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Occupying the interface between host and environment, host-associated
microbes play fundamental roles in nutrient absorption, essential metabolite
synthesis, development of the immune system, defence against pathogens
and pathogenesis. Microbiota composition and function is rather stable
during adulthood, while it dramatically changes during early development,
frailty and disease. Ageing is associated with progressive decrease of homeo-
stasis, often resulting in disruption of the physiological balance between host
and commensal microbes, ultimately leading to dysbiosis and host demise.
Generally, high microbial diversity is associated with health and a youthful
state, while low individual microbial diversity and larger inter-individual
microbial diversity is associated with ageing and disease states. Different
species are equipped with species-specific commensal, symbiotic and patho-
genic microbial communities. How and whether the specific host–microbiota
consortia co-evolved with host physiology to ensure homeostasis and promote
individual fitness remains an open question. In this essay, we propose that the
evolution of vertebrate-specific immune adaptations may have enabled the
establishment of highly diverse, species-specific commensal microbial commu-
nities. We discuss how the maintenance of intact immune surveillance
mechanisms, which allow discrimination between commensal and pathogenic
bacteria, fail during ageing and lead to the onset of known ageing-related dis-
eases. We discuss how host–microbiota interactions are key to maintaining
homeostasis despite external perturbations, but also how they affect a range
of host-specific ageing-related phenotypes.

This article is part of the theme issue ‘The role of the microbiome in host
evolution’.
1. Introduction
The evolution of the adaptive immune system provided vertebrates with a novel
molecular and cellular toolbox to deploy efficient and long-lasting defence
responses against parasites and pathogens. At the same time, the emergence of
lymphocyte-based adaptive immunity was instrumental to the establishment of
host-specific, highly complex commensal microbial communities. Whether also
microbes that are part of commensal microbiota (e.g. immune-modulating
microbes in the mammalian intestines) co-evolved with the host is still an open
question. Highly diverse microbial communities associated with vertebrate
epithelia gave access to a staggeringly vast range of microbial metabolites and
molecular intermediates, allowing for a significant upgrade of the biosynthetic
pathways encoded by the host’s genome alone. However, while the establishment
of a complexmicrobiota composition led to the acquisition of a large set of signifi-
cant advantages, it also camewith new costs. Imbalance in the complex signalling
pathways that regulate the adaptive immune system can lead to dysfunctional
responses towards pathogens and commensals, ultimately resulting in disease
and death. The significant changes in microbiota composition occurring during
ageing could thus be a direct consequence of the long evolutionary history
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Figure 1. Host-specific microbiota. Coevolution of microbes and multicellular hosts leads to mutualistic relationships. The host builds a dynamic ecological niche
which provides nutrients and a stable environment to the microbes. The microbiota, in turn, provide nutrients and novel metabolic pathways. Clockwise, from top
right: legume roots establish symbiotic interactions with Rhizobia bacteria in the soil, which fix nitrogen to molecular forms accessible to the plant. Species-specific
microbiota in the hydra modulate spontaneous body contractions and prevent lethal fungal infections. In sap-feeding aphids, endosymbiotic Buchnera provide the
host with essential amino acids lacking in the sap. Protists and flagellates in termites ferment lignocellulose from wood. The bobtail squid hosts symbiotic colonies
of bioluminescent Aliivibrio fischeri in its light organ, helping with defence and hunting behaviours. In ruminants, cellulose-fermenting bacteria digest fibre-rich
plants into host-accessible metabolites, such as short-chain fatty acids (SCFA). Commensal microbes in the human intestine provide nutrients like SCFA, secondary
bile acids and essential vitamins. This figure was generated with BIORENDER.
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shared between vertebrates and their complex, species-specific
microbial communities.
2. Host–microbiota interactions have a long
evolutionary history

Microbial communities have inhabited our planet for over 3 bil-
lion years, long before the emergence of multicellular life.
Endosymbiosis was key for the origin of eukaryotes, leading
to the evolution of organelles, enabling cellular structural and
functional compartmentalization [1–3], and providing host
cells with new metabolic pathways. Given the ubiquity of
microbes in the environment, eukaryote evolution happened
within the context of a microbial biosphere. The interdepen-
dence between multicellular hosts and specialized microbiota,
however, goes far beyond the intracellular level, spanning the
whole tree of life (figure 1). Simple aquatic multicellular organ-
isms, such as sponges and Cnidaria, are immersed in a vast and
diverse microbial ecosystem, and their biology is strictly depen-
dent on these communities. Mutualistic interactions between
bacteria and simple or complex eukaryotes have repeatedly
evolved over time, providing benefits to both sides. The pro-
found ecological and physiological interdependence between
multicellular organisms and prokaryotes have led to the emer-
gence of the concept of the metaorganism or holobiont [4]. The
microbial–host mutual interactions are not unique to simple
aquatic organisms. Terrestrial invertebrates, such as sap-feed-
ing aphids, need endosymbiont Proteobacteria of the genus
Buchnera to synthesize essential amino acids, which are lacking
in the sap that aphids feed on. In return, aphids provide a stable
ecological niche to their bacterial partner. This partnership is
obligate for either side, as it is necessary for reproduction and
survival [5]. Obligate symbioses occur frequently among
insects, like in the charismatic case of leafcutter ants of the
genera Atta and Acromyrmex, which strictly depend on their
domesticated fungal cultivars as food source [6]. Paradigmatic
cases of host–microbe coevolution are those of bobtail squids,
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Figure 2. Host–microbiota interactions under homeostatic and dysbiotic conditions. (a) Under homeostatic conditions, the intestine shows a well-balanced interplay
between host and microbiota. The host allows specific microbes to reside in the lumen, which in turn provide nutrients, such as short-chain fatty acids (SCFA), and
help the defence against pathogens contributing to colonization resistance. To ensure proper homeostasis, the host actively selects for specific commensal bacteria—
resulting in a diverse commensal community—while keeping the bacteria at a safe distance through the intestinal gut barrier. The gut barrier is composed of a thin
layer of epithelial cells, a thick mucus barrier and defence molecules, such as anti-microbial peptides (AMPs). Mucin production by goblet cells and barrier function is
enhanced by the bacterial-derived SCFA. Plasma cells in the lamina propria or the germinal centres (GC) produce secretory IgA, which coat both commensal and
pathogenic bacteria. Intestinal macrophages produce large amounts of anti-inflammatory cytokines that block pro-inflammatory signals and promote regulatory
T cells (Treg), which help maintain immune homeostasis in the intestine. (b) Under dysbiosis and ageing, the intestinal microbiota composition undergoes a
reduction of commensal and a rise of pathogenic bacteria. Loss of intestinal barrier integrity enables translocation of bacteria into the host tissue, through the
basement membrane into the lamina propria. Pathogen invasion results in a recruitment of inflammation-associated immune cells like neutrophils and Th17
cells, leading to a burst of pro-inflammatory cytokines. This figure was generated with BIORENDER.
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hosting bioluminescentAliivibrio fischeri, which allow squids to
perform complex nocturnal defence and hunting behaviours
[7]; and termites, which host specialized gut-dwelling protists
and flagellates that play essential roles in food digestion [8].
Similar to termites, ruminants strictly depend on their cellu-
lose-fermenting microbes to digest fibre-rich plants, which are
hosted in specialized fermenting chambers, i.e. highly adapted
anatomical structures, such as the rumen [9].

The ubiquitous occurrence of multicellular host–microbiota
mutualism is made possible in extreme cases by the presence of
highly sophisticated anatomical compartments, such as special-
ized light organs in bobtail squids, light organs in flashlight fish
and rumens in ruminants. However, to establish commensal
interactions with microbial partners, the vast majority of organ-
isms rely on specialized epithelia, integuments and mucosal
membranes, which ensure physical separation between the
inside and the outside. These specialized membranes and
their highly heterogeneous cellular composition are capable of
protection, but also ensure the key functions of recognition
and molecular cross-feeding between microbes and their
multicellular hosts [10,11]. The sophistication of the epithelia–
microbiota molecular cross-talk reaches peaks of complexity
in the large intestines of vertebrates, where mucosal immunity
protects the host from pathogens and fosters a diverse
community of commensals (figure 2).

Highly complexmicrobial communities, being similaramong
members of the same species, define species-specific microbiota.
For instance, the lineage leading to humans, gorilla, chimpanzee
and bonobos presents species-specific microbial assemblies,
where specific anatomical, physiological and behavioural
adaptations in the host are associated with specialized micro-
bial commensal communities, possibly reflecting a long
coevolutionary history between hosts and microbes [12].

But howdohosts become associatedwith specificmicrobial
communities? The establishment of species-specific, complex
microbiota communities during life—for instance in vertebrate
intestines—is a process of dynamic niche construction [13], in
which the host actively shapes its own environment by pro-
moting beneficial microbes and suppressing opportunistic
pathogens. Commensal microbes, in turn, contribute to host
homeostasis by promoting nutrient absorption and protecting
the host from pathogens [14]. Additionally, commensals cross-
feed metabolites with other microbes, further contributing to
build their own microbial niche [15]. A typical example of
niche construction is the establishment of the infant microbiota
community in humans through maternal breastmilk feeding.
After lipids and lactose, breastmilk is largely composed
of human milk oligosaccharides (HMOs), which are not
absorbed by newborns [16]. HMOs in the offspring gut rep-
resent a specific food source to beneficial Bifidobacteria [17].
While direct placenta-mediated vertical transmission of the
microbiota in humans has been questioned [18], mothers
contribute to shaping their offspring’s microbial niche con-
struction through a range of mechanisms, including maternal
antibodies transmitted to the offspring (IgA and IgG), which
directly modulate CD4+ T cells, dampening responses to
neonatal bacteria [19] and helping the newly establishedmicro-
biota community to take shape. Commensal microbes provide
hosts with immune modulatory molecular signals, such as
short-chain fatty acids (SCFA, a product of the metabolism of
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dietary fibres byanaerobic bacteria),which can help promoting
anti-inflammatory responses [20]. Moreover, they cross-feed
other bacteria, leading to the establishment of a diverse com-
mensal microbial community [21]. Complex commensal
microbial communities associated with healthy hosts have
been shown to help the host defeat pathogens, e.g. by resisting
colonization and competing for resources [22,23]. Given
their active role in the maintenance of homeostasis in their
host, commensal microbes can be considered as key players
in host immunity.

The assembly of individual (e.g. gut-specific) microbiota
also depends on external factors, such as temperature,
nutrients, microbes available through food and via contact
(e.g. directly transmitted) with conspecifics [24,25]. Other
factors important in shaping microbiota communities are the
stomach pH, the oxygen concentration, the length and cellular
composition of different portions of the gastrointestinal tract,
and the molecular composition of the mucus layer that lines
vertebrate’s intestines [26,27]. Microbiota associated with
host-specific diets, e.g. a carnivore or herbivore lifestyle,
which contain genes with diet-specific enzymatic capacities,
aremoulded by the presence of specific anatomical adaptations
of the host’s gastrointestinal tract (a longer or shorter intestine,
the presence of the rumen, etc.) [28–30]. In humans, the early
acquisition of a commensal microbial community is strictly
dependent on external factors, such as modality of delivery
(caesarean versus vaginal) [31], feeding on maternal breast
milk or formula, age at which the ingestion of solid food
starts, geographical location, the presence of siblings and
others [32]. During adult life, diet provides both the microbes
and the nutrients that help shape the composition of the micro-
biota [33,34]. Different human populations, eating each their
own food, largely differ in their gut microbial species richness
and composition [35], and populationswith similar lifestyles—
e.g. either traditional or industrialized societies—tend to share
same members of the microbiota (e.g. same taxonomic
families). Noteworthy, in healthy humans, genetics seems to
play a lesser role in shaping the composition of the intestinal
microbiota, compared to diet [36].

3. Adaptive immune system and the
establishment of a diverse commensal
microbiota

Innate immunity is an ancient line of defence against patho-
gens, shared among multicellular organisms, including
plants and invertebrates [37,38]. The innate immune system
prevents infections by increasing barrier function via physical
separation, secretion of antimicrobial peptides (AMP) and pha-
gocytosis. Innate immunity evolved to recognize and respond
automatically to a set of pre-determined microbial ligands, in
response to which it elicits inflammatory and anti-viral
responses [39]. Specialized receptors, including Toll-like recep-
tors, NOD-like receptors and C-type lectin receptors, also
collectively known as pattern recognition receptors, identify
conserved molecular patterns and thus detect pathogens or
defective cell components [40–42]. By delivering effective
defence responses against common pathogens, e.g. through
AMP, innate immunity shapes simple and host-specific com-
mensal microbial communities [43,44].

Early vertebrates evolved a novel form of immunity, which
uses an extremely diverse set of receptors to map the antigenic
variability of the environment (both internal and external) far
beyond the limits reached by the innate immune system [45].
While jawless vertebrates evolved leucine rich repeat based
lymphocyte receptors as a system to generate heterogeneous
and evolving receptors [46], jawed vertebrates evolved a
system based on immunoglobulins and T cell receptors [45].
Adaptive immunity in both jawless and jawed vertebrates
employed systems of hypermutation, gene conversion and
somatic recombination to generate this novel set of cell-specific
receptors [47], permitting a sophisticated defence mechanism
against repeated immunological threats, such as viral,
microbial and fungal infections. By employing a system of
pathogen recognition and immunological memory, lympho-
cyte-based adaptive immunity leads to targeted and
powerful responses against previously encountered pathogens
[48]. Alongside the evolution of sophisticatedmolecular mech-
anisms that enable recognition and neutralization of fast
evolving pathogens (including viruses and diverse bacteria),
adaptive immunity allowed a range of mechanisms favouring
immune tolerance for diverse communities of microbial
commensals [49]. A lymphocyte-based adaptive immunity
favoured immune tolerance of commensal microbes by pre-
venting or suppressing automatic innate immune responses
against both strain-specific microbial antigens [50], as well as
by neutralizing the pro-inflammatory cascades induced
by general microbial antigens, such as lipopolysaccharides,
which are constitutive components of the external membrane
of Gram-negative bacteria [51]. Secreted immunoglobulins A
(IgA), the most predominant antibody class in mucosal sur-
faces, play a key role in maintaining the epithelium–
microbiota balance. IgA bind microbial-derived molecules
(e.g. toxins) preventing their absorption in the epithelium,
coat microbes directly to prevent their growth, and induce a
number of downstream molecular cascades in myeloid effec-
tor cells, which mediate both pro- and anti-inflammatory
responses [52,53]. The occupation of mucosal intestinal sur-
faces by members of the healthy commensal microbiota has
been shown to be dependent on IgA responses [54]. The hetero-
geneity in the effector functions induced by different classes of
IgA depends in part on the glycosylation profiles of the Fc
region of the antibody [55]. Together with IgA, IgM antibodies
also play an important role in shaping a diverse microbial
community in associationwith themucus layer of themamma-
lian intestinal epithelium [56]; and recently IgD have also been
proposed as potential players in establishing a symbiotic
interaction between host and microbiota [57].

T lymphocytes also help maintaining the host–microbial
balance in mucosal organs through the action of specialized
subclasses of helper cells (e.g. Tregs) that respond to commensal
antigens by expressing anti-inflammatory cytokines and by
dampening pro-inflammatory programmes in effector cells
[58]. Furthermore, cytotoxic T cells can favour commensal
microbes by selectively eliminating other effector cells [59].

Microbes can protect themselves from immune attacks
within the gastrointestinal tract through the synthesis of specific
microbial intermediates (e.g. short-chain fatty acids (SCFA)),
which dampen pro-inflammatory responses both locally (e.g.
in colonocytes and more broadly on the gut epithelium), as
well as systemically, altering glucose metabolism and T cell
immune responses [60].

Through the evolution of sophisticated molecular signal-
ling between microbes and the host adaptive immune
system, hosts provide a stable ecological niche to highly diverse



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190596

5
commensal microbial communities. These host-associated
microbiota, in turn, provide access to a staggering variety of
enzymatic reactions, which result in novel bioactive molecules
and metabolites that largely exceed the host’s metabolic range
[61]. Throughout evolution, microbiota-derived molecules
have become essential to host physiology, contributing to fun-
damental biological functions, including development, growth
and maintenance of homeostatic processes. Essential vitamins,
such as cobalamin (vitamin B12), folic acid (vitamin B9), biotin,
as well as secondary bile acids, are key products of microbiota
metabolism [62]. Additionally, gut microbes are able to syn-
thesize neurotransmitters, such as serotonin, dopamine and
GABA [63]; however, whether these neurotransmitters are
uniquely active in the enteric nervous system or whether
they also act in the central nervous system is not yet fully
understood. The sophisticated molecular cross-talk between
microbiota and host immune system suggests the possibility
of their coevolution. The physiological dependence of host
metabolism on microbial communities and the emergence of
vertebrate adaptive immune system—itself largely shaped by
commensal bacteria [64]—may have been the key innovation
to enable complex host–microbiota functional integration.

However, if on theonehandadaptive immunityenabledhosts
to control complex commensalmicrobial communities,withgreat
benefits to thehost, on the otherhand it also creatednovel chances
for homeostatic failure, for instancewhen thewell-balanced host–
microbiota interaction becomes compromised, such as during
autoimmune diseases and ageing.
4. Ageing and dysbiosis
Ageing is a shared feature among nearly all living organisms,
and is characterized by the age-dependent decline of virtually
all homeostatic functions. Ageing-dependent dysfunction
scales at all levels of biological complexity, from accumulation
of DNA and protein damage in cells, to organelle dysfunction
(e.g. mitochondrial dysfunction), to cellular senescence, organ
disbalance owing to altered cellular composition and irrevers-
ible extracellular matrix modifications [65]. Age-related
metabolic and cellular changes occur alongside systemic and
chronic low-grade inflammation, called inflammaging [66].
Homeostatic disbalance and declined immune system function
correlates with chronic inflammation, increase in the rate of
infectious diseases, as well as degenerative diseases, such as
arteriosclerosis, type 2 diabetes, cancer and Alzheimer’s dis-
ease, among others [67]. Cumulatively, the ageing-dependent
systemic decline leads to the progressive increase in the risk
of death [68].

Recent evidences indicate that the extensive molecular
changes occurring during host ageing may significantly
impact the balance between the host and its epithelia-dwelling
commensal microbial communities (figure 3) [69–71]. The dis-
ruption of the homeostatic balance between microbiota and
the host can result in the so-called ‘dysbiosis’ which character-
izes several diseases, including cancer and autoimmune
conditions, such as intestinal bowel syndrome [72], Crohn’s
disease [73] andmany others. Intestinal dysbiosis has been con-
nected with immune-deficiencies (e.g. HIV infections) [74] and
with several neurodegenerative conditions leading to cognitive
impairment, e.g. in neurological and psychiatric diseases [75].
Ageing in vertebrates’ intestines co-occurs with the alteration
of intestinal microbiota communities, marked by a distinct
shift in composition anddecrease inwithin-individualmicrobial
richness [76–78]. During ageing, the relative abundance of
microbial taxa typically associatedwith a young-adult, ‘healthy’
state—mainly Firmicutes—declines, while the proportion of
Bacteroidetes and Proteobacteria increases. When microbiota
communities are challenged by antibiotics, infections or other
immune challenges, pathogenic bacteria can thrive and reshape
the previous microbial community, potentially leading to dys-
biosis [79,80]. The disturbed ecological dynamics occurring
during ageingmayallow for the evolution of novel—potentially
threatening—bacterial strains [81].

Inflammaging and altered microbiota communities are
mechanistically connected and the accumulation of patho-
genic bacteria can lead to chronic intestinal inflammation,
as in ulcerative colitis [82]. Loss of the transcription factor
FoxO, which plays an important role in innate immunity,
leads to diminished antimicrobial peptide expression and
impaired selection of bacteria in Hydra [83]. In Drosophila,
FoxO also regulates innate immunity and chronic FoxO acti-
vation (e.g. during ageing) is associated with deregulated
immune function, disorganization of the fly gut epithelium
(metaplasia) and bacterial dysbiosis [84]. Conversely, pre-
venting age-related inflammation via immune-modulation
maintains a healthy-like microbiota and prolongs lifespan
in flies [69]. Similarly, during vertebrate ageing, the intestinal
epithelial barrier becomes leaky and permissive for microbial
invasion of the lamina propria through the basement mem-
brane. Invasion of the lamina propria by luminal bacteria
can lead to inflammation bursts and systemic inflammatory
responses [82]. Further supporting the functional relevance
of microbial communities during ageing, studies in naturally
short-lived turquoise killifish have shown that the age-related
decline in microbiota diversity was prevented by transfer of
young-associated intestinal communities into middle-aged
fish, leading to lifespan extension and delayed behavioural
decline [71]. Note, transferring microbiota from old individ-
uals to young-adult subjects did not lead to shortened
lifespan in killifish, suggesting higher resilience in healthy
individuals [71].
5. Immune system–microbiota interactions
during vertebrate ageing

The immune system helps maintain systemic homeostasis
and healthy tissues by eliminating damaged, infected and
senescent cells [85] and by holding the balance between com-
mensal and pathogenic microbes [86]. However, immune
function is subject to severe alterations during ageing, includ-
ing improper immune surveillance of damaged and infected
cells, chronic inflammatory responses and autoimmunity, lead-
ing to extensive tissue damage [87]. As a consequence, during
ageing the host is predisposed to infections and to a broad
spectrum of diseases. Both innate and adaptive immune func-
tions undergo changes during ageing. For instance, work in
mice has shown that intracellular anti-viral mechanisms (e.g.
interferon responses) become activated during ageing in
response to de-repression of LINE1 (L1) retrotransposons.
Cells sense cytoplasmic L1DNA as a potential viral threat, acti-
vate inflammatory responses and induce cellular senescence
[88], which plays a major role in ageing-related pathology [89].

Manyaspects of adaptive immunity are also affected during
ageing. Loss of B cell diversity [90] and lower quality of
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produced antibodies, including excess of non-specific anti-
bodies [91], result in age-related immune dysfunction, which
may for instance contribute to less efficient vaccination in the
elderly in our species [92]. During human ageing, T cell
mediated immunity is affected by reduced primary lymphopoi-
esis associated with thymus involution [93], and to a decreased
diversity in the T cell receptor repertoire [94,95]. The functional
decline of T cell responses during ageing has been linked with
higher risk for cancer in the elderly [96].

The evolution of the adaptive immune system gave a for-
midable fitness advantage to early vertebrates, which could
discriminate between self and non-self, effectively eliminating
pathogens and parasites, becoming able to establish a diverse
community of commensals. However, if the adaptive
immune system provided vertebrates with the new opportu-
nity to have access to the biochemical diversity of complex
microbiota, it also came with the cost of a new range of
homeostatic failure modalities, which we propose may define
vertebrate-specific ageing dynamics.

Owing to the access to clean water, vaccinations and anti-
biotics, infectious diseases are no more the leading causes of
death in industrialized countries. However, still today, the
elderly are more susceptible to infections compared to
young-adult individuals [97]. Immune decline associated
with autoimmune diseases [98], pathogen-driven immunodefi-
ciencies (e.g. owing to HIV infection) [99] and ageing, are often
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associated with intestinal dysbiosis [100], which, together with
age-dependent loss of intestinal barrier function, can lead to
bacteraemia and sepsis, i.e. two of the major causes of death
in elderly populations [97]. During ageing, the fine discrimi-
nation between self and non-self can become defective,
leading to increased autoimmunity, potential tolerance of
pathogens [101], and de-repression of pro-inflammatory
responses against commensals. Impaired immune surveillance
during ageingmay lead to proliferation of opportunistic patho-
gens and to the expansion of pathobionts, i.e. commensal
microbes under normal circumstances which can become
pathogens [81]. Pathobionts, in turn, can also causally induce
autoimmunity [102].

Here, we propose that vertebrate-specific ageing dynamics
depend in part on the complex mechanistic interplay between
microbiota and adaptive immunity, which has a long
evolutionary history. Indeed, the adaptive immune system
actively shapes commensal microbiota, which in turn contrib-
ute to immune system development and maintenance.
Emerging recent scientific evidence indicates how the micro-
biota plays a causal role during ageing. Transplanting
microbiota from young-adults to middle-aged individuals
extends lifespan in a short-lived vertebrate model system,
showing that young-associated gut microbes have cumulat-
ively a pro-biotic action [71]. Analogously, transplanting
microbiota from young mice to middle-aged mice boosted
immune function, reactivating defective germinal centres in
the gut [103]; and transplanting microbiota from healthy
donors to progeroid (i.e. prematurely ageing) mice led to life-
span and healthspan extension [104].
Several open questions remain to be addressed. If micro-
biota causally affect the ageing process, do individual-specific
ageing dynamics—e.g. higher or lower risk for ageing-related
diseases—depend on individual microbiota composition?
Canweadopt themicrobiota as adiagnostic tool to predict indi-
vidual disease risk? If each species has its own, species-specific
microbiota—which result as a function of their habitat, lifestyle,
evolutionary history and specific immune system function—
does each species differ accordingly in its ageing-related path-
ologies? If commensal microbes can suppress immune
responses and favour immune tolerance (e.g. via SCFA), can
pathogens hijack commensal’s molecular signalling to selfishly
favour pathogenicity? How can we maintain host–microbiota
balance over extended time and during immune ageing?

Together, the evolution of multicellular hosts and their
microbial partners has led to the emergence of astonishing
biological innovations, including a sophisticated adaptive
immune system, which led to the opportunity to access a
novel metabolic space—provided to the host by its commensal
microbes—but also resulted in new modalities of homeo-
static failure, which possibly characterize vertebrate-specific
ageing dynamics.
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