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Abstract

Background: Single cell RNA sequencing provides unprecedented opportunity to simultaneously explore the
transcriptomic and immune receptor diversity of T and B cells. However, there are limited tools available that
simultaneously analyse large multi-omics datasets integrated with metadata such as patient and clinical information.

Results: We developed VDJView, which permits the simultaneous or independent analysis and visualisation of gene
expression, immune receptors, and clinical metadata of both T and B cells. This tool is implemented as an easy-to-
use R shiny web-application, which integrates numerous gene expression and TCR analysis tools, and accepts data

bitbucket.org/kirbyvisp/vdjview.

from plate-based sorted or high-throughput single cell platforms. We utilised VDJView to analyse several 10X
scRNA-seq datasets, including a recent dataset of 150,000 CD8* T cells with available gene expression, TCR
sequences, quantification of 15 surface proteins, and 44 antigen specificities (across viruses, cancer, and self-
antigens). We performed quality control, filtering of tetramer non-specific cells, clustering, random sampling and
hypothesis testing to discover antigen specific gene signatures which were associated with immune cell
differentiation states and clonal expansion across the pathogen specific T cells. We also analysed 563 single cells
(plate-based sorted) obtained from 11 subjects, revealing clonally expanded T and B cells across primary cancer
tissues and metastatic lymph-node. These immune cells clustered with distinct gene signatures according to the
breast cancer molecular subtype. VDJView has been tested in lab meetings and peer-to-peer discussions, showing
effective data generation and discussion without the need to consult bioinformaticians.

Conclusions: VDJView enables researchers without profound bioinformatics skills to analyse immune scRNA-seq
data, integrating and visualising this with clonality and metadata profiles, thus accelerating the process of
hypothesis testing, data interpretation and discovery of cellular heterogeneity. VDJView is freely available at https://
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Background

Immunological studies have revealed a surprisingly
high level of heterogeneity between immune cells,
even in those with same clonotype and surface
phenotype, suggesting that lymphocyte populations of
apparently similar phenotype could have different
functions [1]. With the advent of single cell RNA-
sequencing (scRNA-seq), it is now possible to unravel
the heterogeneity of T and B cells and link receptor
clonotype diversity to the gene expression profile of
each cell and to clinical or other metadata. Multi-
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modality single cell datasets are rapidly pervading in
medical research, and are being used to identify novel
cellular states and molecular features of diseases [2—
4], to extract information on the DNA (mutations,
methylation), mRNA (gene expression profiles) and to
further study the heterogeneity of immune cells of
apparently similar clonotype and phenotype [3].

With the recent availability of scRNA-seq derived
clonal and transcriptomic data, several software packages
have been developed for the downstream analyses of
these data types [3]. For instance software packages such
as TRACER [5] BRACER [4] and VDJPuzzle (for both
TCR [6] and BCR [2]) can accurately identify the full-
length TCR and BCR from the sequenced cDNA. A vast
set of tools are already available to perform gene
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expression analysis, including clustering, differential ex-
pression, dimensionality reduction, trajectory inference,
and gene signature identification (e.g. https://www.
scrna-tools.org/). More recently, epitope barcoding on
cell surface has been also integrated with scRNA-seq,
further highlighting the importance of multi-modal sin-
gle cell technologies [7, 8].

Integrating these levels of genomic information can be
important to fully decipher the changes of immune cells
during immune response, or to identify subsets of rare
cells with specific phenotypes. Tools that integrate sev-
eral of the available methods to analyse single cell tran-
scriptomics have been proposed [9, 10]. Additionally, it
is often necessary to link this information with clinical
and other metadata, for instance with the tissue origin,
surface phenotype (e.g. flow cytometry data at the time
of index sorting), or with the sample origin and disease
diagnosed. To date, there are limited software packages
that are accessible to non-bioinformatics experts, and
that allow simultaneous analysis of gene expression, im-
mune receptors and notably clinical and other metadata.
For instance, Loupe Cell Browser 3.1 from 10X Genom-
ics provides users with a first line of analysis to explore
gene expression and annotate their dimensionality re-
duction plots with immune receptor information. How-
ever, such tools do not permit extensive analysis of the
data, such as hypothesis testing and integration of meta-
data into differential expression or immune receptor
analyses. Additionally, such tools usually have strict in-
put requirements, with Loupe Cell Browser 3.1 not
allowing users to analyse datasets from different tech-
nologies, such as plate-based sorting, which remains a
common technology of choice to study immune
repertoires.

Multi-layer analyses often require lengthy integra-
tion of bioinformatics and biological skills. Experi-
ence with software tools, such as R packages, is
often a barrier to entry, with most of the data ma-
nipulation, visualisation and package integration be-
ing left to the user. To properly answer and address
biological questions, multiple packages need to be
complemented with ad hoc scripts that modify input
data, filter cells and then test hypotheses, which is a
source of latency between the biologist and the
bioinformatician. Here, we report VDJView, a shiny
app that delivers an integrated set of novel and pub-
licly available tools to analyse and visualise the
clonal and transcriptomic data with clinical and
metadata. VDJView addresses the drawbacks in cur-
rently available multi-omics analysis tools, by
removing the need for a skilled bioinformaticians
and allowing researchers to test hypotheses and ex-
plore the relationship between multi-modal single
cell datasets.
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Implementation

VDJView is an R Shiny web-application developed for
the analysis of clonal and transcriptomic single-cell data
(Fig. 1). The intuitive graphical user interface allows re-
searchers with or without computational training to
interactively analyse and explore their datasets, interro-
gating the results against user uploaded cell metadata.
VDJView acts as a wrapper for commonly used tran-
scriptomic and receptor analysis packages (Table 1), in-
tegrating them and allowing the user to generate and
manipulate figures and tables. The plots generated are
exportable to publication-quality pdf files, and all tables
can be downloaded in csv format.

VDJView has been extensively tested on Linux and
MacOS, with most features functional on Windows as
well, and has the sole requirement of an R version of
at least 3.5.2 being installed. VDJView has been tested
on multiple datasets available from published litera-
ture using SmartSeq2 and 10X libraries (see below).
On a machine with 32GB RAM, a dataset of 5000
cells takes 1 min to upload, and most plots render in-
stantaneously with the exception the PCA (principle
component analysis), TSNE (t-distributed stochastic
neighbour embedding) and UMAP (uniform manifold
approximation and projection) plots which take about
20s to render. The clustering and pseudo-time plots
can take 20-25min to calculate. Larger datasets have
been uploaded, however, with transcriptomic data on
over 50,000 genes for more than 20,000 cells, 32GB
of RAM is insufficient.

VDJView input data

Pre-analysed scRNA-seq data can be directly uploaded
into VDJView. The three data types that VDJView ac-
cepts are; T and/or B cell receptor data, gene expression
data, and metadata. Immune receptor data can be
uploaded as a list in csv or other tabular formats. Gene
expression data can be uploaded as a matrix of expres-
sion counts per cell or other common formats including
those generated by the 10X Cell Ranger kit. Metadata
can be uploaded in csv format. Cells can be filtered ac-
cording to their metadata and the presence of a TCR/
BCR, meaning that multiple analyses can be performed
without needing to re-upload a dataset. An example of
this is when the user uploads data from multiple sub-
jects, VDJView allows cells from individual subjects of
interest to be filtered in/out. VDJView can also be pipe-
lined with computational tools that generate gene ex-
pression and immune receptor sequencing from raw
data, thus permitting user-defined workflow. Here, we
have tested VDJView with scRNA-seq data available
publicly and generated by high-throughput 3" or 5" end
technologies, 10X and SmartSeq2 data.
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Fig. 1 Overview of VDJView. Top: VDJView upload page, showing where required (immune receptor sequences and gene expression matrix) and
optional inputs (metadata) can be uploaded. Bottom: examples of analysis using scRNA-seq from primary cancer tissues and metastatic lymph-node
revealing clonally expanded T and B cells. The table (top left) shows a clonal expansion of IGL chains across primary breast tissue and metastatic
lymph-node. The Circos plot (bottom left) shows the IgL V and J gene pairings identified. Dimensionality reduction using UMAP (top right) shows a
cluster of B cells derived from metastatic lymph-node in two patients with ER™ HER2™ breast cancer, while T and B cells from the primary breast cancer
tissue had similar gene signature regardless of molecular subtype. Pseudo-time plot (bottom right) shows the inferred evolutionary trajectory between
all immune cells determined by genes that differentiate primary from metastatic tissues in two subjects with matched samples

Datasets analysed datasets of donors 1 and 2 were analysed. For gene
expression analysis, a random sample of 15,000 cells
SmartSeq2 breast cancer T and B cells, N = ~ 560 [17] for each of donors 1, 2 and 3 were considered.
10X CD8+ T cells, N = ~ 150,000 (https://www.1
Oxgenomics.com/resources/application-notes/a-
new-way-of-exploring-immunity-linking-highly-
multiplexed-antigen-recognition-to-immune-
repertoire-and-phenotype/). The entire TCR

VDJView features and modules

VDJView integrates multiple R software packages to pro-
vide a powerful yet cohesive repertoire of analysis modules
(Table 1). Numerous interactive and customizable figures


https://www.10xgenomics.com/resources/application-notes/a-new-way-of-exploring-immunity-linking-highly-multiplexed-antigen-recognition-to-immune-repertoire-and-phenotype/)
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Table 1 List of modules implemented in VDJView with their outputs and integrated packages
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Module

Description

Software packages

Output

Filtering

Quality control

Random sampling

Clonotype usage

CDR3 length

VDJ gene usage

Gene interactions

Shared clonotypes

Dimensionality reduction

Unsupervised clustering

Supervised clustering

Pseudo-time

Cell metadata summary

Selection of cells based on metadata,
gene and immune receptor features

Metrics with options for easily filtering
cells according to total read counts,
number of genes, and percentage of
mitochondrial/ribosomal genes

Selection of small subsets of data,
providing the ability to analyse
larger datasets

Pie charts of single- and paired-chain
CDR3 contig usage for both T and B cells.
Tables detailing single- and paired-chain
CDR3 contigs generated across all cells

Distribution of CDR3 lengths for single-
and paired chains

Distribution of V, D and J gene usage for
single chains

Frequencies of inter- and intra-chain
VDJ gene pairings, and inter-chain
CDR3 pairings

Table and scatter plot detailing the
number of single- and paired-chain
CDR3 contigs and VDJ genes that
occur in multiple subgroups, and
their frequency in each group

PCA plot, t-SNE plot and UMAP plot
with customisable parameters.
Metadata can be used to control
data point shape, size and colour.
Data points are selectable and
displayed with their metadata in

a data-table below each plot

Consensus matrix, gene expression
heatmaps and marker-gene heatmaps
are calculated by SC3 based on user
defined cluster ranges, p-values and
AUROC values. Metadata can be
displayed above plot. Gene list can

be uploaded to generate an expression
heatmap. Tabular SC3 clustering
information is generated

Differentially expressed gene heatmap
generated by MAST comparing groups
of cells based on clusters predetermined
by the user, p-value and fold change
thresholds. Gene fold change values and
a tabular version of the heatmap are
generated

Pseudo-time plot to determine single-cell
state trajectories based on genes which
are differentially expressed between user
defined metadata groups

Tabular summary of the cells uploaded,
the metadata associated with them and
the number of receptors contigs, and
expressed genes reported for each cell

dplyr

Seurat [11]

Seurat

plotly

tcR

tcR

Rcircos [12]

tcR

Scater [13], Seurat, SC3 [14]

Scater, SC3

MAST [15], Scater, pheatmap

Monocle [16]

Venn Diagram, data-table

Violin plots

Pie charts, data-tables

Histograms

Histograms

Circos plots

Scatter plot, data-table

PCA plots, t-SNE plots, UMAP plots,
data-tables

Consensus matrix, Expression matrix,
DE Genes heatmap, Marker genes
heatmap, data-table

Gene expression matrix, data-tables

Pseudo-time cell trajectory plot

Data-table

are provided for the analysis of clonotype data, and further
modules are available for the simultaneous or isolated ex-
ploration of expression data. All figures and tables are

updated automatically if any of the relevant parameters are
changed during the analysis. Further details and a complete
list of features can be found in Supplementary Note 1.
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Results

Analysis of SmartSeq2 breast cancer cells

To demonstrate the utility and novelty of VD]View, we
analysed scRNA-seq data (full-length transcriptome,
SmartSeq2 protocol) from the primary breast tissues and
metastatic lymph nodes of 11 subjects [17]. We input
the original, unfiltered scRNA-seq data (N =563 cells)
into VDJPuzzle [2] to quantify the gene expression and
reconstruct the TCR and BCR, parsing the results into
VDJView. We found 170 single B cells with at least one
full-length H, L or K chain, of which 101 had a full-
length heavy and light chain. Similarly, we found 42 sin-
gle T cells with at least one full-length a or f TCR
chain, of which 30 had paired TRa and TRp chains.
Thus, we have uniquely identified T and B cells via their
receptor, confirming the findings of the authors of the
original work who identified T and B cells through gene
enrichment analysis [17]. In addition to these, we found
33 cells with TCR and BCR chains, suggesting that they
were likely contaminants or doublets. Of the 34 single
cells filtered out in the original publication due to se-
quencing quality, VDJPuzzle reconstructed a BCR for
two cells, and partially reconstructed the BCR in 12
others. While our analysis of the T cells revealed a highly
diverse repertoire (Supplementary Figure 1), we identified
a clone in BC03 which was present in both primary and
metastatic lymph node tissues, as well as 31 B-cell clones,
with clonotypes shared across primary and metastatic
tissues, and across subjects (Fig. 1 and Supplementary
Figures 1 and 2, Supplementary Tables 1 and 2). This type
of analysis was not performed in the original publication
[17] and further demonstrates the utility of VDJView.

To further complement the work done by Chung et al.
[17], we performed dimensionality reduction (Supple-
mentary Figure 3) and a pseudo-time analysis on these
immune cells, showing that a common repertoire of B
cells is involved in breast cancer with a migratory pat-
tern between primary and metastatic tissues (Fig. 1). We
used VDJView to integrate immune receptor informa-
tion with the gene expression profile and available meta-
data, and performed unsupervised clustering, expanding
upon the results depicted in Figure 6a of the original
publication [17]. The unsupervised clustering (Supple-
mentary Figure 4) revealed evidence of 8 clusters based
on identity (B and T cells), B-cell isotype, tissue of origin
and cancer molecular subtype. T cells largely formed a
single cluster with marker gene CD96 associated to im-
mune modulation, as well as expression of IL2R-y and
FYB which is known to control IL-2 secretion. The
remaining clusters were largely composed of B cells
based on tissue of origin, molecular subtype of cancer,
and notably a cluster that was composed of IgG1 B cells
in metastatic lymph-node of double positive breast can-
cer, expressing gene signature suggesting they are highly
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active and differentiated B cells, e.g. plasmablast fol-
lowing a reactivation of memory B cells. In this clus-
ter, the over-expression of PAX5 and TCL1A could
also indicate presence of malignant immune cells as
these genes are often found in leukemia and likely to
contribute to oncogenesis BCL6 [18, 19]. Further ana-
lysis of this data is detailed in Supplementary Note 2
(Supplementary Figures 5, 6 and 7).

Analysis of 10X antigen specific CD8" T cells

To further demonstrate the utility of VDJView, we have
analysed the recently published scRNA-seq data with
TotalSeq and dextramer stained CD8" T cells. This dataset
contains single cell data on over 150,000 CD8" T cells iso-
lated from 4 healthy donors, two of which were CMV
positive, 44 dextramers were simultaneously used in each
subject to isolate antigen specific T cells across viral infec-
tions (CMV (Cytomegalovirus), EBV (Epstein-Barr virus),
HPV (Human papillomavirus), Influenza, HIV (Human
immunodeficiency virus)), and cancer (e.g., MART, MAGE
NY-ESO). We used this data to study the clonal distribu-
tion within and across specific antigens and link this infor-
mation to the gene expression and other metadata.

In this analysis, we uploaded and analysed the TCR
sequences and the gene expression matrices available on
the 10X Genomics website (https://support.10xgenomics.
com/single-cell-vdj/datasets). Utilising the available csv
template in VD] View, we generated a third file containing
the available metadata for each cell, e.g., subject ID, Total-
Seq 15 surface markers including T cell differentiation
markers (CD45RA, CD45R0O, CCR7) and exhaustion and
activation markers such as HLA-DR and PD-1, and tetra-
mers read-counts (HLA-I restricted epitopes), MHC allele
and other information. Given the large number of cells in
the dataset and the high dimensionality of the transcripto-
mics data, which can be a limitation for the standard
computational resources available to the user, we used
VDJView to randomly sample 15,000 cells from each of
donor 1, 2 and 3. This allowed us to perform the following
analyses on a standard machine with 16GB RAM. For the
15,000 cells from donor 1, we performed quality control
on the data, filtering out cells with > 15% mitochondrial
genes or abnormally high total expression counts, leaving
11,675 cells. After removing these obvious outliers, con-
taminants and poor quality cells, we filtered out cells with
low tetramer read counts, or tetramer read counts that
were not significantly higher than the negative control tet-
ramers (also available in the dataset). This filtering re-
sulted in 3815 antigen specific T cells. Further details on
the analysis of data from donor 2 and 3 are provided in
Supplementary Note 3.

We used this set to explore the distribution of genes,
markers for T cell differentiation, receptor clonotype,
and tetramer specificity. Unsupervised analysis (Fig. 2a)


https://support.10xgenomics.com/single-cell-vdj/datasets
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revealed 8 clusters with marker genes identifying signa-
tures of cytotoxic activities of CMV, EBV and Influenza
specific CD8" T cells, and the presence of memory and
naive T cells (eg, CCR7" CD45RO" and CCR7*
CD45RA"), thus, revealing clustering based on epitope

specificity, T-cell differentiation and TCR specificity. Spe-
cifically, clusters 1 and 4 showed clonally expanded popu-
lations of EBV specific memory cells identified by marker
genes being TCR V genes and by complementarity-
determining region 3 (CDR3) specificity. Interestingly, two



Samir et al. BMC Medical Genomics (2020) 13:29

similar clusters (3 and 6) of clonally expanded EBV spe-
cific memory T cells were observed in the cells isolated
from donor 2 (Supplementary Figure 8). These clusters
were also marked by TCR V genes and CMC]1. Cluster 2
revealed influenza specific memory cells, expressing
TRBV19, known to code for a public TCR specific to the
highly-conserved M158-66 immunodominant epitope
[20]. A similar cluster (cluster 2 in Supplementary Fig-
ure 8) was also observed in donor 2, again supporting the
homogeneity of immune response again influenza across
individuals. Clusters 3, 5, and 6 mostly revealed CMV-
specific cells displaying no obvious clonality. These three
CMV-specific clusters revealed heterogeneous expression
of Granzyme H and B genes, and of transcription factors
LEF1, TCF7, and ZNF683 (Hobit), which are regulators of
T-cell differentiation. Conversely, when analyzing cells
from donor 3 (known to be seropositive for CMV), a large
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expansion of active (CCL5" NKG7" GZMA™ CD45RO"
CD45RA™) CMV-specific cells was observed in clusters 2—
5 (Supplementary Figure 9). Evidence of clonal expansion
was also observed in clusters 2 and 5 (Supplementary Fig-
ure 9). Unsupervised clustering on the integrated data
from donors 1 and 3 (Supplementary Figure 10) confirms
that the CMV-specific T cells cluster according to donor,
despite some similarity in gene signature (JUN* LEF1").
The cells in cluster 6 are clearly naive (CD45RO™
CD45RA" CCR7%) and consistent with those observed in
donor 3 (cluster 1, Supplementary Figure 9). Finally, clus-
ter 7 formed CMV and EBV specific and clonally ex-
panded memory T cells, revealed by the same TCR CDR3
sequence. Notably, despite the filtering of low quality cells,
cluster 8 revealed cells with reduced expression of all
marker genes, including housekeeping genes RPL7 and
RPL27, and with the highest percentage of mitochondrial
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genes, thus reinforcing the importance of quality control
steps in scCRNA-seq analysis.

We then utilised the dimensionality reduction features
of VDJView to further explore clonality within these sub-
sets. We used the t-SNE plots (Fig. 2b) generated utilising
the gene expression profiles to explore protein and tetra-
mer expression, as well as other metadata information. As
expected, the clusters identified via SC3 largely formed
distinct clusters, with EBV and influenza specific T cells
revealing the highest tetramer read counts, suggesting a
high binding affinity of these cells for the cognate anti-
gens. Within the CMV and EBV specific T cells, clonally
expanded T cells formed larger clusters, suggesting a com-
mon gene signature in clonally expanded populations. By
marking the expression of genes such as GZMH, LEF1,
TCF7, CMCI1 and CCR?7 gene expression, the t-SNE plots
revealed sub-clusters based on the differentiation status of
T cells. Finally, we performed pseudo-time analysis (Fig.
2¢) to reveal a naive to effector phenotype transition,
shown by the increase in CD45RO expression, which is in-
versely mirrored in CD45RA expression. This analysis
showed that naive T cells identified in cluster 6 in the SC3
analysis formed a separate branch, while memory T cells
were distributed across the pseudo-time structure.

We also analysed the TCRs of all T cells from donors
1 and 2. After performing the same quality control and
filtering as outlined above, we were left with 55,922 anti-
gen specific T cells (14,199 from donor 1 and 41,723
from donor 2). Both donors displayed clonally expanded
populations (Fig. 3), with 3 unique TCR expanded across
at least 1000 cells, and over 16 expanded across at least
100 cells. Both donors displayed VD] gene usage bias,
with a relatively high usage of TRBV19 common to both
donors. We identified a total of 15,600 unique TCRs,
with 411 TCRs common in both donors (Table 2 shows
15 of these). We also found evidence of cross reactive
TCR that target different antigens within the same spe-
cies, or across species, opening further avenues of study.

Discussion

We have shown that integrating immune receptor and gene
expression data with clinical information is useful to dis-
cover novel, biologically relevant findings from published
data that do not emerge through previous analyses, and to
further understand and discover medically relevant mecha-
nisms. VDJView, a unique platform to conduct such ana-
lysis, forms an integrated set of known and novel tools that
have a flexible design, expanding other tools and providing a
robust quantitative framework to generate and study multi-
omic immune cell data at the single cell level. VDJView ac-
cepts data from numerous different scRNA-seq pipelines,
and outputs data that can be extracted in various formats
(pdf, csv, R data objects) and used with other software to
perform additional analyses. The proposed framework can
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Table 2 TCR clones shared between donor 1 and donor 2, and
the species they target with the number of occurrences in each
donor

TCR_CDR3 Species d1 d2
CAGHTGNQFYF_CASSWGGGSHYGYTF EBV 2379 37
CAVGDNFNKFYF_CASSLYSATGELFF EBV 1511 23
CAARVRGFGNVLHC_CASSLYSATGELFF EBV 1442 19
CAASGYDYKLSF_CSVSASGGDEQYF CMV, EBV 214 10

CAVFLYGNNRLAF_CSVSASGGDEQYF CMV, EBV 199 11

CAASETSYDKVIF_CASSFSGNTGELFF EBV 38 5810
CADSGGGADGLTF_CASSLRDGSEAFF EBV 34 4428
CAASETSYDKVIF_CASSWGGGSHYGYTF EBV 14 35
CAGAGSQGNLIF_CASSIRSSYEQYF Influenza 16 345
CAVTDGGSQGNLIF_CASSIRSSYEQYF Influenza 120 39
CAGAHGSSNTGKLIF_CASSIRSAYEQYF Influenza 71 48
CAVSGSQGNLIF_CASSIRSSYEQYF Influenza 10 79
CAAGGSQGNLIF_CASSIRSSYEQYF Influenza 10 77
CAGGGSQGNLIF_CASSIRSSYEQYF Influenza 469 1094
CAGGGSQGNLIF_CASSVRSSYEQYF Influenza 119 72

be utilised by bioinformatics experts to develop and inte-
grate new tools, as well as by clinical scientists and immu-
nologists without profound knowledge of bioinformatics
tools. Additionally, we propose that the software is a useful
tool for lab-meetings as it promotes an on-the-go type of
analysis that is suitable for quick hypothesis testing.

Limitations

VDJView is developed in R, and therefore it is relatively
simple to maintain and install. However, updates to the
packages that VDJView utilises may cause dependency is-
sues or loss of function due to code deprecation. This is an
issue that requires periodic updates, and while we will
maintain the software, we recommend using the suggested
R versions. While the software is designed to be intuitive,
some statistical and domain knowledge is required to tune
parameters such as p-values and AUROC in clustering, or
perplexity in tSNE, to avoid over-interpretation. The default
values of the clustering parameters are chosen conserva-
tively to prevent data over-fitting, and the default tSNE per-
plexity scales up with data size to prevent the observation
of small clot-like structures. Additionally, VDJView does
not perform any batch correction. As such, any technical
variation in the data should be corrected for prior to
uploading. Given the significant technical noise that charac-
terises scRNA-seq data, users are advised to consult statis-
tical experts. VD] View will be maintained monthly and new
tools will be integrated according to the development of
software packages in the field, and the feedback received
from users of the software.
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Conclusions

VDJView is a complete software package for down-
stream analysis of single cell gene expression, immune
receptor and metadata, which allows exploratory and hy-
pothesis driven analysis of multi-omic datasets. In sum-
mary, VDJView has the potential to allow clinical and
experimental researchers to utilise complex genomics
data to test biologically relevant questions.

Availability and requirements
Project name: VD]View

Project home page:
vdjview

Operating system(s): Linux, MacOS, with major fea-
tures functional on Windows

Programming language: R

Other requirements: R 3.5.2 or higher

License: GNU

Any restrictions to use by non-academics: None

https://bitbucket.org/kirbyvisp/

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512920-020-0696-z.

[ Additional file 1. Supplementary Material. ]
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