying the exciton ionization at µ = 1 . This is a reflection of the fact, that the joint action of strong screening 
and disorder destroys the bound state in an exciton, leading to its ionization at µ = 1 . This effect has already been 
shown in Fig. 3, where ground state energy at ξ = 1.5 and µ = 1 was zero. Note that at the same time, at weak 
screening, the disorder strengthens the bound state (this may be thought of as a kind of Anderson  localization32), 
leading to exciton collapse at µ = 1.

To understand better the physical situation with exciton collapse, we recollect that the bound (localized) 
state in quantum mechanics corresponds to negative energy, E < 047. Our numerical calculations of the exciton 
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localization radius in Fig. 5 show that the latter quantity diminishes as µ → 1 , giving exactly zero (say, “infinitely 
localized state” of zero spatial extension) at µ = 1 and screening radius ξ = 0 . So, the phenomenon of exciton 
collapse, corresponding to an “infinitely localized state” must have infinitely large negative energy. This is actu-
ally seen in Fig. 3. Our analysis for higher excited states with n > 1 shows the same tendency. Most probably, in 
real 2D structures having different kinds of disorder (say, defects and/or impurities at the interface), the exciton 
may be trapped and recombined before its actual collapse. The experimental and theoretical (inclusion of other 
sources of disorder in our model) studies of this interesting question should be carried out.

The inset of Fig. 5 portrays the dependence r̄(ξ) at two fixed values of Lévy index µ : µ = 2 (ordered case) and 
µ = 1.5 . In both cases, exciton localization radius grows with ξ in accord with Figs. 3 and 4, where it is shown 
that screening breaks bound state between electron and hole in an exciton. Also, in disordered case ( µ = 1.5 ) 
the exciton localization radius is smaller than that for µ = 2 for the same ξ . This shows that the synergy between 
disorder and nonlocal screening (peculiar to 2D  case27) stabilizes the exciton. Our estimations show that for typi-
cal (not very strong, when exciton collapses) strength of disorder µ = 1.5 , the screening radius r0 , corresponding 
to dimensionless ξ =1.5 is 50 Å, which is in qualitative agreement with values, known from literature sources 
30 Å < r0 < 80 Å57, see also below.

The recent discovery of high photovoltaic efficiency in organic - inorganic halide perovskites like methyl-
ammonium lead iodide ( CH3NH3PbI3)57–59 requires knowledge of how the disorder influences their excitonic 
properties, which are responsible for solar to electric power conversion in them. The exciton properties of halide 
perovskites are still the subject of intense research and active debate, see, e.g. refs.60,61. Along with aforementioned 
halide perovskites, other good candidates for optoelectronic applications are 2D transition metal dichalcogenides 
(TMD) like MoS2 , WS2 and WSe2

57. In these substances, the excitons have high binding energy, which makes 
them extremely thermally stable. However, the influence of defects and other disorder on these excitons proper-
ties (like their relaxation and decoherence mechanisms) is still unknown to a larger extent. In the physical units, 
the typical exciton binding energy in 2D dichalcogenide semiconductor WS2 is around 0.32 eV, which is much 
more than that (around 0.05 eV) in ordinary 3D  materials56. This makes 2D TMD materials to be good candi-
dates for optoelectronic and photonic devices at room temperatures. The in-plane exciton localization radius in 
them is of the order of 5  nm56,57. The numerical calculations with potential (6), performed in Ref.56, show that 
such Wannier-Mott like exciton can be well realized in atomically thin WS2 (and other  TMD62) monolayer with 
screening radius r0 ≈ 75 Å. The other sources  (see57 and references therein) list r0 to be in the range from 30 to 
80 Å, obtained from ab initio calculations.

Discussed physical properties of an exciton in 2D materials, related to the interplay between 2D nonlocal 
screening and disorder can play a role in multiexciton configurations. For example, they can be relevant for 
interaction between distant 2D excitons in the above interfaces or semiconductor-based ultrathin films. Indeed, 
the exciton radii (around 5 nm, which is of the order of 10 lattice constants) presented in Fig. 5 are characterized 
by dipole moments er̄ , enhancing intrinsic electric fields of the excitons and their interactions. On the other 
hand, these fields will be screened nonlocally so that many defects and impurities will fall in the span of exciton 
radius. As we have mentioned above, in the semiconductor structures with different degrees of disorder (different 
Levy indices µ in our formalism) such a random screened exciton–exciton interaction may lead either to their 
ionization (high screenings) or to the collapse (low screening) at µ = 1 . This for sure will have a detrimental 
effect on the optoelectronic and/or spintronic device functionalities.

Conclusions
The message of the present paper is that the synergy between the nonlocal screening of 2D Coulomb interaction 
and disorder in semiconducting (generally speaking dielectric) surfaces, interfaces, thin films, and multilayers 
has novel properties, which do not occur either in 2D unscreened ordered case or in 3D one. Our main sup-
position here is that Laskin’s construction of path integrals with Lévy  measure26 is equivalent to “extraction” 
of probability density function from fractional Langevin equation and, in turn, to the assumptions made in 
seminal Andeson  paper32. This (along with the fact that as the width of initial distribution grows, the exciton 
wave function becomes more and more localized, see Fig. 2) permits us to assert that fractional Schrödinger 
equation accounts for disorder phenomenologically with Lévy index µ being the measure of the degree of dis-
order. The fact that initial Lévy distributions do not have higher moments of order α > µ22,23,33 show that such 
construction describes the systems with broad (wider then Gaussian) distribution of its “Brownian paths” in a 
generalized Lévy sense. It is almost sure that the physical origin of such broad distribution in solids is disorder. 
The presence of potential U in the system “tames” the initial Lévy distribution, making it decay faster than that 
in a corresponding free  problem35,37. In other words, here once more we have an interplay between the “breadth 
of disorder distribution”32 and system potential, which makes the probability distribution (square of modulus 
of the corresponding wave function) decay faster in space. This makes the problem of a fractional Schrödinger 
equation resemblant to Anderson localization in disordered systems.

In this context, the very interesting work in mesoscopic  physics41 should be mentioned. This work pioneers 
the application of Lévy (rather than Gaussian, which are always employed in these kind of problems) distribu-
tions for the calculation of conductance through disordered quantum wires.It had been shown  in41, that the 
distribution of conductances is entirely due to standard average < lnG > (G stands for conductance) and Lévy 
index, which is (similar to the present problem) “responsible” for the degree of disorder. All other microscopic 
characteristics of the defect ensemble were shown to be irrelevant. This means that the theoretical method  of41 is 
similar to ours in the sense that it gives the effective averaging over disorder without any additional assumptions 
about its (disorder) microscopic details.

In our problem, one of the physical effects of the interplay of Coulomb interaction screening and disorder 
is the possibility for exciton to collapse at weak screening or to break up at strong one. As stated above, these 
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effects cannot be realized in ordered substance, i.e. at µ = 2 . The next important effect is energy levels  crossing52, 
appearing also due to the joint action of Coulomb screening and disorder. The latter effect is related to the 
levels repulsion and their non-Poissonian statistics, inherent in quantum chaotic systems. This might point to 
the possible chaotic features of exciton motion in the above 2D dielectric structures, especially in the presence 
of spin-orbit  interaction63. The point is that recently such chaotic features have been found in the excitonic 
spectra of 2D structures with unscreened Coulomb interaction, but with the inclusion of Rashba spin–orbit 
 interaction64,65. In context of free electrons and holes, the role of latter interaction in 2D electron gas confined 
in GaAS quantum well had been studied  in66. This suggests a generalization of the present problem. Namely, the 
spin–orbit interaction term can be added to the corresponding fractional Schrödinger equation. In this case, the 
solution will be more sophisticated as the wave function will be spinor  now65 although the problem can possibly 
be solved in the momentum space similar to the present consideration. Such a problem turns out to be extremely 
important for the above classes of  substances67 where chaos can even disrupt the functionality of corresponding 
optoelectronic and/or photovoltaic devices. It has been  shown65 that the description utilizing the “ordinary” (i.e. 
that both with conventional Laplacian and unscreened Coulomb interaction) hydrogenic problem does not show 
strong quantum chaotic features like non-Poissonian energy level statistics, see, e.g.,68. This may be related to 
the fact that proper description of such features is possible only within excitonic models, containing fractional 
Laplacians and screened Coulomb interaction, inherent in the majority of semiconductors. Similar to the above 
“chaotic models”, which stem from averaging over different microscopic disorder realizations, our 2D fractional 
hydrogenic model is limited to the distances of about 10 lattice constants i.e. around 40-50 Å. This is because at 
such distances, the description in terms of material constants (like permittivities ε ) is possible and on the other 
hand, the effective averaging over disorder have been performed resulting in the fractional Laplacian introduc-
tion in the Schrödinger equation.

The described effects can play an important role in the relaxation of the energies of electron and hole, bound 
in an exciton. In a disordered 2D substance, instead of a process with well-defined time dependence, the energy 
relaxation from a highly excited to the ground state may become chaotic. This can obviously hinder useful pho-
tovoltaic processes (like conversion of solar energy to electric one) since the disorder may reduce the control-
lability of the photovoltaic performance.

There is a significant corps of articles, devoted to optical properties of excitons in geometrically confined 
environments like quantum wells (2D)69,70 and quantum wires (1D)71,72 with the disorder, introduced either by 
fluctuations of the quantum well  width70 or random  potential69. These kinds of disorder had been treated within 
the formalism, based on ordinary Schrödinger equation with subsequent averaging over  disorder69, see Ref.73 for 
details of averaging procedure  in70. Moreover, the randomness of the potential in Ref.69 was of the white noise 
type (see expression (12)  of69) with ordinary (i.e. non-fractional) Gaussian fluctuations. The main qualitative 
features of the above considerations coincide with our results. Namely, the more disorder is in the system, the 
“more localized” in r space the exciton wave function is. Although here we study the spectrum of the 2D frac-
tional hydrogenic problem, this study has been fulfilled in the environment with highly non-Gaussian fluctua-
tions. The results obtained here will in the future be used to calculate the observable characteristics (like spectra 
of absorption, radiative lifetimes, etc) of the excitons based on our model of fractional Schrödinger equation.

An interesting generalization of our 2D fractional hydrogenic problem is consideration of exciton-phonon 
bound states—so-called excitonic polarons, see Ref.74 and references therein. As the coupling between an elec-
tron and a hole in such polaron occurs via flexural phonon modes, which are spread between several (usually 
two) TMD monolayers, this problem may be considered an intermediate between 2D and 3D situations. Once 
more, the introduction of fractional Laplacian to the corresponding Schrödinger equation (and eventually to 
the equations, governing the properties of phonons) can be important to consider the effects of disorder, which 
in such bilayer structure may change the optical absorption and emission spectra drastically, see Ref.74 and 
references therein.

One more generalization of the problem considered is to address the 3D fractional quantum-mechanical 
hydrogenic problem with screened Coulomb interaction. This problem is important for Rydberg excitons 
(described by the quantum mechanical Kepler problem, see, e.g.75) in amorphous (i.e. highly disordered) bulk 
semiconductors. This additional dimension may generate certain subtleties (for instance the system may be prone 
to chaos,  see64,65) as compared to present 2D screening, especially in the presence of Rashba spin-orbit  coupling7.

Methods
The details of our theoretical methodology and those of working with fractional derivatives and fractional 
Laplacians, in particular, have been described in the “Theoretical approach” section. The numerical solutions 
of spectral problems for integral equations have been conducted using the commercial Mathematica software 
package. We perform the numerical solutions for each specific m (orbital quantum number). Note that numerical 
calculations have been performed in dimensionless variables (12).
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