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Abstract: Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease arising from loss-
of-function mutations in the dystrophin gene and characterized by progressive muscle degeneration,
respiratory insufficiency, cardiac failure, and premature death by the age of thirty. Albeit DMD is one
of the most common types of fatal genetic diseases, there is no curative treatment for this devastating
disorder. In recent years, gene editing via the clustered regularly interspaced short palindromic
repeats (CRISPR) system has paved a new path toward correcting pathological mutations at the
genetic source, thus enabling the permanent restoration of dystrophin expression and function
throughout the musculature. To date, the therapeutic benefits of CRISPR genome-editing systems
have been successfully demonstrated in human cells, rodents, canines, and piglets with diverse DMD
mutations. Nevertheless, there remain some nonignorable challenges to be solved before the clinical
application of CRISPR-based gene therapy. Herein, we provide an overview of therapeutic CRISPR
genome-editing systems, summarize recent advancements in their applications in DMD contexts,
and discuss several potential obstacles lying ahead of clinical translation.

Keywords: DMD; CRISPR; dystrophin; gene therapy; double cut; single cut; base editing; prime
editing

1. Introduction

DMD, the most prevalent genetic muscular disease in man, is attributed to diverse
mutations in the X-chromosome-resident dystrophin gene and affects approximately 1 in
3500 to 5000 newborn boys worldwide [1]. The dystrophin gene is the largest known human
gene encompassing 2.6 million base pairs and contains 79 exons that encode a massive
427 kDa dystrophin protein [2,3]. The dystrophin protein, located underneath the sar-
colemma, functions as a key mechanical anchor to connect the intracellular cytoskeleton to
the inner surface of the muscle fiber membrane, maintaining sarcolemmal integrity and
supporting muscle structure. Additionally, dystrophin plays a crucial role as the molecular
scaffold to coordinate the assembly of numerous signaling molecules (e.g., nitric oxide
synthase and ion channels), which work in concert to ensure the normal functioning of
muscles [4,5]. However, the absence of dystrophin protein in DMD patients leads to muscle
membrane fragility, myocyte necrosis, inflammatory infiltration, myocardial fibrosis, and
progressive muscle weakness [2,6]. Due to the huge size of the dystrophin gene, more than
7000 pathological mutations, ranging from deletions, duplications, and point mutations to
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other small gene arrangements, have been discovered in DMD patients [7]. Most of these
mutations (~75%) are intragenic deletions or duplications of one or multiple exons and
primarily cluster into two hotspot regions between exons 2–22 and exons 43–55, whereas
other small mutations (e.g., insertions and nonsense mutations) randomly occur throughout
the dystrophin gene [7,8]. Pathologically, the majority of DMD mutations destroy the open
reading frames (ORFs) or create a premature stop codon in the transcripts, which leads to
aberrant translation and the generation of nonfunctional dystrophin. With the progression
of DMD, dystrophin deficiency eventually results in the loss of ambulation, respiratory fail-
ure, cardiomyopathy, and premature death in early adulthood [6]. Unfortunately, although
DMD is devastating, there exists no curative therapy for this lethal disease. At present,
both corticosteroid and antisense oligonucleotide (AON) treatments are available for the
mitigation of the symptoms of this disease [9–11], but they fail to remove the underlying
genetic mutations from the dystrophin gene. It has been suggested that the current thera-
peutic approaches are offered mainly only for the alleviation of secondary manifestations
of DMD, such as inflammation, fibrosis, mitochondrial dysfunction, impaired angiogenesis,
or calcium dyshomeostasis [12–19]. Moreover, the long-term use of corticosteroids has been
found to minimally ameliorate DMD phenotypes and cause many adverse effects, including
growth delay and bone weakness [12,20,21]. Through the induction of the skipping of exon
45, 51, or 53 in dystrophin transcripts, four AON medicines have been approved to treat
DMD patients with particular mutations in the exon 43–55 hotspot, but they usually restore
dystrophin protein expression to less than 1% of the normal level after a year of continuous
administration [22–26]. The broad application of AON medicines is restrained by various
factors, including reduplicative administration, high cost, and poor delivery efficiency,
particularly in the heart, probably due to their short half-lives [27,28]. Hence, there remains
a great unmet need to develop innovative therapeutic strategies for correcting genetic
mutations and restoring functional dystrophin generation in DMD individuals.

Based on its simplicity and precision, CRISPR-mediated genome engineering offers a
promising therapeutic approach to restoring dystrophin expression and muscular functions
in DMD individuals via eliminating pathological mutations at the genomic level [29,30].
Thus, a single administration of CRISPR genome-editing components can cure DMD in
theory. The CRISPR system is composed of two major components, one CRISPR-associated
(Cas) endonuclease and the other a single-guide RNA (sgRNA) complementary to the
target genomic sequence [31,32]. Under the guidance of the sgRNA, Cas endonuclease
directly binds to the target genomic sites adjacent to the protospacer-adjacent motif (PAM),
creating DNA double-strand breaks (DSBs). In mammalian cells, these site-specific DSBs
are typically resolved by endogenous cellular repair pathways, either non-homologous
end joining (NHEJ) or homology-directed repair (HDR) [33]. The choice of DSB repair
pathway depends on the cell type, cellular proliferation status, and the absence or presence
of an exogenous DNA template. Thus far, CRISPR systems have been widely employed to
correct diverse DMD-causing mutations not only in human DMD myoblasts and induced
pluripotent stem cells (iPSCs) but also in preclinical DMD animal models such as mice, dogs,
and pigs [34–42]. After the single systemic administration of Cas9 system components,
both genomic editing and dystrophin restoration have been shown to persist for at least
18 months in the mdx mice harboring a point mutation in exon 23 and the DMD mouse
model with an exon 44 deletion (∆Ex44) mutation [35,43,44], highlighting the durability
of CRISPR therapeutics in dystrophic mice. Since adult human cardiomyocytes have an
extremely low turnover rate over time [45], CRISPR gene therapy will most likely lead to
lifelong benefits when used to treat DMD patients. However, clinical studies assessing the
efficacy and safety of CRISPR gene therapy in DMD patients are still missing. Therefore,
to facilitate the clinical translation of therapeutic CRISPR gene editing for DMD, more
efforts are imminently necessary to address the multiple challenges, including but not
limited to safe dosage, the in vivo delivery strategy, immunogenicity, and the extent of
dystrophin restoration.
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In this paper, we overview recent advances in the knowledge of CRISPR gene therapy
for DMD and discuss several challenges in the clinical application of therapeutic CRISPR
gene editing.

2. Dystrophin

There exist multiple different isoforms of dystrophin transcripts originating from
seven unique promoters and alternative splicing [46]. Remarkably, the splicing patterns of
79 exons are highly conserved across vertebrate species [47], which aids the development
of therapeutic medicines via evaluating the efficacy and mechanisms of potential medicines
in preclinical DMD animals. Among these isoforms, the largest transcript driven by the
promoter upstream of exon 1 is 14 kb in size and encodes for the 427 kDa dystrophin
protein with 3684 amino acids. This full-length dystrophin is expressed in all skeletal
muscles, heart, vascular and visceral smooth muscles, as well as some neural cells [48]. The
dystrophin protein consists of four distinct functional domains in the following order: an
actin-binding domain at the N-terminus, a central rod region with 24 successive spectrin-
like repeats (SLRs), a cysteine-rich domain binding β-dystroglycan, and a C-terminal
domain interacting with dystrobrevin and syntrophin [2,41]. Thus, dystrophin serves as an
organizing center for the dystrophin-glycoprotein complex (DGC), linking the intracellular
cytoskeleton to the extracellular matrix across the sarcolemma. Beyond dystrophin, other
DGC components comprise an extracellular α-dystroglycan binding laminin-2, a trans-
membrane β-dystroglycan, a membrane-resident sarcospan, and four trans-membrane
sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) [49]. Meanwhile, dystrophin has a direct
association with neuronal nitric oxide synthase (nNOS) via two SLRs (R16 and R17) [5],
localizing the nNOS near the sarcolemma and modulating nitric oxide signaling in muscle
cells. It has been observed that DGC may associate with the proteins engaged in calcium
homeostasis, such as plasma membrane calcium ATPase and calcium channels [50,51]. It
is likely that the modulation of DGC on calcium signaling happens at the sarcoplasmic
membrane level in dystrophic cells [50].

The deficiency of functional dystrophin results in the mislocalization of DGC compo-
nents, dysregulation of calcium balance, abnormal nitric oxide signaling, mitochondrial
dysfunctions, increased oxidative stress, defective energy metabolism, impaired autophagy,
insufficient angiogenesis, and aberrant inflammation [51–59]. Intracellular calcium is
known to be abnormally elevated in dystrophic cells owing to the activation of calcium
channels in the sarcoplasmic membrane and the decreased calcium handling [51–53]. This
elevation of cytosolic free calcium leads to an overload of calcium in the mitochondria
and other organelles such as the endoplasmic reticulum, which in turn conduces to the
augmentation of oxidative stress and the impairment of mitochondrial respiration and ATP
production [54–56,60]. Consistent with these scenarios, defective energy metabolism is
present in the dystrophic cells, partially evidenced by insufficient glucose utilization and
fatty acid oxidation [57]. On the other hand, excessive cytosolic calcium and disturbed
cellular homeostasis not only trigger the activation of calcium-sensitive proteases (e.g.,
calpains and phospholipase A2) but also promote the release of diverse cytokines and
chemokines into the extracellular space. Such aberrant events provoke the infiltration of im-
mune cells (e.g., macrophages and neutrophils) into dystrophic muscles [61], contributing
to myofiber necrosis and muscle destruction. As time goes on, continuous cycles of muscle
damage and regeneration progressively allow the replacement of dystrophic muscles with
fibro-fatty connective tissue, accompanied by the loss of muscle mass and functions. It is
noteworthy that muscle damage and membrane leakage are obligated to the unnatural
elevations of serum creatine kinase and lactate dehydrogenase in DMD individuals [62].
These myriad dysfunctions have been well documented in the skeletal and cardiac muscles
of both DMD patients and animal models [6,63–65].

Both the N terminus linking the actin filaments and the C terminus binding the DGC
components are essential for dystrophin functions [66], whose mutations lead to a complete
loss of dystrophin protein. On the contrary, the median domain having redundant rod
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repeats could be shortened and generates the internally truncated dystrophin forms with
partial functions. It has been shown that a central domain with as few as 4 spectrin-
like repeats enables truncated dystrophin to be partially functional [67]. Under natural
conditions, internally shortened dystrophin proteins can be observed in patients with
Becker muscular dystrophy (BMD) resulting from the in-frame mutations of the dystrophin
gene [68]. Thus, BMD patients show relatively mild symptoms in general, and some
patients may remain asymptomatic until later life [69,70]. Likewise, micro-dystrophin, a
truncated but partially functional protein lacking redundant rod repeats, only contains a
minimal number of functional domains and has been shown to ameliorate DMD symptoms
in many preclinical animal models [71–74]. The adeno-associated virus (AAV)-mediated
single administration of micro-dystrophin (e.g., SRP-9001, PF-06939926, and SGT-001) is still
being evaluated in several clinical studies involving DMD boys (http://clinicaltrials.gov).
Despite the tolerance of some DMD patients to micro-dystrophin therapy [49,75], the
spatiotemporal expression of micro-dystrophin is actually modulated by an exogenous
promoter within the AAV, which may lead to uncontrollable protein localization and level.
On the contrary, the expression patterns of CRISPR-corrected dystrophin transcripts and
proteins are controlled by endogenous promoters, representing an attractive advantage of
CRISPR genome engineering.

3. CRISPR Systems

The CRISPR-Cas system was originally discovered as an adaptive defense system in
bacteria and archaea against foreign viral pathogens [76–78] and has been harnessed for
genomic editing in eukaryotic cells. Based on Cas type and number, six CRISPR systems
(I–VI) are grouped into two distinct classes: the class 1 system, comprising types I, III and IV,
needs multiple Cas effectors at once; the class 2 system, containing types II, V and VI, utilizes
one single Cas endonuclease [79]. Most type-II Cas9 and type-V Cas12 proteins act on DNA
and introduce the DSBs in a programmable manner, whereas type-VI Cas13 proteins cleave
the RNA transcripts specifically via their RNA-targeting nuclease activity [32,80]. As for the
manner of cleavage, Cas9 proteins with RuvC and HNH nuclease domains primarily create
blunt-end DSBs in the protospacer sequence 3 nucleotides upstream of the PAM [76], while
Cas12 variants possessing a single RuvC-like nuclease domain typically make the sticky
ends with five-nucleotide overhangs in the PAM-distal regions of the protospacer [81]. It
has been reported that Streptococcus pyogenes Cas9 (SpCas9) may cut DNA in a staggered
orientation and leave a single-nucleotide overhang at the broken point [82,83]. Following
DNA cleavage, the HDR pathway is activated to repair the DSBs in the presence of an
exogenous donor template and introduces the desired modification into the genome at
the target locus. Nonetheless, HDR is only active in the proliferative cells owing to its
requirement of some proteins expressed in the S and G2 cell-cycle phases [84,85], so it
has a very low efficiency (less than 2%) in post-mitotic cells such as cardiomyocytes and
myofibers. On the contrary, the NHEJ machinery turns to fix the DSBs in the absence
of an exogenous template and often generates small insertions or deletions around the
broken site. Unlike HDR, NHEJ is functional throughout the cell cycle and operates at high
efficiency not only in dividing cells but also in post-mitotic cells [86]. Thus, it is believed
that NHEJ serves as the predominant repair pathway in most mammalian cells.

The diversification of Cas proteins is extremely remarkable in terms of the bacterial
source, protein size, PAM sequence, suitable spacer length, and editing efficiency and
specificity. For example, the most often used SpCas9 with 1368 amino acids specifically
recognizes the tri-nucleotide PAM sequences of 5′-NGG or -NAG that are common in the
human genome [76,77,87]. By comparison, Staphylococcus aureus Cas9 (SaCas9, 1053 amino
acids) and Campylobacter jejuni Cas9 (CjCas9, 984 amino acids) utilize the longer but rela-
tively restrictive PAM sequence of 5′-NNGRRT or 5′-NNNVRYM, respectively [88,89]. It
should be noted that both SaCas9 (~3.2 kb) and CjCas9 (~2.95 kb) are much smaller than the
genome packaging limit of AAV vectors (~4.7 kb) [90], enabling them to be efficiently deliv-
ered in vivo by conventional AAV vectors. In the cases of Cas12 effectors, Lachnospiraceae
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bacterium Cas12a (LbCas12a, 1228 amino acids) and Acidaminococcus sp. Cas12a (AsCas12a,
1307 amino acids) are more efficient and widely adopted than other Cas12 variants in
mammalian cells via targeting the T-rich PAM of 5′-TTN [81,91,92]. Beyond these five Cas
proteins, an enormous variety of Cas9 and Cas12 enzymes have been discovered and char-
acterized from diverse bacterial species, including Neisseria meningitidis Cas9 (NmeCas9),
Streptococcus thermophilus Cas9 (StCas9), Francisella novicida Cas9 (FnCas9), Alicyclobacil-
lus acidoterrestris Cas12b (AacCas12b), Bacillus hisashii Cas12b (BhCas12b), Oleiphilus sp.
Cas12c (OspCas12c), Deltaproteobacteria Cas12e (DpbCas12e), and Planctomycetes Cas12e
(PlmCas12e) [79,93–101]. Additionally, many naturally occurring Cas proteins have been
engineered to improve their PAM availability, enhance on-target efficiency, and/or reduce
off-target activity [32,79]. Hitherto, a great deal of engineered Cas9 and Cas12 proteins with
high targetability and specificity have already been made, such as eSpCas9, Spy-mac Cas9,
HypaCas9, evoCas9, HeFSpCas9, xCas9, HiFiCas9, Sniper-Cas9, SpCas9-HF1, SpCas9-NG,
FnCas9-RHA, SaCas9-KKH, AsCas12a-RVR, and enAsCas12a [102–114]. As new Cas9
and Cas12 variants unceasingly emerge, the toolkit of CRISPR gene-editing systems is
getting expanded by both natural and engineered Cas proteins, thus offering more and
more choices for CRISPR therapeutics.

An important engineering direction is to modify the nuclease domains of Cas enzymes
to generate catalytically impaired nickase Cas (nCas) or catalytically inactivated dead Cas
(dCas) variants while retaining their programmable DNA-binding ability [32,115]. In this re-
gard, both nCas and dCas proteins have been fused with a cytidine deaminase or adenosine
deaminase for single-base conversions or with an engineered reverse transcriptase for short
insertions and deletions [116–118]. The fusion of nCas or dCas proteins with the cytidine
deaminase APOBEC1 causes the precise transition from C•G to T•A base pairs [119], while
the combination of nCas or dCas variants with the adenosine deaminase TadA accurately
converts the targeted A•T base pairs to G•C [120]. Fusing an nCas effector with a reverse
transcriptase can induce all base pair transitions, small insertions, and/or short deletions in
a targeted and precise way [118,121]. The fusion protein between dCas9 and transcriptional
activator VP160 could drastically increase the expression level of dystrophin homolog
utrophin via targeting its promoters [122,123], which represents a promising compensatory
approach for DMD treatment. Unlike conventional Cas enzymes, both nCas and dCas
proteins are unable to introduce DSBs into the genome, making these nCas- or dCas-based
CRISPR tools especially safe for genome editing and disease therapy.

4. CRISPR-Driven Therapeutic Strategies

The first demonstration of CRISPR gene-editing therapy is in the mdx mice through
the direct zygote injection of SpCas9, sgRNAs, and single-stranded oligodeoxynucleotide
(ssODN) [124]. Due to ethical issues and public policies, this germline editing approach is
likely unavailable for DMD treatment in humans. Therefore, accumulating evidence instead
validates the in vivo therapeutic benefits of CRISPR gene editing systems in postnatal
DMD animals [36,37,39,40,43,44,125–129]. The leading strategies for the CRISPR-mediated
therapeutic correction of DMD mutations are exon excision, exon skipping, exon reframing,
exon knockin, base editing, and prime editing (Tables 1 and 2).

Table 1. CRISPR-mediated therapeutic strategies in preclinical DMD animals.

Strategy Mutation Nuclease Target
Region DMD Model Delivery Infusion Reference

Double-cut
exon exicision

Ex23 mut SpCas9 i22, i23 mdx mice AAV9 IM, IV, IP, RO [34,35]

Ex23 mut SaCas9 i22, i23 mdx mice AAV8 IM, IV, IP [36,37]

∆Ex52 SpCas9 i50, i51 DMD∆52 mice AAV9 IM, IV [39]

∆Ex52 SaCas9 Ex47, Ex58 hDMD∆52/mdx
mice AAV9 IV [40]

Ex23 mut SaCas9 i20, i23 mdx mice AAVrh74 IV [43]
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Table 1. Cont.

Strategy Mutation Nuclease Target
Region DMD Model Delivery Infusion Reference

Double-cut
exon exicision

Dup Ex18-30 SaCas9 i21 Dup 18-30 mice AAV9 IV [125]

Ex23 mut SpCas9 i20, i23 mdx mice AAV IM [126]

Ex23 mut SaCas9 i22, i23 mdx mice AAV9 IM, IV, IP [127]

Ex53 mut SaCas9,
SpCas9 i51, i53 mdx4Cv mice AAV6 IM, RO [128,129]

∆Ex45 SpCas9 i44, i55 hDMD∆45/mdxD2
mice Plasmid IM [130]

Ex23 mut SaCas9 i20, i23 mdx/Utr+/− mice AAV IV [131]

Single-cut
exon skipping
and reframing

∆Ex44 SpCas9 Ex45 DMD∆44 mice AAV9 IM, IP [132]

∆Ex50 SaCas9-KKH Ex51 DMD∆50 mice AAV9 IP [133]

∆Ex43 SpCas9 Ex44 DMD∆43 mice AAV9 IM [134]

∆Ex45 SpCas9 Ex44 DMD∆45 mice AAV9 IM [134]

∆Ex52 SpCas9 Ex53 DMD∆52 mice AAV9 IM [134]

∆Ex50 SpCas9-VRQR Ex51 DMD∆50;h51KI
mice AAV9 IP [135]

∆Ex44 SpCas9 Ex45 DMD∆44 mice AAV9 IP [44,136]

Ex23 mut CjCas9 Ex23 DMD/Ex23 mut
mice AAV9 IM [137]

∆Ex50 SpCas9 Ex51 DMD∆50 mice AAV9 IM, IP [138]

∆Ex50 SpCas9 Ex51 ∆Ex50-Dmd-Luc
mice AAV9 IM, IP [139]

∆Ex50 SpCas9 Ex51 DMD∆50 dogs AAV9 IM, IV [140]

Pseudo Ex13 SpCas9 i13 WCMD dogs AAV8 IM, IV [141]

Pseudo Ex19 SpCas9 i19 LRMD dogs AAV8 IM, IV [141]

HDR-based
correction

Ex23 mut SpCas9 Ex23 mdx mice Injection Zygote [124]

Ex53 mut SpCas9 Ex53 mdx4Cv mice AAV6 IM [128]

Ex23 mut LbCas12a Ex23 mdx mice Injection Zygote [142]

i6 mut SpCas9 i6 GRMD dogs Plasmid IM [143]

Ex23 mut SpCas9 Ex23 mdx mice Nanoparticle IM [144]

Exon knockin Ex51 mut SaCas9 Ex52 hDMD∆52/mdx
mice AAV9 IM, IV [145]

Base editing

Ex51 mut ABEmax-nSpCas9 Ex50 DMD∆51 mice AAV9 IM [146]

Ex20 mut ABE-nSpCas9 Ex20 DMD/Ex20* mice AAV9 IM [147]

Ex53 mut ABE-nSpCas9-iNG Ex53 mdx4Cv mice AAV9 IV [148]

Ex4 mut CBE-nSaCas9 Ex4 DmdE4* mice AAV9 IP [149]

Ex, exon; i, intron; mut, mutation; AAV, adeno-associated viral vector; ∆, deletion; Dup, duplication; IM,
intramuscular; IV, intravenous; IP, intraperitoneal; RO, Retro-orbital; KI, Knockin.

Table 2. CRISPR-mediated therapeutic strategies in human DMD cells.

Strategy Mutation Nuclease Target Region DMD Model Delivery Reference

Double-cut
exon exicision

∆Ex46-51 SpCas9 i44, i55 human iPSCs electroporation [38]

∆Ex52 SpCas9 i50, i51 human iPSCs AAV6 [39]

∆Ex49-50,
∆Ex50-52,
∆Ex51-53,
∆Ex51-56

SaCas9 Ex47, Ex58 human
myoblasts lentivirus [40]
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Table 2. Cont.

Strategy Mutation Nuclease Target Region DMD Model Delivery Reference

Double-cut
exon exicision

Dup Ex18-30 SpCas9 i27 human
myoblasts lentivirus [122]

Dup Ex55-59 SpCas9 i54 human iPSCs nucleofection [150]

Dup Ex2 SpCas9 i2 human
myoblasts lentivirus [151]

Dup Ex3-16 SpCas9 i9 human
myoblasts lentivirus [152]

Dup Ex18-25 SpCas9 i25 human
myoblasts lentivirus [153]

∆Ex48-50 SpCas9 i50, i51 human
myoblasts electroporation [154]

∆Ex48-50 SpCas9 i44, i55 human
myoblasts electroporation [154]

∆Ex51 SpCas9,
AsCas12a

i44, i55;
i45, i54

human
myoblasts electroporation [155]

∆Ex45-52 SpCas9 i52, i53 human
myoblasts adenovirus [156,157]

∆Ex45-52,
∆Ex48-50

SpCas9,
eSpCas9(1.1) i43, i54 human

myoblasts adenovirus [156–158]

∆Ex8-9 SpCas9
i2, i7;
i5, i7;
i6, i11

human iPSCs nucleofection [159]

∆Ex3-7 SpCas9 i7, i9 human iPSCs nucleofection [159]

Ex23 mut SpCas9 i22, i23 mouse
myoblasts lipotransfection [160]

Single-cut
exon skipping
and reframing

∆Ex44 SpCas9 Ex45 human iPSCs nucleofection [132]

∆Ex48-50 SaCas9-KKH Ex51 human iPSCs nucleofection [133]

∆Ex43,
∆Ex45 SpCas9 Ex44 human iPSCs nucleofection [134]

∆Ex52 SpCas9 Ex51 human iPSCs nucleofection [134]

∆Ex48-50 SpCas9-VRQR Ex51 human iPSCs nucleofection [135]

∆Ex48-50 LbCas12a,
AsCas12a Ex51 human iPSCs nucleofection [142]

∆Ex48-50 SpCas9 Ex51 human iPSCs nucleofection [150]

Pseudo Ex47 SpCas9 i47 human iPSCs nucleofection [150]

∆Ex48-50 eSpCas9(1.1) Ex51 human
myoblasts adenovirus [158]

HDR-based
knockin

i6 mut SpCas9 i6 canine
myoblasts nucleofection [143]

∆Ex44 SpCas9 Ex44 human iPSCs electroporation [161]

Base editing
∆Ex51 ABEmax-

nSpCas9 Ex50 human iPSCs nucleofection [146]

∆Ex51 CBE-nSaCas9 Ex50 human iPSCs lipotransfection [162]

Prime editing
∆Ex51 PE2-dSpCas9 Ex52 human iPSCs nucleofection [146]

Ex6 mut PE2-nSpCas9 Ex6 human
myoblasts electroporation [163]

∆, deletion; Ex, exon; i, intron; iPSC, induced pluripotent stem cell; AAV, adeno-associated viral vector; Dup,
duplication; mut, mutation.
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5. Double-Cut Exon Excision

The removal of one or more exons by CRISPR gene editing applies to approximately
85% of all DMD patients bearing exon duplications, deletions, or point mutations. Two sgR-
NAs flanking either side of the mutant exons are designed to simultaneously cut the target
genomic sites in the presence of Cas proteins, resulting in the complete excision of mutant
exons (Figure 1A). Consequently, this kind of exon excision restores the dystrophin reading
frame and the expression of functionally truncated dystrophin protein. It has been shown
that this exon excision strategy is particularly suitable for correcting exon duplication
mutations [122,125,150–153]. Exonic duplications are estimated to comprise 10–15% of
all DMD mutations [152,164,165], making them the third most common cause of DMD.
Under the guidance of two sgRNAs targeting a duplicated intronic region, SpCas9 precisely
excludes a tandem duplication of exon 2. It repairs the expression of 7–11% of full-length
dystrophin protein in human DMD myoblasts with an exon 2 duplication [151]. Likewise,
the SpCas9 system has been employed to remove exon 18-30 duplication and induce full-
length dystrophin restoration in human DMD myoblasts with exon 18-30 duplications
(Dup18-30) [122]. Intravenously administrating AAV-SaCas9 system in DMD Dup18-30
mice could ensure full-length dystrophin protein expression in cardiac and skeletal muscles
ranging from 4% to 25% of the normal levels [125]. These levels of functional dystrophin
restoration ameliorate dystrophic pathology, enhance muscle strength, and improve open-
filed activity in SaCas9-corrected Dup18-30 mice [125]. This observation aligns with the
notion that as little as 3–14% of full-length dystrophin protein significantly benefits muscle
functions [166,167]. Intriguingly, the elimination of a duplication event can be achieved
readily with one sgRNA targeting the duplicated intronic region.

Figure 1. Cont.
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Figure 1. Therapeutic strategies for CRISPR-based genome editing. (A) Double-cut exon excision
using two sgRNAs. In the end, exon 51 is removed from the genome by NHEJ machinery. (B) Single-
cut exon skipping by disruption of the splice donor site. The exon 44 skipping induces the splicing of
exon 42 to exon 45 at the mRNA level. (C) Single-cut exon reframing. Small insertions or deletions
occurring in the exon 51 region can restore the reading frame with at least one-third probability.
(D) Accurate mutation correction in the exon 23 by HDR pathway in the existence of a donor template.
(E) HITI-mediated exon knockin. Exon 52 is precisely incorporated back into the genome by NHEJ
machinery. (F) Base editing-driven correction. The ABE is used to treat a point mutation in the
exon 53 via inducing A•T to G•C transition, whereas the CBE is deployed to mutate the GT at the
splice donor site of exon 4, causing exon 4 skipping in the transcripts. (G) Prime editing-induced
exon reframing. Prime editing can introduce all genomic modifications, such as single-nucleotide
transitions, small insertions, and short deletions.

CRISPR-mediated exon excision is useful for correcting exonic deletion mutations,
especially multi-exon deletions, in the dystrophin gene. This exon excision approach is
supported in nature by the asymptomatic or mild symptoms of BMD patients with small
in-frame deletions in the exon 45-55 mutation hotspot region [154]. It should be noted that
the excision of the exon 45-55 hotspot region could be used as a treatment for more than
60% of DMD patients regardless of mutation type. For example, two different sgRNAs, one
targeting intron 44 and the other targeting intron 55, are utilized to remove the entire exon
45-55 region in the presence of SpCas9, which in turn generates an internally truncated
dystrophin protein in human DMD myoblasts with an exon 48-50 deletion (∆Ex48-50) [154].
This large excision of the exon 45-55 region efficiently repairs dystrophin protein expression,
stabilizes the DGC complex, and improves membrane integrity in both cardiomyocytes
and skeletal muscles from human DMD iPSCs harboring an exon 46-51 deletion (∆Ex46-51)
mutation [38]. The restoration of functional dystrophin transcripts and protein following
the excision of the exon 45-55 region has also been demonstrated in human DMD myoblasts
with an exon 51 deletion (∆Ex51) mutation and a humanized DMD mouse model carry-
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ing the exon 45-deleted human dystrophin gene (hDMD∆45/mdxD2) [130,155]. Notably,
the efficiencies of the SpCas9 system when reframing the ∆Ex51 mutation and restoring
dystrophin expression are comparable to that of the AsCas12a system in human DMD
∆Ex51 myoblasts and a patient-derived xenograft DMD mouse model [155]. Likewise, the
combination of either SpCas9 or eSpCas9(1.1) with two sgRNAs targeting introns 43 and
54 is found to abscise the exon 44-54 region and generate a functional dystrophin protein
in human DMD myoblasts with ∆Ex48-50 or ∆Ex45-52 mutation [156–158]. Intriguingly,
the utilization of SaCas9 and two sgRNAs targeting exons 47 and 58 leads to the formation
of a hybrid exon 47-58 lacking their internal large region and the expression of 360 kDa
dystrophin protein in human DMD myoblasts with ∆Ex49-50, ∆Ex50-52, ∆Ex51-53, or
∆Ex51-56 mutation [40]. The systemic AAV delivery of SaCas9 components is further
reported to restore functional dystrophin expression in the heart of humanized DMD mice
with an exon 52-deleted human dystrophin gene (hDMD∆52/mdx) [40]. Apart from the
above multi-exon excision, the elimination of single exon 51 or 53 by the SpCas9 system
has also been proved to repair the dystrophin reading frame in human DMD ∆Ex48-50
or ∆Ex45-52 myoblasts, respectively [154,156,157]. Moreover, the single systemic adminis-
tration of SpCas9 components by AAV9 vectors in DMD ∆Ex52 pigs restores dystrophin
protein expression throughout muscle tissues, ranging from 12% to 54% of normal levels,
which gives rise to the alleviation of muscle pathology, the improvement of skeletal muscle
and cardiac functions, and the extension of porcine lifespan [39]. Notably, SpCas9-driven
exon excision has been taken to handle the deletion mutation in the N-terminal exon
2-20 hotspot [159]. Three distinct excision approaches are designed to separately remove
exons 3-7, 6-7, or 7-11 in human DMD iPSCs with an exon 8-9 deletion (∆Ex8-9) mutation.
The exon 3-9 excision is the most effective strategy in restoring the contractility and calcium
transits of DMD ∆Ex8-9 iPSC-derived cardiomyocytes, whereas the exon 7-11 excision
causes the minimal recovery of cardiomyocyte functionality due to the generation of a struc-
turally unstable dystrophin protein [159]. When facing the mutations in N- and C-terminal
domains, specific considerations need to be paid to retain the essential amino acid residues
for functional dystrophin protein restoration.

Beyond exon duplication or deletion mutations, the exon excision strategy has been
adopted to reframe the out-of-frame point mutations comprising ~27% of all DMD cases
both in vitro and in vivo [34–37,43,126–129,131,160,168]. For example, AAVrh74-delivered
SaCas9 and two sgRNAs targeting introns 20 and 23 in neonatal mdx mice are found to
remove the exon 21-23 region with a nonsense mutation, prevent cardiomyopathy, and
improve cardiac functions [43]. These benefits following systemic AAV-SaCas9 therapy
can be sustained for up to 19 months without the occurrence of tumorigenicity and or-
gan toxicity [43]. Likewise, the systemic administration of either SaCas9 or SpCas9 with
two sgRNAs targeting introns 51 and 53 produces widespread dystrophin restoration in
the cardiac, diaphragmatic and skeletal muscles of DMD mdx4Cv mice harboring a point
mutation in exon 53 [128,129]. The genomic editing efficiency of systemic AAV6-Cas9
treatment is stable in mouse cardiomyocytes rather than their skeletal muscles [129]. Intra-
muscularly administrating SpCas9 or SaCas9 components in DMD mdx4Cv mice repairs
dystrophin protein expression in up to 68% of skeletal myofibers, improves skeletal muscle
structure, and boosts muscle forces [128]. Thus far, a single exon 23 excision using either
SaCas9 or SpCas9 system has been validated in neonatal and adult mdx mice [34–37,127].
In neonatal mdx mice, systemically infused SaCas9 or SpCas9 components are capable of
rescuing dystrophin protein expression in body-wide muscle tissues [34,36,37,127]. The
local administration of the AAV-SaCas9 system in adult mdx mice leads to improved muscle
morphology, ameliorated nNOS localization, and enhanced skeletal muscle force [36,127].
An interesting finding is that genomic editing efficiency and the extent of dystrophin
restoration in the heart of systemically treated mdx mice increase as the mice age [37], which
is probably due to the survival disadvantage of dystrophic cardiomyocytes.

Two major concerns limit the clinical application of double-cut exon excision at its
current iterations. The first is its low editing efficiency, which may be attributed to the
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indispensability of two cooperative cutting across large genomic intervening regions.
Another is the generation of diversely unpredictable genome modifications such as DNA
inversion and AAV integration [37].

6. Single-Cut Exon Skipping and Reframing

Single-cut gene editing has emerged as a promising alternative strategy for the efficient
and safe correction of diverse DMD mutations [41,169]. In this approach, one single sgRNA
is designed to target the vicinity of the intron-exon boundary and splice signal sequences.
Its utilization, together with the Cas enzyme, performs one single cutting. This single DSB is
rejoined later by endogenous NHEJ pathways, introducing small insertions or deletions into
the target loci. There are two repair outcomes: (1) exon skipping happens as small deletions
abolish the splice consensus sites of out-of-frame exons (Figure 1B); (2) exon reframing
occurs when an appropriate number of nucleotide deletions or insertions appear in the
exonic region (Figure 1C). In theory, approximately one-third of single-cut editing events
hold the promise to put the dystrophin gene back in the frame [42]. Indeed, SpCas9-mediated
single cutting in exon 51 generates a large fraction of exon reframing events among all indels
via preferentially inserting one single adenosine [138], while the reframing of exon 51 by
the SaCas9-KKH system may even account for ~80% of all editing events [133]. Regardless
of whether conducting exon skipping or exon reframing, the permanent restoration of the
dystrophin reading frame and protein expression is eventually achieved in muscle cells.
More than 80% of DMD patients are estimated to benefit from this therapeutic strategy [42].
Compared to double-cut exon excision, both exon skipping and exon reframing via single-
cut gene editing possess many advantages, including but not limited to a high editing
efficiency, low frequency of off-target events, and minimum genomic modifications.

Single-cut editing strategy is very efficient for reconstituting the dystrophin reading
frame and expression in DMD mice and dogs with an exon 50 deletion (∆Ex50) mutation,
representing one of the most common single exonic deletions in humans [133,135,138–140].
The AAV9-based intramuscular delivery of SpCas9 and one sgRNA in young DMD ∆Ex50
mice and dogs can rescue dystrophin expression in nearly all skeletal myofibers and prevent
the onset of skeletal muscle pathology [138–140]. In neonatal DMD ∆Ex50 mice and young
DMD ∆Ex50 dogs, the systemic administration of SpCas9 components results in widespread
dystrophin restoration throughout body muscles, improves the expression of DGC complex,
repairs muscle structure and histology, and enhances muscle strength [138–140]. The
restoration of dystrophin expression can be up to 92% of the normal level in the heart of
systemically injected DMD ∆Ex50 mice, in which ~21% of the genome-editing efficiency is
yielded durably [138]. Likewise, a single intraperitoneal administration of the SaCas9-KKH
system by AAV9 vector in neonatal DMD ∆Ex50 mice has been shown to efficiently repair
dystrophin expression in skeletal and cardiac muscles, ameliorate muscle structure and
membrane integrity, and improve muscle functions such as contractility [133]. Beyond
SpCas9 and SaCas9-KKH, both LbCas12a and AsCas12a systems have been shown to rescue
dystrophin expression and increase mitochondrial number and oxygen consumption rate
in human DMD ∆Ex48-50 iPSCs-derived cardiomyocytes [133,142,150]. Recently, single-cut
gene editing using the SpCas9 system has been extended to correct other single exonic
deletions in human DMD iPSCs and DMD mouse models with ∆Ex43, ∆Ex44, ∆Ex45, or
∆Ex52 mutation [44,132,134,136]. The systemic AAV delivery of SpCas9 components in
neonatal DMD ∆Ex44 mice restores dystrophin expression in nearly all skeletal and cardiac
muscles, consequently preventing muscle damage and improving muscle histology and
force in the treated mice [44,132,136]. Notably, single-cut editing events in skeletal muscles
of 18-month-old DMD ∆Ex44 mice are around 15% more than in 1-month-old corrected
∆Ex44 skeletal muscles [44], providing evidence for the lifelong benefits of single-cut gene
therapy in DMD contexts.

Single-cut gene editing also provides an effective means of treating point mutations,
small insertions, and short deletions in the exonic and intronic regions of the dystrophin
gene [137,141,142,150]. Intramuscularly delivered CjCas9 and an sgRNA targeting the



Cells 2022, 11, 2964 12 of 26

mutant exon 23 are sufficient to restore dystrophin expression and increase skeletal muscle
force in the DMD mice with a 1-bp insertion or 14-bp deletion in exon 23 [137]. Likewise,
SpCas9-driven single cutting in mutant intron 13 or 19 rescues dystrophin expression in the
skeletal and cardiac muscles of WCMD or LRMD DMD canines bearing a small insertion
in the intron 13 or 19, respectively [141].

Though single-cut editing is highly efficient in most DMD cases, its efficiency in
genomic editing and dystrophin restoration varies dramatically from mutation to mutation.
As an example, SpCas9 and one sgRNA targeting the splice donor site of exon 44 induces
~60% of dystrophin-positive myofibers in skeletal muscles of DMD ∆Ex45 mice, but the
same SpCas9 system merely restores dystrophin expression in ~36% of myofibers of a
DMD ∆Ex43 mouse model [134]. Meanwhile, the genome-editing efficiency, dystrophin
restoration, and the extent of pathological amelioration depend on the dosage ratio of
sgRNA to Cas9 protein [132,136]. Thus, the sgRNA sequence and its ratio to Cas protein
must be well designed to achieve high therapeutic efficacy.

7. Exon Knockin

Despite its inefficiency in the post-mitotic cells, HDR-mediated gene editing has the
capacity to produce full-length dystrophin protein regardless of DMD mutations. This
therapeutic strategy is particularly useful for mutations in the essential N- and C-terminus
regions of dystrophin. Thus far, the HDR-based knockin strategy has been exploited
to handle either point mutations in DMD animal models or a single exonic deletion in
human DMD iPSCs (Figure 1D) [124,128,142–144,170]. The intramuscular delivery of AAV6-
encoded SpCas9, sgRNA and a donor template sequence in adult mdx4Cv mice rescues
dystrophin generation and improves skeletal muscle morphology, but its gene-editing
efficiency is only about 0.18% [128]. In mdx mice, the application of 180-nt ssODN, sgRNA,
and SpCas9 or LbCas12a by zygote injection could repair dystrophin expression in various
muscle tissues at different restoration rates [124,142]. The gene-editing efficiencies of 17%
to 41% in SpCas9-corrected mice and 8% to 50% in LbCas12a-treated mice probably come
from the relatively high activity of HDR in zygotes [124,142]. Moreover, the SpCas9 system
and a donor template have been harnessed to insert the missing human exon 44 back in
DMD ∆Ex44 iPSCs and generate full-length human dystrophin protein in their derivate
cells [161]. Nonetheless, the HDR-based knockin strategy is greatly restrained by its low
efficiency, the risk of inverted integration, and the allowable length of donor DNA template
in certain delivery vectors, making it problematic for large dystrophin deletion mutations.

The homology-independent targeted integration (HITI), an NHEJ-based knockin
approach, has no limitations regarding cell type, cellular proliferation status, and off-target
integration [171,172]. This HITI technique uses an exogenous donor template containing
the desired DNA sequence, which is flanked by the Cas9 cleavage sites. Once Cas9 protein
cleaves both the genomic target sequence and the donor template, NHEJ repair machinery
ensures the precise and efficient integration of a donor DNA sequence into the genomic
locus. Notably, Cas9 protein repeatedly acts on the cleavage sites in the case of inverted
integration until the occurrence of the desired insertion of the donor sequence. Recently,
an HITI-mediated exon knockin strategy has been used to insert the missing human exon
52 in the hDMD∆52/mdx mice (Figure 1E) [145]. The exogenous donor template lacks
homology arms but contains either human exon 52 or the superexon encompassing the
last 28 exons of the human dystrophin gene. Both intramuscular and systemic injections
of the SaCas9 system and exogenous DNA template by AAV vectors have been found to
effectively restore full-length dystrophin expression in the skeletal and cardiac muscles of
hDMD∆52/mdx mice. The restoration rate of cardiac dystrophin expression in systemically
treated hDMD∆52/mdx mice is 10% to 50% of the normal levels [145]. HITI-mediated
superexon knockin approach has great potential for treating more than 20% of global
DMD patients.
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8. Base Editing

The base editing system, whose editing events do not rely on DSB generation and
endogenous NHEJ machinery, offers a powerful strategy for safely correcting DMD muta-
tions, especially point mutations [116]. Two major categories of DNA base editing tools
exist: cytosine base editors (CBEs) catalyzing the C•G to T•A transitions, and adenine
base editors (ABEs) converting the A•T to G•C base pairs [116,173]. Mechanistically, base
editing-driven mutation corrections are accomplished either by direct base conversions at
the mutational position or by exon skipping (Figure 1F). Through inducing G-to-A conver-
sion at the splice site of a mutant or surrounding exon, the CBE fused between nSaCas9 and
cytidine deaminase AID is employed to skip exon 50 in the cardiomyocytes from human
DMD ∆Ex51 iPSCs or trigger exon 4 skipping in the DmdE4* mice harboring a 4-bp deletion
within exon 4 [149,162]. The editing efficiency of this CBE in human DMD ∆Ex51 iPSCs
can be up to ~90% at the genomic level, which brings about nearly complete restorations
of dystrophin and β-dystroglycan in the corrected cardiomyocytes [162]. The systemic
administration of AAV9-encoded CBE and sgRNA in neonatal DmdE4* mice not only leads
to the highly efficient restoration of dystrophin protein in cardiac and skeletal muscles but
also prevents the onset of DMD symptoms throughout the mouse lifespan [149]. Because
CBE-induced dystrophin restoration in the heart can be durable for at least 12 months,
a single AAV9-CBE treatment is sufficient to extend the life span of corrected DmdE4*

mice [149]. Since off-target editing events of CBEs have been described at both the genomic
and transcriptomic levels [174–176], there is an urgent need to examine whether the in vivo
application of CBEs may cause unpredictably detrimental outcomes (e.g., oncogenesis) in
several DMD animal models.

It has been suggested that ABEs are safer than CBEs when rewriting the genome due
to their high specificity and low off-target activity [176,177]. In support of their therapeutic
potential, multiple ABE variants have been shown to be effective in DMD mice carrying
single exonic deletion or nonsense mutations [146–148]. By directly introducing an A-to-
G substitution at the point mutation site, the nSpCas9-ABE7.10 system has been found
to cause genomic correction at ~3.3% efficiency and restore dystrophin expression in up
to 17% of skeletal myofibers in DMD mice with a nonsense mutation in exon 20 [147].
Similarly, the systemic infusion of the nSpCas9-miniABE(GG) system in adult mdx4cv mice
leads to restored dystrophin expression, ameliorated muscle pathology, and improved
muscle functions in both cardiac and skeletal muscles [148]. Genomic editing efficiency and
therapeutic benefits can last for at least 9 months in the ABE-corrected mdx4cv mice [148].
As an instance of ABE-triggered exon skipping, the nSpCas9-ABEmax system efficiently
rescues the dystrophin reading frame in both human DMD ∆Ex51 iPSCs and neonatal
DMD ∆Ex51 mice via inducing exon 50 skipping [146]. The local delivery of nSpCas9-
ABEmax components into the skeletal muscles of DMD ∆Ex51 mice can induce dystrophin
restoration in nearly all skeletal myofibers and thereby prevent muscle pathology [146].

9. Prime Editing

Besides inducing the transitions of C•G to T•A and A•T to G•C as observed in BE
systems, the versatile prime editing is capable of installing all other base substitutions, small
insertions, and/or small deletions at the target locus. The prime editing system needs at
least a prime editor fused between a reverse transcriptase and an nCas9 protein, and a prime
editing guide RNA (pegRNA) [118,178]. PegRNA comprises a spacer complementary to the
target site, an sgRNA scaffold, a primer binding site, and a reverse transcription template
encoding the desired genomic sequence. Upon binding to the target site, the primer editor
nicks the PAM-contained DNA strand, initiates reverse transcription, and synthesizes a
new 3′ DNA flap containing the desired modification [118]. This newly synthesized 3′ DNA
flap is eventually incorporated into the genome with the aid of endogenous DNA repair
pathways. Since coordinating multiple pegRNA components is an essential prerequisite
for precise genomic modification, prime editing is thought to trigger negligible byproduct
events around the off-target sites.
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The prime editing system has been demonstrated to rescue the dystrophin reading
frame and protein expression in both human DMD ∆Ex51 iPSCs-derived cardiomyocytes
(Figure 1G) and human DMD myoblasts with an Ex6 mutant [146,163]. Prime editing-
mediated insertion of two nucleotides within downstream exon 52 is found to reframe the
ORF of dystrophin transcripts and generate a functional dystrophin protein reaching up to
39.7% of the normal level in the corrected cardiomyocytes [146]. Moreover, this reframing
of exon 52 ameliorates abnormal calcium handling and improves the contractility in prime
editing-corrected cardiomyocytes [146]. Given that the ∆Ex51 mutation accounts for ~8%
of all DMD patients [8], it will be valuable to assess the in vivo efficacy and durability of
therapeutic prime editing in DMD animal models.

10. DMD Animal Models

More than 60 different animal models of DMD have been identified or generated in
Caenorhabditis elegans, Drosophila, zebrafish, rodents, rabbits, dogs, pigs, and nonhuman
primates [47,179–190]. These DMD animal models either naturally occur or are genetically
engineered for the studies of disease mechanisms and clinical translation, and each animal
model has its advantages and limitations. Although they are easily reproductive and
relatively inexpensive, DMD rodent models generally exhibit mild clinical features of
DMD patients owing to the complementary utrophin upregulation and their robust muscle
regeneration capacity [191,192]. For example, the most frequently utilized mdx mice do
not have moderate pathological signs until they are 15 months old and show just a 25%
reduction in lifespan [179–181]. Unlike small rodent models, DMD pigs can develop severe
disease phenotypes, but they die prematurely before breeding age [183,184], making them
difficult to breed on a large scale. Conversely, DMD dogs, another typical large-animal
model, display a 75% shortened lifespan similar to human DMD patients and can be bred
relatively easily [185,193]. Meanwhile, canine DMD models closely resemble the disease
progression and severity experienced by DMD patients, including limb muscle fibrosis and
cardiomyopathy [64,65,194]. It seems that DMD dogs may be more suitable for preclinical
translational studies than other large animal models. Nonetheless, their broad application
in therapeutic translation is restrained by the heavy economic burden and the long time it
takes to breed them in sufficient numbers [195]. Albeit both DMD rabbits and monkeys are
already established via direct injection of SpCas9 and sgRNAs [186,187], they have not been
applied in therapeutic testing due possibly to genetic mosaicism. It is important to note
that a single animal model cannot fully mimic all pathological symptoms of human DMD
patients. Given the unique characteristics of each DMD animal model, different animal
models are proposed to recapitulate specific stages of human DMD progression [182,195].
Murine models are similar to the neonatal to the 3-year-old stage of DMD patients, the
canine models represent the 5- to 10-year-old stage, and the porcine models resemble the
later stage with cardiac defects. Therefore, it is necessary to insightfully consider and
choose the optimal animal model for assessing therapeutic strategies.

11. Future Challenges and Prospects
11.1. Safety

The AAV-based delivery system is the most widely used vehicle for in vivo gene
therapy in preclinical and clinical studies, mainly due to its high transduction efficiency,
low immunogenicity, and durable therapeutic benefits [196,197]. Notably, the tissue tropism
of multiple AAV serotypes (e.g., AAV6, AAV8, and AAV9) to skeletal and cardiac muscles
makes these vectors particularly suitable for DMD gene therapy. Since mammalian muscle
accounts for approximate 40% of total body mass [198], achieving durable and efficient
genome editing in DMD animals requires high AAV vector doses, normally ranging from
5.5 × 1014 to 1.8 × 1015 vector genomes (vg)/kg [35,37,128,132]. This requirement of a high
vector dosage poses formidable challenges for clinical-grade AAV manufacturing and the
safety of AAV-based gene therapies. The single intravenous administration of high-dose
AAV9 (at least 1.5 × 1014 vg/kg) could trigger notable adverse events in multiple organs,
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such as liver toxicity and kidney injury in dogs, piglets, and nonhuman primates [199,200].
In some clinical trials involving DMD patients, the systemic delivery of the AAV9 vector
carrying the human micro-dystrophin gene at high doses (5 × 1013 to 3 × 1014 vg/kg) is
reported to cause serious adverse events, including cardiopulmonary insufficiency and
thrombocytopenia [201], which might be responsible for the recently described patient
death. Therefore, it is crucial to determine the optimal vector dosage before the clinical
application of systemic AAV therapeutics.

Given the packaging limitation of AAV vectors, the dual-AAV vector system is most
often utilized for in vivo delivery of CRISPR gene-editing components. One major draw-
back of this dual-AAV system is the essential high dosage of AAV vectors for efficient gene
editing. As an optimization strategy to reduce the viral dose, the self-complementary AAV
(scAAV) vector with a double-strand viral genome has been developed to transport the
sgRNA expression cassette into the skeletal and cardiac muscles of DMD ∆Ex44 mice [136].
Unlike single-stranded AAV (ssAAV) vectors, the scAAV bypasses the rate-limiting second-
strand synthesis and is resistant to degradation [202,203]. The dosage of scAAV to achieve
an efficient genome modification is at least 20-fold lower than that of ssAAV [136]. Thus,
the combination of sgRNA-expressed scAAV and Cas-packaged ssAAV may act as an
attractive dual-vector system to ensure durable therapeutic efficacy in DMD individuals.
However, there remains a need to further optimize the AAV delivery system and design
all-in-one AAV vectors to accelerate the clinical translation of CRISPR gene therapy.

11.2. Immunogenicity

Another major concern of AAV-CRISPR gene therapy is the innate and adaptive im-
mune responses evoked by AAV vectors and Cas proteins. Pre-existing anti-AAV antibodies
are found in a large proportion of the human population [204,205], so some DMD patients
with abundant AAV-neutralizing antibodies may be ineligible for AAV gene therapy. In
this circumstance, either plasmapheresis or immunosuppressant needs to be administrated
prior to AAV gene therapy for the reduction of anti-AAV antibody titer or the decline of
immune system activity in the host patients [169,206]. Beyond the immunogenicity of AAV
vectors, Cas-specific immune responses have been documented in murines, canines, and
humans, owing to the bacterial and archaeal sources of Cas proteins [37,141,207–209]. For
example, SaCas9- or SpCas9-specific antibodies and T cells have been ascertained in around
78% or 58–67% of healthy human populations [208]. On the contrary, the sgRNAs are merely
reported to stimulate innate immune responses within human cells in vitro [210,211], but
whether they are immunogenic in vivo remains to be determined. It is noteworthy that
both cellular and humoral immune responses against AAV vectors and SaCas9 are not ob-
served in neonatal mice after the systemic administration of AAV-SaCas9 components [37],
suggesting that host immune responses to AAV vectors and Cas proteins might be avoided
by treatment at the juvenile stage. This observation has been largely attributed to the lower
essential AAV dosage, the more preserved muscles, and the absence of pre-existing immu-
nity against AAV-CRISPR components at young ages [30,37]. Alternatively, the optimized
forms of Cas9 proteins without immunogenic epitopes have been developed [212], and
their in vivo application holds great potential to reduce the activity of the host immune sys-
tem. Regardless, since immunosuppressant corticosteroids are normally used to dampen
inflammation in DMD patients, one feasible solution to address the above immunogenicity
is administrating corticosteroids with CRISPR gene therapy.

11.3. Off-Target Activity

The potential off-target activity of CRISPR systems poses an obstacle to their clinical
application. In this regard, SpCas9 has been found to have a relatively high off-target
activity owing to its tolerance of up to five mismatches between the guide sequence and
target genome site [213–215]. Because most off-target cleavage events are present in highly
proliferating cells in culture, the off-target genome editing of CRISPR systems is thought to
be very low in animal models, especially in post-mitotic skeletal and cardiac cells [30,66].
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Nonetheless, it cannot exclude the possible occurrence of deleterious off-target mutations
in a specialized cell in vivo. Thus far, several different approaches have been developed
to minimize such off-target mutagenesis. An attractive strategy is to use high-fidelity
Cas enzymes (e.g., HypaCas9, evoCas9, SpCas9-HF1, and enAsCas12a-HF1) possessing
high on-target specificity but low off-target activity [103–106,114,216]. It has been shown
that Cas12 proteins generally exhibit much lower off-target editing activity than Cas9
variants [92,217], so their application is a relatively safe choice for CRISPR therapeutics. As
for the second strategy, the sgRNAs can be elaborately optimized by either truncation or
extension in a specific manner [218,219]. The truncated sgRNAs of less than 20 nucleotides
in length can decrease genome-wide off-target events by up to five-fold [218]. In the
third method, the utilization of muscle-specific promoters to specifically drive CRISPR
component expressions in muscles can prevent the appearance of off-target editing events
in undesirable tissues such as liver and kidney [128,138,220].

11.4. Durability

It should be noted that the skeletal muscles of both DMD patients and animals main-
tain high turnover rates throughout their lives [221,222]. As a result, dystrophin-positive
myofibers following CRISPR therapeutics may be gradually diluted out of existence by
dystrophic myofibers in the long term. Because muscle satellite cells undergoing de novo
myogenesis are responsible for muscle regeneration [223,224], the delivery of CRISPR
components into satellite cells could theoretically ensure durable therapeutic benefits in
dystrophic muscles. Several studies have reported that systemic and intramuscular admin-
istrations of AAV9 vectors carrying SpCas9 or SaCas9 system in DMD mouse models induce
Cas9 component expression and genomic editing in muscle satellite cells [127,225–227].
This achievement of satellite cell gene editing following systemic AAV9-CRISPR therapy
can maintain restored dystrophin expression for 18 months in the skeletal muscles of mdx
mice [225]. Therefore, the effective genome editing of muscle satellite cells is likely a
valuable strategy for yielding lifelong therapeutic benefits, but its efficiency needs to be
further improved. In the second strategy, micro-dystrophin is co-delivered with the SaCas9
system to achieve durable dystrophin restoration in skeletal muscles [129]. The systemic
administration of the AAV6-encoded micro-dystrophin gene not only stabilizes skeletal
myofibers but also halts CRISPR component loss, consequently allowing for persistent
gene correction and ensuring lifelong skeletal dystrophin expression in DMD mdx4Cv

mice [129]. Considering the broad application of micro-dystrophin gene therapy in clinical
trials, AAV-based co-delivery of micro-dystrophin and the CRISPR system shows great
promise for the efficient treatment of diverse DMD patients.

12. Conclusions

The development and application of CRISPR-Cas technologies provide new opportu-
nities for treating various genomic mutations at the source, enabling the durable restoration
of protein expression and functions in the correct tissues. To date, the lifelong benefits of
one-time CRISPR therapeutics have been manifested in some DMD mouse models at the
preclinical level [35,37,43,44,148,149]. Although the in vivo therapeutic efficacy of CRISPR
systems is promising without doubt, their safety profiles, especially concerning immuno-
genicity, AAV delivery and off-target issues, are imminently necessary to be addressed in
several DMD animal models. As the challenges prior to clinical translation are overcome
in the near future, the lessons from CRISPR therapeutics in DMD should apply to other
devastating genetic diseases that lack effective therapies.
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