
Frontiers in Oncology | www.frontiersin.org

Edited by:
Jose Eduardo Villarreal Barajas,

Royal Devon and Exeter Hospital,
United Kingdom

Reviewed by:
Ruijie Yang,

Peking University Third Hospital, China
Joshua Pohyun Kim,

Henry Ford Health System,
United States

*Correspondence:
Kuo Men

menkuo126@126.com
Jianrong Dai

dai_jianrong@cicams.ac.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Radiation Oncology,
a section of the journal
Frontiers in Oncology

Received: 23 May 2021
Accepted: 25 August 2021

Published: 08 September 2021

Citation:
Ma X, Chen X, Li J, Wang Y,

Men K and Dai J (2021)
MRI-Only Radiotherapy

Planning for Nasopharyngeal
Carcinoma Using Deep Learning.

Front. Oncol. 11:713617.
doi: 10.3389/fonc.2021.713617

ORIGINAL RESEARCH
published: 08 September 2021
doi: 10.3389/fonc.2021.713617
MRI-Only Radiotherapy Planning for
Nasopharyngeal Carcinoma Using
Deep Learning
Xiangyu Ma1†, Xinyuan Chen1†, Jingwen Li2, Yu Wang1, Kuo Men1* and Jianrong Dai1*

1 National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China, 2 Cloud Computing and Big Date Research Institute, China
Academy of Information and Communications Technology, Beijing, China

Background: Radical radiotherapy is the main treatment modality for early and locally
advanced nasopharyngeal carcinoma (NPC). Magnetic resonance imaging (MRI) has the
advantages of no ionizing radiation and high soft-tissue resolution compared to computed
tomography (CT), but it does not provide electron density (ED) information for radiotherapy
planning. Therefore, in this study, we developed a pseudo-CT (pCT) generation method to
provide necessary ED information for MRI-only planning in NPC radiotherapy.

Methods: Twenty patients with early-stage NPC who received radiotherapy in our
hospital were investigated. First, 1433 sets of paired T1 weighted magnetic resonance
(MR) simulation images and CT simulation images were rigidly registered and
preprocessed. A 16-layer U-Net was used to train the pCT generative model and a
“pix2pix” generative adversarial network (GAN) was also trained to compare with the pure
U-Net regrading pCT quality. Second, the contours of all target volumes and organs at risk
in the original CT were transferred to the pCT for planning, and the beams were copied
back to the original CT for reference dose calculation. Finally, the dose distribution
calculated on the pCT was compared with the reference dose distribution through
gamma analysis and dose-volume indices.

Results: The average time for pCT generation for each patient was 7.90 ± 0.47 seconds.
The average mean (absolute) error was −9.3 ± 16.9 HU (102.6 ± 11.4 HU), and the mean-
root-square error was 209.8 ± 22.6 HU. There was no significant difference between the
pCT quality of pix2pix GAN and that of pure U-Net (p > 0.05). The dose distribution on the
pCT was highly consistent with that on the original CT. The mean gamma pass rate (2
mm/3%, 10% low dose threshold) was 99.1% ± 0.3%, and the mean absolute difference
of nasopharyngeal PGTV D99% and PTV V95% were 0.4% ± 0.2% and 0.1% ± 0.1%.

Conclusion: The proposed deep learning model can accurately predict CT fromMRI, and
the generated pCT can be employed in precise dose calculations. It is of great significance
to realize MRI-only planning in NPC radiotherapy, which can improve structure delineation
and considerably reduce additional imaging dose, especially when an MR-guided linear
accelerator is adopted for treatment.

Keywords: nasopharyngeal carcinoma, radiotherapy, MRI-only planning, pseudo CT, deep learning,
dosimetric evaluation
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is the most common
malignant tumor in the head and neck (HN), especially in
southern China and Southeast Asia. Radical radiotherapy (RT)
is the main treatment modality for early or locally advanced
NPC, and computed tomography (CT) is necessary for patient
positioning and RT planning, since it provides electron density
(ED) information for dose calculation. Magnetic resonance
imaging (MRI) has the advantages of high soft-tissue
resolution and no additional imaging dose compared to CT.
With the development of the MR-guided linear accelerator (MR-
linac), an MRI-only RT-planning workflow is desirable.
However, MRI does not provide ED information, which
hinders its application in RT planning. Therefore, there is a
need for a reliable and effective method to predict ED
information based on MR images.

Currently, this issue is addressed using three main methods.
The primary one is to simply segment soft tissue and bone (1, 2)
and assign the densities of water and bone to them, respectively.
However, it is difficult to distinguish between bone and air
in MRI.

The second is the atlas-based pseudo-CT (pCT) generation. It
requires a deformable registration from an MRI atlas to the
patient MRI to obtain a special transformation, which is then
applied to a paired CT atlas to generate pCT images (3–8).
However, when the patient’s MRI is quite different from the
image in the atlas library, and there is a special anatomical
structure (such as a large tumor or surgical cavity), leading to
deformation registration errors, which affect the accuracy
of pCT.

The third is the voxel-wise pCT generation (9–12). By
establishing a voxel-wise pCT generation model, point-by-
point prediction is performed. This method prevents manual
or semi-manual segmentation of soft tissue and bone, and it is
not sensitive to abnormal anatomical structures. Earlier studies
employed machine learning methods, such as cluster analysis,
Gaussian regression, and principal component analysis, to
establish such a generative model. However, some of them still
need manual or semi-automatic delineation of bone and air
cavity, and the prediction accuracy still needs to be improved.

Recently, convolutional neural network (CNN) and its
derivate deep learning models have been widely used for cross-
modality image generation owing to their ability to automatically
extract multilevel features of data. At present, most studies on
MR-pCT generation focus on brain and prostate RT (11, 13–16),
and promising accuracy has been achieved. However, there is a
need for further studies to develop and verify deep learning based
pCT generative models for treatment sites with more intertwined
air cavities and bony structures, such as HN. A previous study
(17) used U-Net and T2-weighted (T2w) MRI to generate HN
pCT for NPC and reported a promising image quality. In this
study, we adopted U-Net but with T1w MRI, another routine
clinical MRI modality, to train an MR-pCT generative model for
NPC. We not only evaluated the CT number prediction accuracy
but also systematically analyzed the dosimetric difference
between the obtained pCT and the corresponding original CT
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with the same beam layout. Besides, we compared the
performance of the generative adversarial network (GAN),
another popular deep learning network, with U-Net for
pCT generation.
MATERIALS AND METHODS

Image Collection
The image data in this study were obtained from 20 patients
with NPC who received RT in our hospital from September
2017 to April 2018. All data are retrospective and nonidentifiable
so that the institutional ethics review and written consent
are exempted.

Before treatment, all patients underwent CT and MR
simulation scanning in our department within very close time
and with the same fixing devices for each patient. CT scanning
was performed using a CT simulator (SOMATOMDefinition AS
40, Brilliance CT big bore, Philips) with the acquisition
parameters (voltage: 120 kV; exposure: 240 mAs; pitch: 0.94;
image size: 512 × 512; pixel spacing: 0.96 mm; slice thickness:
3.0 mm). MRI scanning was performed using a 3.0-T MR
simulator (Discovery MR750w, GE Healthcare) with a 6-
channel split head coil and T1-FSE sequence with the
acquisition parameters (repetition time (TR): 834 ms; echo
time (TE): 7.96 ms; flip angle: 111°; image size: 512 × 512; pixel
spacing: 0.55 mm; and slice thickness: 3 mm). All patients were
fixed with head-neck-shoulder thermoplastic film. The upper
boundary of the scanning range is half of the frontal sinus, and
the lower boundary extends to the supraclavicular region.

Data Preprocessing
Due to the design and characteristics of the coil, the signal
intensity distribution of the same tissue might be uneven. We
used an N3 algorithm to calibrate the bias field and performed
gray value normalization and histogram matching of the MR
images. Then, the MR and CT images were rigidly registered, and
outlines were drawn on the aligned CT and MR images,
respectively, using the thresholding segmentation algorithm.
The overlap of the two outlines was used to generate a mask,
and the density outside the mask was set equal to that of air.

Deep Learning Architecture for
MR-pCT Generation
Two deep learning models, CNN and conditional GAN (cGAN),
were adopted in this study for comparison. For both models,
we used several data enhancement techniques, including random
clipping and flipping, to expand the number of data. The Adam
method was used to optimize the loss function. The initial
learning rate was set to 0.0002, and the maximum number
of iterations was set to 40000. The network training and test
were based on the Tensorflow platform and NVIDIA Tesla
K80 GPU.

The architecture of the CNN model was 16-layer U-Net,
which was developed for MR-pCT generation (Figure 1, red
box). As shown in Table 1, the modules of convolution-batch
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normalization and rectified linear units (ReLU) were used for the
encoder–decoder network. The kernel size was 4 × 4 for the
convolutional and deconvolutional layers. Skip connections were
added between each mirrored encoder and decoder layers for
better recovery of image details.

The architecture of cGAN, as shown in Figure 1 (green box),
was the “pix2pix” model, which used paired MR and CT images
as input and ground truth, respectively. It learned a loss that uses
a discriminator to determine if an output image is real or fake
while simultaneously training a generator to minimize the loss.
GAN is supposed to have the ability to overcome problems such
as image blurring. For better comparison with the performance
of U-Net, the generator part adopted the same U-Net
architecture as aforementioned. The patch size of the
discriminator was set to 70 × 70. We adopted “cGAN + L1” as
a loss function, as suggested in (18). It comprises a standard
cGAN loss function and a weighted L1 distance term.

To get a reliable and stable model based on a small sample
size, a 10-fold cross-validation method was used to train the pCT
generation model. Through cross-validation, optimal model
parameters were determined and then used to generate pCT
images for the 20 patients. Then, voxel-wise Hounsfield units
(HU) comparison was performed between the pCT and the
original CT for each patient, considering the mean error (ME),
mean absolute error (MAE), and root-mean-square error
(RMSE) (Equations 1–3).

MAE =
1
No

N

i=1
p(i) − g(i)j j (1)

ME =
1
No

N

i=1
(p(i) − g(i)) (2)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
N

i=1

p(i)2 − g(i)2

N

s
(3)

where N is the total number of voxels of interest, p(i) the value of
the i-th voxel in the pseudo-CT, and g(i) the corresponding voxel
value in the ground truth (original) CT.

Dosimetric Evaluation
For each patient, contours of target volumes and organs at risk
(OARs) were transferred from the original planning CT by rigid
fusion to the corresponding pCT. RT plans were first designed
with a Pinnacle treatment planning system (Philips) based on the
pCT, and the beams were then copied to the original CT with the
FIGURE 1 | Architectures of U-Net (red box) and pix2pix GAN (green box). The U-Net is composed of an encoder and a decoder, and each of them has eight
mosaic layers, which are detailed in Table 1.
TABLE 1 | Sixteen-layer U-Net architecture.

Encoder Decoder

Conv 1 + BN + ReLU
(512 × 512 × 64)

De_Conv 9 + BN + ReLU
(4 × 4 × 512)

Conv 2 + BN + ReLU
(256 × 256 × 128)

De_Conv 10 + BN + ReLU
(8 × 8 × 512)

Conv 3 + BN + ReLU
(128 × 128 × 256)

De_Conv 11 + BN + ReLU
(16 × 16 × 512)

Conv 4 + BN + ReLU
(64 × 64 × 512)

De_Conv 12 + BN + ReLU
(32 × 32 × 512)

Conv 5 + BN + ReLU
(32 × 32 × 512)

De_Conv 13 + BN + ReLU
(64 × 64 × 256)

Conv 6 + BN + ReLU
(16 × 16 × 512)

De_Conv 14+ BN + ReLU
(128 × 128 × 128)

Conv 7 + BN + ReLU
(8 × 8 × 512)

De_Conv 15 + BN + ReLU
(256 × 256× 64)

Conv 8 + BN + ReLU
(4 × 4 × 512)

De_Conv 16 + BN + ReLU
(512 × 512 × 1)
September 2021 | V
The encoder input and decoder output image sizes are both 512 × 512. Conv, convolution;
De_Conv, deconvolution; BN, Batch normalization; ReLU, rectified linear units.
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same isocenter for the ground truth dose calculation. Gamma
analysis was performed using Sun Nuclear Patient (SNC Patient)
software with a 2 mm/3% (global mode, 10% low dose threshold)
criterion to compare dose distributions of pCT and original CT.
The gamma criterion for the calculation is inconsistent in the
literature, ranging from 1 mm/1% to 3 mm/3% (14–16). Hence,
we used an intermediate value herein. For each patient, 10 slices
with a 10-mm interval near the image central slice were selected
for 2D gamma analysis, and the mean gamma pass rate of the
slices was calculated for dosimetry consistency assessment.
Besides, a dose-volume histogram (DVH) comparison was
performed to evaluate the accuracy of the clinically concerned
dosimetry metrics of PTVs and OARs.
RESULTS

Performance Comparison Between U-Net
and pix2pix GAN
The quality of pCT generated by U-Net and pix2pix GAN has no
statistical difference (paired t-test, p > 0.05) in terms of ME,
MAE, and RMSE (Table 2), whereas the performance of U-Net
was slightly better than that of pix2pix GAN. A visual
comparison of the pCTs generated by the two types of
networks is shown in Figure 2, and a spatial discrepancy map
for the U-Net is shown in Figure 3. Since there was no significant
difference between the performance of U-Net and pix2pix GAN
in this task, we adopted the simpler-structured U-Net for the
further dosimetric comparison.

Dosimetric Consistency Between Real CT
and pCT-Based RT Planning
The spatial dose distribution of the pCT-based RT plan could be
replicated very well on real CT with the same beam layout, and it
demonstrates a good overlap between pCT and CT, regarding the
structure DVH (Figure 4). Detailed DVH metric comparison is
shown in Table 3.

The mean ( ± standard deviation) gamma pass rate of all the
patients was 99.1% ± 0.3%, and the median gamma pass rate of
all the selected slices was 99.3%, demonstrating a high
consistency between the real CT and pCT-based RT planning.
The worst slice pass rate was 95.9%, and the best was 100%. An
exemplary gamma analysis result is shown in Figure 5. Notably,
the positions that failed to pass the analysis are all in the
peripheral areas because the CT and MR images were not
acquired simultaneously, thus they could not be perfectly
registered, especially near the outline.
Frontiers in Oncology | www.frontiersin.org 4
DISCUSSION

In this study, deep CNN (U-Net) was used to generate pCT from
T1 weighted MRI for NPC radiotherapy, and the dosimetric
accuracy was assessed for pCT-based RT planning. We proved
that the deep learning network can reliably convert MR images to
pCT for HN position to provide ED information. Although deep
learning network usually needs much training data, we achieved
promising intensity and dosimetry prediction accuracy with
limited data.

Previous studies on MR-pCT generation mostly focused on
the brain or prostate, and only a few considered HN. The
variance of existing brain pCT generation quality recorded by
atlas-based studies is relatively large (average MAE from 85 to
184 HU) (3, 6, 19), which is attributed to the different data and
image processing algorithms. For machine learning-based
studies, Gudur et al. (20) used a Bayesian probability model
and realized an average MAE of 126 HU for brain pCT
generation. Despite the larger structure density variance
around NPC than brain tumors, the pCT quality of the
proposed model (MAE of 102.6 HU) is comparable, even
superior to that in previous brain tumor studies. A direct
comparison between the atlas and CNN-based pCT generation
was performed by Han et al. (13), and the MAE of the CNN-
based method was 10.26% lower than that of the atlas-based
method, demonstrating the advantage of CNN-based
pCT generation.

T1w MRI was used in this study, whereas a previous study on
HN pCT generation (17) adopted T2w MRI for pCT generation
using U-Net, and good pCT quality (MAE of 131 HU) was
achieved. A dosimetric comparison was performed on a single
patient regarding DVH metrics, and the difference between the
minimum-dose-of-98%-volume (D98%) of high-risk,
intermediate-risk, and low-risk PTVs on true CT and pCT was
less than 1%. Herein, we further evaluated dosimetric accuracy in
terms of global dose distribution consistency and OAR dose-
volume metrics statistically. Combining our results and their
study, regardless of the different network architecture, the
performance of deep CNN on pCT generation from the two
routine clinical MR modalities (i.e., T1w and T2w) prove to be
promising, especially in clinical practice when it comes to MR-
linac based adaptive RT, where both T1w and T2w MRI are
possible to be adopted for online planning for each individual
patient. Besides, although GAN is supposed to have a strong
nonlinearity modeling ability (17), our results show that there is
no significant difference in the performance of pix2pix GAN and
U-Net. The training process of GAN can be improved via some
sophisticated strategies, such as using other kinds of activation
functions, cost functions, normalization, or optimizers, but this is
beyond the scope of this study; thus, there is a need for
further studies.

As for the computational efficiency of the proposed model,
the average pCT generation time is 7.9 s using GPU acceleration,
in contrast to several minutes or a few hours in the
aforementioned atlas-based studies. The speed advantage of
CNN is more important in MR-linac based radiotherapy,
where online adaptive RT planning is needed.
TABLE 2 | Prediction performance comparison of U-Net and pix2pix GAN.

Quality metrics U-Net GAN *p-value

Average ME (HU) −9.3 ± 16.9 −8.7 ± 17.3 0.325
Average MAE (HU) 102.6 ± 11.4 104.2 ± 12.5 0.051
Average RMSE (HU) 209.8 ± 22.6 213.2 ± 24.1 0.067
*Paired t-test.
September 2021 | Volume 11 | Article 713617
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For the key factors for CNN-based MRI-pCT generative
model training, Andres et al. (21) evaluated the influence of
training set size, MR sequence (T1w or contrast-enhanced T1w),
MRI standardization approach, bias field correction, and
architecture of CNN on the quality of brain pCT generation.
They found that larger training set sizes result in higher pCT
quality, whereas the other factors have no significant effect on the
dosimetry quality, and all the candidate methods are relevant for
potential use in clinical practice. The best MAE obtained using
the slightly optimized preprocessing method was 78 ± 22 HU.
Regarding the network architectures, 3%/3-mm gamma indices
of 99.83% 0.19% and 99.74% 0.24% were obtained for HighRes-
Net and 3D U-Net, respectively. Largent et al. (14) evaluated and
compared U-Net and GAN using various loss functions (L2,
single-scale perceptual loss (PL), multiscale PL, weighted
Frontiers in Oncology | www.frontiersin.org 5
multiscale PL), and patch-based method (PBM) based on T2w
MRIs in prostate cancer. They found that GAN L2 and U-Net L2
show a lower MAE (≤34.4 HU) than U-Net PL, GAN PL, and
PBM. The gamma pass rates were greater than 99% for all DLMs.
GAN L2 and U-Net L2 provided the lowest dose uncertainties
together with a low computation time. Their results show that
the performance of U-Net and GAN is similar for pCT
generation, which is consistent with our findings, although
their study was for prostate pCT generation.

Besides conventional MRI modalities, such as T1w and T2w,
other sequences were used to generate pCT. Many of the previous
studies adopted the ultra-short time echo sequence, which could
make the segmentation of bone and air easier, for brain pCT
generation (22–26). However, MAEs in these studies ranged from
130 to 165 HU, which are not better than that of this study or the
FIGURE 3 | Comparison example of pCT and original CT: (A) Original CT images; (B) T1-weighted MR images; (C) Predicted pCT images; (D) Difference between
the real CT and predicted pCT values, where MAE is 73.1 HU.
FIGURE 2 | Comparison of the prediction results of U-Net and pix2pix GAN on two exemplary slices.
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aforementioned conventional modality-based methods.
Meanwhile, such dedicated MRI modalities result in additional
scanning time, which is not conducive to their clinical applications.

The limitation of this study lies in the relatively low CT
number and dose prediction accuracy at the surface of the
patient. As mentioned in Results section, this may mainly due
to the imperfect MR-CT registration and the residual MR
distortions, despite the bias correction. A dedicated phantom
Frontiers in Oncology | www.frontiersin.org 6
experiment may be needed to further validate the performance of
the proposed MR-pCT generative model, where a perfect MR-
CT alignment could be implemented.

This study proved that deep CNN is an important tool to
solve the problem of MRI to pCT generation for HN, with high
conversion accuracy and efficiency. It can be of great value to the
MRI-only radiotherapy community, especially those sites
equipped with MR-linacs, by greatly reducing the additional
TABLE 3 | Reference dose values and dose uncertainties for dosimetry metrics.

Dosimetry metrics PGTV D99Gy (Gy) PTV V95% (%) Lens Dmax (Gy)

Reference value 69.73 ± 0.44 98.74 ± 0.39 4.22 ± 1.58
Dose uncertainty (relative value) 0.26 ± 0.10

(0.4% ± 0.2%)
0.1 ± 0.1 0.26 ± 0.20

(6.1% ± 4.6%)

Dosimetry metrics Spinal Cord Dmax (Gy) Brain Stem Dmax (Gy) Parotid V30Gy (%)

Reference value 32.20 ± 2.61 44.42 ± 6.48 52.76 ± 4.67
Dose uncertainty (relative value) 0.52 ± 0.51

(1.6% ± 1.5%)
0.68 ± 0.34

(1.6% ± 0.9%)
0.20 ± 0.17
September 2021 | Volume 1
FIGURE 4 | Spatial dose distributions of the original CT (left-up panel) and pCT (down-left panel) with identical beam assignment and their DVH comparison. The
solid lines in the DVH correspond to the original CT, and the dotted lines correspond to pCT.
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imaging dose to patients and by ensuring the accuracy of
delineation and dose calculation for each fraction.
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