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Abstract It seems intuitive that disease risk is influenced by
the interaction between inherited genetic variants and environ-
mental exposure factors; however, we have few documented
interactions between variants and exposures. Advances in
technology may enable the simultaneous measurement (i.e.,
on the same individuals in an epidemiological study) of mil-
lions of genome variants with thousands of environmental
“exposome” factors, significantly increasing the number of
possible factor pairs available for testing for the presence of
interactions. The burden of analytic complexity, or sheer num-
ber of genetic and exposure factors measured, poses a consid-
erable challenge for discovery of interactions in population-
scale data. Advances in analytic approaches, large sample
sizes, less conservative methods to mitigate multiple testing,
and strong biological priors will be required to prune the
search space to find reproducible and robust gene-by-
environment interactions in observational data.

Keywords Exposome - Genome - Genome-wide association
study - Environment-wide association study -
Gene-by-environment interaction

Introduction

It is hypothesized that a portion of complex disease risk is due
to interaction between inherited genetic and non-inherited
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environmental factors. Briefly in epidemiological research,
an analytic gene-environment interaction can be defined when
the association with a health outcome (e.g., estimate of disease
risk such as a relative risk or odds ratio) for a gene factor and
an environmental exposure is different when considered both
factors alone (“main effects” in a statistical model) as com-
pared to jointly [1]. In other words, the presence of an inter-
action implies that the health outcome of interest is different
for an exposure and a specific genetic variant (or, equivalent-
ly, genetic risk for disease is different for alternate levels of
exposure). In this perspective, we consider analytic challenges
in the identification of gene-environment interactions in the
context of “big data” and “omic” biomedical research.

While it seems intuitive that gene-by-environment interac-
tions (G % E) exist, there are few reproducible and document-
ed examples of G X E derived from human population or
epidemiological cohorts (e.g., [2¢, 3]). At the same time, ad-
vances in genomic technology have enabled investigators to
ascertain hundreds to millions of variables, such as genetic
variants (locations along the genome where individuals differ)
in association with phenotypes. For example, genome-wide
association studies (GWASs) are a type of investigation that
allows investigators to search millions of genetic variants, or
genotypes, in association with a disease or disease phenotype
in large populations (numbering in the 10s to 100 s of thou-
sands of individuals), resulting in robust and reproducible ge-
netic associations in disease risk (e.g., [4—6]). Further, simul-
taneous ascertainment of multiple environmental factors of the
exposome [7—12] may make possible an analogous search for
environmental exposures associated with disease through
environment/exposome-wide association studies (EWASs)
[13].

The central hypothesis of a G x E investigation includes
that disease risk (measured for instance with an odds ratio) for
at least one exposure of the exposome under interrogation is
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different for at least one genetic variant configuration (e.g., a
genotype) of the genome. To scale up the search for reproduc-
ible genetic variant-by-environment exposure interactions
may seem as simple as leveraging emerging technologies of
the genome and exposome. Here, however, we claim that
despite advances in phenomic, genomic, and exposomic mea-
surement technologies, data-driven search for reproducible
genetic variant-by-environment exposure interactions in
population-based data streams faces a computational chal-
lenge: analytic complexity. In the following perspective, we
describe the analytic complexity and potential strategies for
trimming the search space of potential hypotheses to find ro-
bust interactions in observational datasets. We first describe
GWAS and EWAS.

Primer: What Are GWASs?

With the sequencing of the genome and projects that charac-
terized common genetic variation such as the HapMap and
1000 Genomes projects, investigators are now able to interro-
gate how genome-wide genetic differences in populations are
associated with disease and disease-related phenotypes in ep-
idemiological studies [14—16]. These revolutionary studies,
known as “genome-wide association studies” (GWAS), have
enabled investigators to ask what common genetic loci or
single nucleotide polymorphism variants (SNPs) are associat-
ed with a particular phenotype in an agnostic, systematic, and
comprehensive way with explicit control of multiple test cor-
rection to mitigate possibilities of false positive reporting. As
of this writing, over 2000 GWAS investigating over 1500
traits have been documented in the NHGRI/EBI GWAS cata-
log [17] (also see: https://www.ebi.ac.uk/gwas/docs/
downloads). The NHGRI/EBI GWAS catalog is a catalog of
individual findings (or “summary statistics”) from over 2000
GWAS, such as odds ratios/p values of association, population
ancestry of cohort, variant identifiers, and phenotype (e.g.,
disease or trait).

Specifically, during the HapMap and now 1000 Genomes
projects, common single nucleotide (SNP) variants were
cataloged on the basis of their population frequency (=10 %
population frequency), and major and minor allele versions
[5]- The location of each SNP along the genome is referred
to as a “locus” and the presence of variation at a particular
locus denotes a “polymorphism” or a “polymorphic” locus.
“Common” polymorphisms are those that occur at approxi-
mately greater than 5-10 % in the population. Thus, by defi-
nition, a “common” SNP must reside at a polymorphic locus.
There are greater than 1 million common SNPs in the genome
[15]. While SNPs are the most common type of polymor-
phism in the genome accounting for 90 % of genetic variation,
many other types of genetic variation exist, such as copy num-
ber variants, insertions, and deletions.

GWAS associate traits to variants at common polymorphic
loci in the genome and are enabled by genomic technologies,
known as “SNP microarrays,” which can assay greater than 1
million loci simultaneously for an individual. These microar-
rays are now mere commodity items, making accessible
genome-wide measurements on a large number of individuals
[18]. Further, these technology platforms are known to have
very low measurement error [19]. GWAS are constructed by
recruiting thousands of individuals with (“cases”) and without
(“controls™) a trait or disease (or health outcome). Genotype
frequencies at each locus across the genome are then com-
pared between cases and controls using common statistical
tests such as chi-squared test [6], assuming independence be-
tween each locus.

What is the Exposome and what is an EWAS?

The central promise of a unified way to measure the human
exposome includes the discovery of novel environmental fac-
tors associated with and potentially causative of disease. The
human exposome has been tentatively defined as the totality
of environmental exposures such as dietary nutrients, pharma-
ceutical drugs, infectious agents, and pollutants encountered
from birth to death [7, 8, 10, 12, 20¢].

“Environment-wide association studies” or equivalently
“exposome-wide association studies” (EWAS), which are
analogous methodologically to GWAS, are a recently pro-
posed analytic approach to systematically associate exposures
with disease or disease-related phenotypes [13] and, e.g., [21,
220, 23e 240 25 26, 27¢, 28]. In EWAS, multiple exposures
are assessed simultaneously, but without considering interac-
tions among them, for their association with a phenotype or
disease of interest. The false discovery rate [29¢] is controlled
to adjust for multiple testing (discern signal from noise), and
significant associations are validated in independent data (e.g.,
[23+, 24+, 27]). The main advantage of this approach is that it
systematically investigates an array of exposures and adjusts
for multiple testing, thus avoiding selective reporting while
enabling discovery. Just as the literature for genetic associa-
tions in disease has become more reproducible due to stan-
dardized and extensively validated analytical procedures [19],
an analogous process to associate the exposome with disease
and health outcomes may result in more robust environmental
associations.

While EWAS is operationally similar to GWAS, many dif-
ferences exist that pose challenges to the emerging paradigm.
First, the environmental exposures are time-dependent—ex-
posures to environmental agents and their biological effects
vary considerably across the lifespan, from pre-conception
(parental) exposure, in utero, through childhood into adult-
hood, and senescence. Second, exposures are spatially depen-
dent and their biological effects can depend on the route of
exposure. Third, the correlation structure of the exposome is
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dense—many environmental factors are correlated with many
others [19, 30, 31, 32¢]—and it will be a challenge to identify
the independent influence of a single exposure in discase.
Another issue for causal inference includes confounding.
Confounding refers to the phenomenon of an extraneous ex-
posure being associated to the disease or trait of interest via the
one actually being tested. GWAS contends with a few con-
founders, such as “population stratification” or race/ethnicity.
Exposome-wide studies may be rife with confounding type of
biases as indicated by dense correlational structure. While the
exposome provides a promising way to potentially unify the
measurement of many exposures, it is probably not realistic to
expect continuous exposome monitoring of subjects. Instead,
available data typically will comprise a few snapshots of ex-
posure. Repeated longitudinal exposure data provide informa-
tion about the longitudinal effects and can help avoid the
problem of reverse causation. Furthermore, measurement er-
ror of environmental exposure measurements can significantly
diminish chances to detect G X E. On the one hand, GWAS
array measurement error is low (less than 1 % [33]); however,
the error rates for individual exposure measurements can be
much higher (for example, for mass spectrometry

Fig. 1 The “space” of all

measurements for individual exposures may be greater than
ten- to hundredfold higher, e.g., [34]). Measurement errors of
E will stand in the way of detecting G x E.

Reverse causality, confounding, measurement error, and
the time-dependence of environmental exposures are all issues
that the analyst must deal with not only in exposome-wide
research, but also in G x E interaction investigation. While
these challenges are immense, we address here another type of
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that could occur is g times e (Fig. 1). We claim that searching
this large space of potential interactions is not tractable due to
challenges in extracting signal from noise.

Signal to Noise: Imbalance Between Type 1 Error
and Power When Searching for Gene Variant
by Exposome Factor Interactions

Generally, testing for a single pair of interactions is a power
intensive task relative to testing a single genetic or environ-
mental factor in association with disease risk. Inferring a gene-
environment interaction requires testing for association be-
tween a single environmental exposure factor £ in each stra-
tum of the other single factor G. In contrast, detection of a G or
E main effect without interaction requires no further stratifi-
cation. In G x E analyses, the sample must be represented in
all of the strata of £ and G; thus, to ensure all strata are repre-
sented, larger sample sizes or power are required.

Power requirements are further exacerbated by attempting
to search a number of G and £ interactions simultaneously in
association with disease. We claim there is a “signal-to-noise”
challenge resulting in an imbalance between mitigating the
chance for spurious findings and the requirement for large
sample sizes.

What is meant by “signal-to-noise”? In essence, given g
times e potential pairs of interactions, the central task includes
how to infer those pairs of G and E that are indicative of a
significantly different and larger effect size in a disease or in a
phenotype (compared to the additive main effects of G and E).
The central issue is that a comprehensive search of gene by
environment interactions requires a much larger number of
hypotheses compared to GWAS or EWAS alone. Concretely,
given g number of genetic variants or e environmental expo-
sures requires g or e number of hypothesis tests in GWAS and
EWAS, respectively; however, to screen the possible space of
interactions would require many more tests, equal to g times e
(as depicted in Fig. 1). This leads to an increased chance for
spurious results due to chance alone (type 1 error).

Type 1 error refers to a false positive: reporting an associ-
ation, in this case an interaction, when the interaction does not
exist. For example, imagine conducting an association study
between 100 G and 100 E factors in blood pressure (a total of
100*100= 10,000 possible interactions). Also, imagine that
an oracle has told us the true scenario: that none of the inter-
actions are truly associated with blood pressure (and therefore
no associations should emerge). At a p value threshold of 0.05
under the distribution of no correlation between the 10,000
possible interacting factor pairs and blood pressure, 500
interacting pairs will emerge as significant due to chance!
These are known as false positives and emerge when
conducting more than one test of association. Therefore, the
more tests one conducts, the more the absolute number of
findings the investigator must sift through at typical levels of

significance. The family-wise error rate is the chance of mak-
ing at least one or more false findings, or discoveries, among
all hypotheses. For example, in our large space of possible G
and E interactions, the family-wise error rate would be indic-
ative of the chance of a making one false discovery among all
G x E tests. Therefore, to achieve low p values, larger sample
sizes are required.

A method to control the family-wise error rate among
all G x E tests includes the Bonferroni correction. With
the Bonferroni correction, the significance threshold is di-
vided by the number of tests. Take again our example of
testing 100 G and 100 £ factors. A Bonferroni signifi-
cance threshold to guard against type I error for 10,000
interaction tests and for a typical significance threshold of
0.05 would be 0.05/10,000 or 5x107°. Therefore the
threshold to detect “signals” (a significant finding) must
be stringent due to a large potential false positive “noise.”

Coupled with testing a number of strata in individual fac-
tors of G and E, the large number of potential hypotheses
explored means that achieving significance requires great sta-
tistical power. Recall that p values are a function of the inverse
of the standard error of the estimate, and standard errors are
inversely proportional to sample size. Furthermore, in addition
to sample size and the analytic complexity (or the number of
interaction tests), the potential interaction effect size, the main
effect and prevalence of exposure, and the main effect and
prevalence of genetic variants all also influence power. Lack
of power causes type 2 errors. Where type 1 error is the
chance of a false positive, type 2 error gives the chance of
false negatives (not detecting a discovery or signal when it
does in fact exist). Power is the chance that the analyst will
find an association provided it exists. Usually, analysts require
power to be greater than 80 % to ensure high probability of a
non-spurious association.

‘We summarize the tension between type 1 and type 2 errors
as a function of rising complexity in the number of interac-
tions considered in the context of power (Fig. 2) for a typical
case-control investigation (e.g., type 2 diabetics vs non-dia-
betics). Using the R package powerGWASinteraction [35], we
estimated power for a case-control study for type 2 diabetes
(assuming 10 % prevalence). We visualized power as a func-
tion of the number of exposures (e, which can include a num-
ber of binary factors, such as presence of a chemical exposure,
infectious agent, dietary nutrients, or a sociodemographic at-
tribute) potentially interrogated in the exposome (ranging from
100 to 100,000). We also visualize power as a function of
interaction effect size, main effect odds ratio of genetic variant
of 1.1 (as observed in GWAS e.g., [36]), main effect odds ratio
of exposure of 1.5, prevalence of environmental exposure
(e.g., 5, 10, 20 %), and total sample size of the case-control
study. Critically, the power analysis assumes one million ge-
netic variants in G are ascertained (common for a GWAS
assay) and that the number of tests being performed is the
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Fig. 2 Power to search for one million SNPs by e number of
environmental exposure interaction pairs as a function of number of
factors of the exposome (x-axis), average exposure prevalence in the
population (red: 5 %, green: 10 %, blue: 20 % prevalence), sample size
(in columns), and effect size (odds ratio) for interaction (odds ratio for
disease for both exposure and genetic variant versus neither) in rows.

number of exposures e multiplied by 1 million genetic vari-
ants. The Bonferroni significance threshold, a way to correct
for the family-wise error rate as discussed above, is therefore
0.05/(e* 1 M SNPs).

The figure depicts that mitigating the analytic complexity
for finding robust G x E will be a resource-intensive endeavor
and require sample sizes not usually investigated in usual en-
vironmental epidemiology studies (greater than 10,000). First,
the power for detecting interaction effect sizes in sample sizes
of 10,000 are all low or below 80 % (left most column). In
fact, detecting interactions between individual genetic and en-
vironmental exposure factors for sample sizes of 20,000 and
interaction odds ratios of 2 is only possible for exposures that
have prevalence greater than 10 % (see Fig. 2, plot for sample
size of 20,000 and interaction odds ratio of 2.5, second plot
from left and second from top). The most dramatic decrease in
power occurs with exposures that have low prevalence (5 %,
or red line). For comparison, recall that the US prevalence of
smoking is roughly 16-20 % [37] and physical inactivity is
roughly 15-20 % [38]. It may not be tractable to detect many
G x E in the largest of current-day epidemiological investiga-
tions with less than 10,000 subjects. We will provide a web-
based G x E power calculator here: http://chiragjpgroup.org/
resources/ge_power/.
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Other assumptions include disease prevalence is 10 % (e.g., type 2
diabetes prevalence), a case-control study (1:1 case:control ratio), the
number of variants (g) is 1,000,000, risk variant frequency in the
population is 10 %, and the main effects of each G is on average 1.1
(roughly what is observed in GWAS), and main effect of £ is 1.5. Black
horizontal line denotes 80 % power

Examples of Approaches to Search for G x E

What can be done to address the challenges of this vast search
space and discriminating signal from noise and power defi-
ciencies when searching for interactions between genome-
wide genetic variants and exposome-wide environmental ex-
posures? We propose “data-driven” methods that leverage
existing biological knowledge and epidemiological findings
can aid in paring down the “search” space (Fig. 1, orange or
blue regions).

We claim the most straightforward approach includes
trimming the search space by choosing candidate G’ variants
(out of all possible G) and E” exposure factors (out of £ pos-
sible) to test. However, this task is also fraught with difficulty:
what candidate factors does one choose? In current day gene-
environment interaction studies, G’ variants and £’ factors are
selected without sufficient documentation of the strength of
their marginal associations (e.g., in a GWAS). One new way
forward would be to screen a set of gene and environmental
factors and use the strongest findings (larger relative effect
sizes and replicated findings) from GWAS and EWAS, respec-
tively, as candidates for further study and replication (Fig. 1,
orange area). Specifically, the orange area (Fig. 1) depicts a
pairwise search between g’ number of factors and e’ number
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of exposure factors that is smaller than testing the entire g
times e space of variants and exposures. Therefore, the ana-
lytic complexity or the number of interaction pairs tested is
smaller and therefore increases the opportunity for signal ver-
sus noise and type 1 error. However, this comes at a cost of not
finding interactions with low and non-significant main effects.

To construct such a screen, we propose utilizing factors
arising from comprehensive and systematic studies that have
resulted in robust and replicated associations with disease of
interest.

In fact, we have demonstrated such an approach in
searching for interacting factors in T2D [39¢]. Specifically,
we selected 19 GWAS-implicated loci in T2D (replicated sig-
nificant genetic main effects in T2D) (e.g., [36]). Second, we
selected five EWAS-implicated environmental exposures in
T2D EWAS [21]. These five environmental exposures were
significantly associated with T2D in multiple cross-sectional
cohorts. Therefore, we only examined a total of 19 factors in
G’ and five exposures in £” with strong main effects in GWAS
and EWAS, respectively. This is equivalent to testing a total of
90 G’ x E’ pairs, a much smaller “space” than testing all
genetic and environmental factors comprehensively. Further,
we effectively diminished the required sample size to just
under 2000 (albeit the discoveries require replication in other
cohorts).

Bonferroni control of the family-wise error rate is also
known to be conservative. In summary, Bonferroni correction
guards against having at least one spurious finding; however,
the potential cost is high requiring large sample sizes to
achieve significance with increased possibilities of type 2 er-
rors (low analytical power). Other more “powerful” methods
that control for potential false positives such as the false dis-
covery rate (FDR) [29¢] exist to effectively raise the signifi-
cance level for discovery. The FDR is the estimated proportion
of false discoveries made versus the number of “real” discov-
eries made for a given significance level (e.g., 0.05). Briefly,
rather than saying that we want to be 99 % sure that none of
the discoveries are spurious, we state, using the FDR, a set of
discoveries at a p value threshold that we think are drawn
according to the null distribution (or “false discoveries”). This
criterion allows this method to be a more powerful means to
control for multiple testing. The most accessible approach for
FDR correction is the Benjamini-Hochberg method, available
in all major statistical analytics platforms and can be used to
increase the power for G x E.

In the aftermath of over a thousand GWAS, investigators
are now interested in how interactions may result in the detec-
tion of novel genetic variant associations. Discrimination of
interaction effects in GWAS (also known as genome-wide
interaction study (GWIS) [40., 41]) is an active area of statis-
tical research; however, most of these methods consider only a
handful of discrete or binary environmental exposures at a
time (in other words, genome-wide G by single E). Many of

these methods are known as “two-step” approaches [42—47].
In the first step, a data-driven association scan is implemented
to search for potential interactions. The second step is a formal
testing of interactions on a limited subset of candidates gen-
erated in the first step. Some of these more powerful methods
implement the first-step screen in only the cases (known as a
“case-only” filter). A case-only filter simply tests the associ-
ation between the genetic variant and exposure in only the
cases. Interaction pairs that that are nominally significant in
the “case-only” first step are passed on to the second step of
interaction testing. The controls are considered in the second
and formal step of interaction testing and the family-wise error
rate is controlled for a much smaller subset of G by single £
pairs and thereby increases power. Undoubtedly, advances
have been made that preserve power gained in the case-only
approach for screening but utilize controls (Li and Conti 2009;
Mukherjee et al. 2012); however, the literature is scant with
documented examples of genome-wide G by single E interac-
tions uncovered through these methods. Much needs to be
done to adapt these methods for higher throughput
exposome-related research to tackle the sheer number of po-
tential exposures measured in exposome research.

Data-Driven Incorporation of Biological and/or
Epidemiological Findings

While we discuss analytical complexity for uncovering poten-
tial G x E, we emphasize that statistical interaction does not
mean biological interaction [40¢]. But, on the other hand, we
claim that utilization of emerging and rich biological sources
of data can inform other potential signals from the large space
of potential interactions (e.g., Fig. 1, blue potential interacting
pairs).

For example, databases like the Comparative
Toxicogenomics Database (CTD, [48, 49]) and the Toxic
Exposome Database (TED, [50]) contain information and
findings from documented toxicological or environmental
health investigations. These databases can help narrow down
the scope of G and F pairs interrogated. We describe an ex-
ample using the CTD. As many readers will know, the CTD is
a database containing manually curated data that describes
how genes (e.g., transcripts, protein) respond to, or are influ-
enced by, environmental toxicants in different organisms. As
an example, one such toxicological relationship is derived
from an investigation studying gestational exposure of the
plasticizing agent bisphenol A on adipogenesis in a Rattus
norvegicus model system [51], in which mRNA levels of the
gene LPL increased after chemical exposure. In the CTD, 1.2
million toxicological toxicant-gene relationships published in
diverse biomedical journals are curated. These 1.2 million
relationships are summarized from CTD cover 11,547 unique
toxicants and 39,000 genes from different species.
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For example, let us suppose we want to undertake a
G x E epidemiological investigation in T2D [52]. We
can use the CTD to select genetic variants and environ-
mental exposures to test in the investigation. In our
documented example, we first take all the SNP loci
discovered from T2D GWAS and locate the genes
where the SNPs reside. We mapped 75 T2D GWAS loci
(SNPs) with p values less than 1x 10 °® to 35 genes. We
then looked for toxicants/potential exposures that have
relationships with these 35 genes in the CTD as well-
reasoned documented factors to execute a G x E inves-
tigation. In this example, we selected genetic loci with
strong prior main effects based on their GWAS associ-
ations and exposures from the CTD that putatively mod-
ulate gene function of GWAS implicated loci, such as
gene expression, in effect selecting candidates with a
priori biological and epidemiological evidence in the
literature. We stress that interaction investigations
should proceed to examine established environmental
and genetic risk factors (e.g., [53¢]). Extending these
ideas, a general heuristic for testing a smaller space of
interactions (e.g., Fig. 1 in orange or blue) to enhance
reproducibility of findings may include the following:

1. Assess strength of association of genetic variants
and environmental factors in multiple epidemiologi-
cal studies, such as EWAS or GWAS, respectively,
if available.

2. IfEWAS:S are not available, assess strength of association
of F in “field-wide” meta-analytic epidemiological stud-
ies in disease or phenotypic trait of interest, whereby a list
of environmental factors are compiled based on a com-
prehensive list of current published studies [54] and, e.g.,
[55].

3. Inparallel or in combination in steps 1 and 2, select G and
E that have some evidence of biological interaction in
databases such as CTD or T3DB.

Conclusions

In summary, we claim that the burden of analytic complexity,
or sheer number of G x E interaction tests made possible by
emerging genomics and exposomics assays, poses a consider-
able challenge in the execution of data-driven searches for
interactions in population-scale data. In the future, new ana-
lytic approaches, less conservative methods to mitigate multi-
ple testing, and strong biological and/or epidemiological
priors will be required to prune the search space to find repro-
ducible and robust gene-by-environment interactions in obser-
vational data.
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