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Summary points

• Planning is critical to mitigating the sudden and potentially catastrophic impact of an

infectious disease pandemic on society. National pandemic policy documents cover a

wide variety of control options, often with nonspecific recommendations for action.

• Despite advances in analytical methods for gaining early situational awareness (i.e., of a

disease’s transmissibility and severity) and for predicting the likely effectiveness of inter-

ventions, a major gap exists globally in terms of integrating these outputs with the advice

contained in policy documents.

• Decision models (and decision science as a field, more broadly) provide an approach to

defining and evaluating alternative policy options under complex and changing

conditions.

• A decision model for infectious disease pandemics is an appropriate method for inte-

grating evidence from situational and intervention analysis tools, along with the infor-

mation in policy documents, to provide robust advice on possible response options

(including uncertainty).

• A decision model for pandemic response cannot capture all of the social, political, and

ethical considerations that impact decision-making. Such a model should therefore be

embedded in a decision support system that emphasizes this broader context.

Introduction

Planning is critical to mitigating the sudden and potentially catastrophic impact of an infec-

tious disease pandemic on society, but it is far from straightforward [1]. During a pandemic,

decisions will be made under rapidly changing, uncertain conditions, with limited (if any)

prior experience.

The 1918 H1N1 pandemic was estimated to have caused the death of tens of millions of

people worldwide. It is encouraging that antivirals and vaccines available to us today would
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help to reduce the impact of a similar pandemic event, yet with cities and countries increas-

ingly connected by air travel, we will likely be faced with a pathogen capable of spreading rap-

idly across the globe. The 2009 pandemic H1N1 (A(H1N1)pdm09), a virus estimated to be less

transmissible than the 1918 strain [2], spread to 74 countries within just 4 months [3].

Mathematical and statistical models are important tools for pandemic planning and

response. Although it is unlikely that we will ever be able to predict precisely where or when

the next pandemic will occur [4], once an outbreak of pandemic potential has been identified,

models have enormous potential to improve the effectiveness of our response. They can be

used to synthesize the available data to provide enhanced situational awareness, to predict the

future course of the pandemic and likely associated social and economic costs, and to plan mit-

igation strategies [5, 6].

The role of modeling in current pandemic response policy

Pandemic modeling trends

Modeling is a well-established approach to improving pandemic preparedness and response

capabilities. In 1973, Fox and colleagues described the use of pandemic simulation models

based on pathogen characteristics akin to 1957 H2N2 and 1968 H3N2 to explore the potential

impact of mass vaccination and school closures [7, 8].

Decades later, modelers and policy makers employed similar methods in responding to

influenza A(H1N1)pdm09. By leveraging surveillance systems and computational power not

available to their predecessors in 1968, a variety of models were developed to provide real-time

assessments of the pandemic impact level [9, 10] and effectiveness of possible control measures

[10]. Additionally, many assumptions contained within the policy documents used in 2009

were based on prepandemic models [6, 11–14], and since 2009, models have increasingly sup-

ported the revision (and creation) of pandemic plans [15–17]. In recent decades, other global

infectious disease events, including the epidemics of severe acute respiratory syndrome (SARS,

2002–2003), the emergence of highly pathogenic avian influenza (HPAI) virus H5N1 (2003),

and the west African Ebola virus disease epidemic (2013–2016), have also stimulated advances

in pandemic preparedness and response capabilities [11, 18, 19].

The pandemic preparedness and response models produced from these efforts can be

broadly classified into two groups: those aiming to inform situational awareness and those

aiming to understand the merits of possible interventions.

The importance of situational awareness

A key lesson from the emergence of influenza A(H1N1)pdm09 was the need for pandemic pol-

icies to be adaptable to evolving pandemic scenarios [20, 21]. Many countries found that their

planning assumptions did not match the expected level of pandemic impact because they were

based on the more lethal HPAI H5N1 virus [22, 23]. In light of the relative mildness of A

(H1N1)pdm09, which still had serious consequences, countries had to rapidly adjust their

plans in order to deliver a proportionate response [20].

The World Health Organization (WHO) guiding document for pandemic influenza pre-

paredness and response has since adopted a more flexible approach, emphasizing the impor-

tance of actions that can be scaled and targeted as needed [24], and this has been reflected in

updated country plans [25–27]. In the current generation of pandemic plans, pandemic impact

is typically considered in terms of disease transmissibility and severity [25, 27, 28]. Transmissi-

bility describes how effectively the disease transmits between people. It strongly influences

how quickly the epidemic grows, when it peaks, its overall magnitude, and how long it lasts.
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Severity determines how many people will become seriously unwell or die as a result of the

disease.

At the onset of a pandemic, these pathogen characteristics will be unknown and must there-

fore be characterized as they emerge, because even pandemics of well-characterized pathogens

will differ in these measures sufficiently to create uncertainty as to the best response. As our

understanding of the probable impact of a pandemic improves, policy makers can then use

this information to help decide on the overall scale of response, which control measures to

implement, and when to deploy them [29]. Given the dependency of response plans and deci-

sion-making on assessments of situational awareness, gathering the appropriate information

as early as possible in an outbreak has been identified as a priority for surveillance and real-

time data analysis activities [30, 31].

To this end, advances have recently been made in the design of early outbreak surveillance

methods such as First Few Hundred (FF100) household transmission studies [26] and the

development of novel algorithms for analyzing the resulting data [32]. FF100 studies involve

the collection of data from confirmed infections and their household contacts, including the

date of symptom onset and final outcome, until a satisfactory characterization of the pathogen

is achieved [26]. The use of these protocols is recommended as part of enhanced early surveil-

lance activities in the current pandemic plans of the United Kingdom [26] and Australia [27],

and WHO recommends a detailed investigation of at least the first 100 confirmed cases of any

nascent pandemic [33]. These rapid, enhanced surveillance activities can be resource intensive

but provide rich epidemiological data and overcome many quality, timeliness, and bias issues

often associated with routine surveillance practices [29]. Further, when these data are analyzed

with FF100-specific algorithms [32, 34], estimates of pathogen transmissibility and severity are

obtained, enabling timely identification of the pandemic scenario that best characterizes an

actual outbreak.

Similarly, epidemic forecasting algorithms that leverage routine surveillance data can also

be used to rapidly predict pandemic characteristics relevant to policy makers. Every year dur-

ing the influenza season, modelers in many parts of the world, sometimes in collaboration

with public health practitioners, make weekly forecasts of epidemic characteristics, such as

peak size and timing [35–37]. Since 2013, the United States Centers for Disease Control and

Prevention (CDC) have even coordinated seasonal challenges to external researchers to predict

onset week and peak week for the US influenza season [38]. Real-time forecasting has also

been used to enhance situational awareness in outbreaks of other diseases of public health

interest, including the west African Ebola virus disease epidemic (2013–2016) [19]. The

Research and Policy for Infectious Disease Dynamics (RAPIDD) program subsequently hosted

an Ebola forecasting challenge involving teams of modelers from both academic institutions

and government agencies, with the goal of using “peace-time” to assess model performance

and improve coordination between modeling groups [39].

Assessing the response options

Once there are estimates of the transmissibility and severity of a pathogen, policy makers can

use this information to decide how to respond. These decisions are often informed by the

results of intervention modeling analyses. These analyses are either conducted during pre-

paredness planning, with (static) outcomes embedded in policy documents, or they are devel-

oped in real time as part of emergency response. Intervention modeling involves simulating an

epidemic in a population, with and without the intervention of interest, and comparing the

outcomes [7, 15–17, 40–42]. These modeling studies have suggested that specific interventions

are only effective under certain circumstances [15–17, 40, 41]. For example, in pandemic
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influenza scenarios in which clinical symptoms are severe (and thus highly visible to the

healthcare system) and transmissibility is low, simulations suggest that liberal distribution of

antivirals may completely avert the pandemic. On the other hand, if a pandemic virus exhibits

low clinical severity and high transmissibility, antivirals alone would not be effective at reduc-

ing transmission or the burden on healthcare settings, and their primary utility will stem from

their direct clinical benefits [28].

A decision support system for pandemic response

Despite advances in methods for gaining situational awareness and assessing intervention

impact, a major gap exists in terms of integrating the outputs from these methods with the

advice contained in pandemic response policy. Policy documents will typically recognize the

importance of methods for estimating pandemic impact (such as FF100), and their response

advice is often informed by intervention models, but they do not articulate how these data and

analytics will contribute to decision-making in real time during a pandemic.

The need for data collection and analysis pipelines to be made routine in epidemic response

practice has been the topic of recent widespread discussion [30, 31, 43, 44]. Furthermore, it is

clear that situational evidence should be used with intervention models to assess the likely

effectiveness of response options. Our contribution to this evolving discussion is to highlight

the need for formalizing—and exercising—precisely how emerging evidence is synthesized

and used to support the decision-making processes articulated in policy documents, as part of

preparedness activities.

Drawing on established practice from the discipline of decision science, we argue that a

decision model is required to partly address this implementation gap—one that combines evi-

dence from situational awareness tools and intervention models, along with the information

in response policy, to evaluate alternative response strategies. This is realized in a statistical

framework to appropriately capture and propagate uncertainties throughout the inference and

evaluation processes. Such a decision model would provide robust recommendations on

response options, including advice on uncertainty with respect to future epidemic behavior

and likely effectiveness of alternative response strategies. We further argue that the decision

model should be embedded in a broader decision support system that formally incorporates

other information relevant to the decision-making process, including stakeholder values, tak-

ing us well beyond any current-generation planning and response capabilities.

This approach to decision-making has been applied in other settings in which decisions

must be made in real time, under conditions of high complexity or uncertainty, including avia-

tion [45], engineering [46], wildfire management [47], and livestock disease control [48–51].

In the context of human disease, although some have considered how to optimize interven-

tions given dynamic knowledge of a system (including emerging epidemic data and resource

availability), they tend to ignore the broader context in which decisions are made [52].

Fig 1 depicts a proposed decision support system for pandemic response, featuring a statis-

tical decision model that combines dynamic information from situational awareness tools and

intervention models, along with the static information in response plans, and provides

dynamic advice on optimal response strategies. When operating, the system would continually

update as information becomes available, enabling decision-makers to revise and refine con-

trol measures over time, including making difficult decisions about scaling back or ceasing an

intervention activity.

Our ideas build on the decision-making framework developed by Lipsitch and colleagues

[29], which defines the data and interpretive tools required for a pandemic response in terms

of the key public health decisions that must be made. Although they discuss an “idealized”
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progression from epidemiological and surveillance data to evidence and then to evidence-

based decisions, they also acknowledge that other sources of data and evidence should and do

influence decision-making. We have extended their framework by adding policy and contex-

tual data and stakeholder priorities as inputs, as well as an additional layer of evidence inter-

pretation—the decision model—which offers specific strategies (what, how much, when) to

decision-makers.

Case study: Antiviral decision model for pandemic influenza in the

Australian context

In order to demonstrate that outputs from situational and intervention analyses, when com-

bined using a statistical decision model, can provide recommendations on response options

(including uncertainty), we present a realistic example of an antiviral decision problem for

pandemic influenza in Fig 2 (full details are provided in S1 Appendix). For the intervention

Fig 1. Proposed decision support system. Schematic of a proposed decision support system for infectious disease

pandemic response.

https://doi.org/10.1371/journal.pmed.1003018.g001
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analysis component, we have used our previously published intervention model of targeted

antiviral distribution strategies [16]. This model and its findings form the basis for Australia’s

current pandemic response plan [27, 53]. The model allows for the use of antivirals for treat-

ment of cases and postexposure prophylaxis of contacts, differential risks of severe disease

Fig 2. Case study. Antiviral decision model for pandemic influenza in the Australian context. FF100, First Few

Hundred.

https://doi.org/10.1371/journal.pmed.1003018.g002
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outcomes and differential benefits of treatment across population subgroups, and health sys-

tem capacity constraints. The most recent version of this model is described by Moss and col-

leagues [16], and it builds on a larger body of work, conducted over a 15-year period, which

has focused on developing pandemic antiviral policy for the Australian context [13–17, 28,

54].

In presenting this example, we have necessarily and deliberately kept the decision model to

a minimum working example in order to focus on the broader decision analysis aspects of the

problem and on the types and flow of information required by the model. As such, the decision

model is limited to a single intervention (antivirals), with each strategy implemented at the

start of the response phase (as defined by the Australian pandemic plan) for the remaining

duration of the pandemic or until antiviral stockpile depletion. A decision model within a fully

operational system would, of course, require a much higher dimensional decision space,

including the use of an intervention model incorporating multiple interventions and the ability

to integrate over all feasible intervention start and stop times. It would also require consider-

ation of the computational implementation of the decision model to ensure timely (possibly

daily) availability of situation-specific intervention model outcomes that captures uncertainty

in FF100 estimates of epidemiological parameters (i.e., severity and transmissibility), as well as

intervention parameters (e.g., drug effectiveness) and operational parameters (e.g., daily anti-

viral distribution capacity). It may also be important to reconcile potentially distinct transmis-

sion models used for the inference of disease characteristics and the assessment of

interventions.

The decision context

Although there is clearly much further technical work to do, these aspects are perhaps the

most straightforward part of developing an operational system; more challenging is working

with stakeholders to decide on the structures and outcomes of each component and how dif-

ferent types of evidence should be weighted. This depends on the social and political context

in which decisions are made. For example, the availability and acceptability of interventions

will depend on a host of social and political factors, which may change as the pandemic pro-

gresses [55–58]. Jurisdictional and community values must be carefully elicited and incorpo-

rated into the decision support system, not least because we know that pandemic response

policies have the potential to perpetuate and exacerbate existing social disparities [59]. As

shown in Fig 1, certain decision-maker priorities can be incorporated in system design (such

as whether one type of evidence is more trusted than another), but ultimately, it is not expected

that all social, political, and ethical considerations will be captured by system structures or

parameters.

Decision science can contribute to pandemic preparedness and response not only by pro-

viding analytical tools for evaluating response options but also by providing a structured and

inclusive approach for incorporating these tools into decision-making [60]. This approach

includes formally engaging with decision-makers to clearly define their response objectives

and to design and agree on suitable metrics for assessing alternative response strategies. The

role of the decision support system would be not to produce a single optimal strategy but to

clearly and transparently present decision options in a way that effectively helps decision-mak-

ers choose the strategy most aligned with achieving their objectives. Examples of this approach

exist in conservation [61, 62] and livestock disease management [49, 50]. Further, Moss and

colleagues [35, 63] describe their collaborative engagement with public health decision-makers

in model development for seasonal influenza forecasting, which provides useful insight into

their process and the value of these engagements.
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Discussion

Pandemic response capabilities will be improved by formally integrating outputs from situa-

tional and intervention analyses with pandemic response policy. We have proposed one such

approach to doing so—a decision model embedded within a broader decision support system

that recognizes the social and political context in which decisions are made. Under this

approach, we draw on well-established analytical tools used in the discipline of decision sci-

ence (that is, decision models) and argue that the broader decision support system should be

developed using decision science principles.

A system developed using this approach will ensure that the most complete, robust infor-

mation is available to decision-makers at operationally relevant time points. For example, such

a system will enable the development of methods (that simultaneously account for relevant

sources of uncertainty) for triggering key policy decisions, such as determining when to switch

from general response strategies (when knowledge is scarce) to more proportionate and tar-

geted response strategies (when sufficient knowledge is gained). This switch has significant

resource implications because it signals the sufficient acquisition of FF100 data and the cessa-

tion of resource-intensive FF100 studies.

The testing and evaluation of our proposed system is an important challenge for its opera-

tional use. In order to evaluate the system against actual situational evidence from FF100 and

forecasting, rather than the hypothetical evidence used in Fig 2, we would require the relevant

data to be collected concurrently during an outbreak. An initial evaluation step could involve

conducting an FF100 trial during a seasonal influenza epidemic in a jurisdiction where sea-

sonal forecasting tools are already routinely used. In addition to providing data against which

to evaluate the performance of algorithms and models within the system, this would enable the

identification of operational challenges associated with the FF100 study design and its imple-

mentation. Tabletop exercises would also be important for testing and improving the system,

particularly to obtain feedback on the clarity of presentation of alternative response strategies

and uncertainties. Tabletop exercises/response drills are already a matter of routine in many

jurisdictions; we are calling for analytics to be an integral part of these exercises.

Although we have focused on the effective use of antivirals in an influenza pandemic in the

decision model example, our ideas are relevant and adaptable to other diseases of pandemic/

epidemic potential. It will be important to next incorporate a suite of nonspecific interven-

tions, such as social distancing, border screening, and infection control measures, which are

effective against a broader range of infectious diseases. FF100 data collection protocols and

algorithms are adaptable to diseases other than influenza, and outbreaks of emerging patho-

gens such as SARS, for which pharmaceutical interventions were not available, have stimulated

modeling research into the control of such pathogens. This has resulted in further develop-

ment of intervention models for nonspecific control measures, including isolation and quaran-

tine [64–66].

Under conditions of high stress and uncertainty, a pandemic response is more likely to suc-

ceed if responders have access to key information in a timely and coherent manner. Formal

integration of outputs from situational awareness and intervention analysis methods with the

information contained within policy documents will improve the ability of decision-makers to

assess their response options in a given pandemic event. We have demonstrated a novel

method for doing so (Fig 2) and illustrated how it would fit into a broader decision support

system (Fig 1). We argue that such a system will best support the making of robust and trans-

parent decisions when developed through a decision science process, emphasizing the social

and political needs of pandemic planning efforts [60].
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Drawing on our example decision model (Fig 2) and a host of published examples of stake-

holder engagement in decision-making processes [61, 62, 67], we suggest that both the techni-

cal and nontechnical challenges associated with developing a decision support system are

surmountable. Having such a system in place—and articulated in pandemic policy documents

—will be of great value to decision-makers when the next pandemic inevitably arrives.

Supporting information

S1 Appendix. Methods supplement to Fig 2.

(PDF)
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