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Abstract
Traumatic brain injury (TBI) is a devastating disorder causing negative outcomes in millions of people each year. Despite the
alarming number of brain injuries and the long-term detrimental outcomes that can be associated with TBI, treatment
options are lacking. Extensive investigation is underway, in hopes of identifying effective treatment strategies. Among the
most state-of-the-art strategies is cell replacement therapy. TBI is a seemingly good candidate for cell replacement studies
because there is often loss of neurons. However, translation of this therapy has not yet been successful. It is possible that a
better understanding of endogenous neurogenic mechanisms after TBI could lead to more efficacious study designs using
exogenous cell replacement strategies. Therefore, this study was designed to examine the number and migration of
immature neurons at 1 and 7 d after a fluid percussion TBI. The results show that the number of immature neurons
increases from 7 d after a fluid percussion injury (FPI), and there is ectopic migration of doublecortin (DCXþ) immature
neurons into the hilar region of the dentate gyrus. These results add important data to the current understanding of the
endogenous neurogenic niche after TBI. Follow-up studies are needed to better understand the functional significance of
elevated neurogenesis and aberrant migration into the hilus.
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Introduction

Traumatic brain injury (TBI) is a major cause of death and

disability in the United States and throughout the world.

Treatment options are lacking for those who suffer from

subsequent neurological symptoms, some of which can be

lifelong. TBI is a complex injury with numerous symptoms

and disabilities that can have a devastating impact on the

individual, as well as an enormous socioeconomic toll.

Despite the alarmingly high incidence rates, treatment

options are lacking, and a full mechanistic understanding

of the various types of TBIs remains elusive.

There are a number of different experimental therapies

for treating TBI. These include pharmacological, steroidal,

anti-inflammatory, cellular replacement, and behavioral

methods.1–5 Although a number of compounds have been

tested in phase 3 clinical trials, none have proven to be

efficacious at significantly improving outcomes. Advances

in technology bring forth new treatment options that are

being readily explored in experimental and clinical settings.

One of these new technologies, stem cell therapy, is being

investigated to treat TBI as well as a number of other neu-

ropathologies.3,6–8 One of the reasons that stem cell therapy

is such an appealing option for TBI is that TBI can be asso-

ciated with a loss of neurons, both at the site of the injury and

sites distal to the injury. In the latter case, the neuronal loss is

often the result of counter-coup forces and/or Wallerian

degeneration. Thus, it is believed that some of the resultant

cognitive deficits may be explained by the loss of neurons

and that replacing these neurons using exogenous stem cells

or stimulating endogenous neuronal growth could improve

or restore function.

Major obstacles have thus far prevented successful clin-

ical implementation of stem cell therapy for TBI or other

disorders. For example, after a TBI, there is release of a
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poorly understood milieu of inflammatory proteins as well as

a number of other biochemical changes in the central ner-

vous system. Moreover, despite a growing number of studies

on the subject,9–10 there is still a lack of understanding of how

TBI influences the endogenous neuronal stem cell population,

the understanding of which could help further stem cell ther-

apy. Several studies using different animal models of TBI have

demonstrated an alteration to adult neurogenesis following

TBI.11,12 Such alterations include increases and/or decreases

to the number and survival of newborn neurons,11,12 as well as

aberrant growth and integration of the newborn neurons into

the existing circuitry.11,13,14 Therefore, understanding how

TBI alters the endogenous neurogenic niche could improve the

strategies of exogenous stem cell treatments.

One area of interest in TBI is the hippocampus. The hip-

pocampus is an important structure involved in, among other

things, learning and memory. The hippocampus is an area of

interest because neurogenesis continues in the hippocampus

well into the adulthood. The importance of this adult hippo-

campal neurogenesis is not entirely understood. However,

manipulations that have positively altered adult hippocampal

neurogenesis, such as exercise and an enriched environment,

have resulted in improvements to learning, memory, spatial

awareness, and affect. Neurogenic changes have also been

linked to detrimental outcomes, including depression, fear

responsiveness, increased seizure susceptibility, seizure gen-

eration, seizure facilitation, and the potential for development

of epilepsy15; development of epilepsy may possibly be due to

improper migration and/or integration of new neurons into the

existing hippocampal circuitry.11,15–17 In order to better

understand the temporal effects of TBI on neurogenesis in the

hippocampus, we used the fluid percussion injury (FPI) model

and examined the quantity and location of newborn neurons in

the hippocampus at 1 and 7 d after FPI or after a sham FPI.

The hippocampi from these mice were processed for immu-

nohistochemistry and labeled for immature neurons using

antidoublecortin (DCX); the number of these cells was quan-

tified, as were DCX-labeled cells in the hilus.

Materials and Methods

Mice

Six-week-old male, C57Bl/6 (Jackson Laboratories, Bar Har-

bor, ME) mice (N¼ 16) were divided into 2 groups: FPI (N¼
8) and sham (N ¼ 8). Mice in each of these groups were ran-

domly assigned to either the 1 d (N ¼ 8) or the 7 d (N ¼ 8)

postinjury groups, such that each group at each time point had 4

mice. All protocols were approved by the Baylor Scott and

White institutional animal care and use committee (IACUC).

FPI

All mice underwent surgery as previously described.11,18,19

Briefly, a 2-mm hole was drilled, with dura intact, into the

skull over the left parietal cortex (anteroposterior:þ1.5 mm;

mediolateral: �1.2 mm). A female luer lock was connected

to the hole in the skull. Animals in the FPI group received a

pressure pulse (1.5 to 1.7 atm) from the FPI apparatus. Sham

animals received identical treatment except that no pressure

pulse was delivered.

Tissue Preparation

At 1 or 7 d after FPI, mice were sacrificed with an overdose

of Euthasol1 (Virbac, Forth Worth, TX, USA), followed by

transcardial perfusions with saline and paraformaldehyde

(PFA), as previously described.20 After postfixing within the

skull for 24 h, brains were removed and postfixed 48 h in

PFA. Brains were then stored in phosphate-buffered saline

(PBS) and cut in serial sections on a vibratome (Ted Pella

Inc., Redding, CA) at 50 mm. We selected 4 to 5 slices

containing the anterior two-thirds of the hippocampus from

each animal. Using Paxinos Mouse Atlas, we determined the

distance from bregma for each hippocampal section to

ensure equal sampling throughout the anterior/posterior por-

tions of the hippocampus.

DCX Immunohistochemistry

DCX immunohistochemistry was performed as previously

described (Santa Cruz Biotechnology, Dallas, TX).21–23

Briefly, tissue was incubated, rotating in the dark at room

temperature, for 24 h in PBS containing 0.005% Tween

(Sigma-Aldrich, St. Louis, MO), 5% normal horse serum

(Vector Labs, Burlingame, CA), and DCX antibodies to the

N and C termini (1:500 each, Santa Cruz Biotechnology,

Dallas, TX). The tissue slices were rinsed 3 times for 5 min

each in 0.01 M PBS, then incubated for 90 min, rotating in

the dark at room temperature in PBS containing 0.005%
Tween, 5% normal horse serum, and fluorescently tagged

donkey antigoat antibody (1:200; Alexa Flour 555; Invitro-

gen, Carlsbad, CA). After 90 min, the tissue slices were

rinsed 3 times for 5 min each in 0.01 M PBS, mounted onto

glass slides, allowed to dry overnight, and cover slips were

applied with Fluoromount-G™ (EMD Millipore, Billerica,

MA). The slides were coded, and the images of DCX label-

ing in the dentate gyrus were captured by a rater blind to the

condition of the mice. The coded images were given to a

second rater who performed the physical cell counts.

Quantification of DCXþ Cells

DCX-labeled cells were quantified in the subgranular zone

(the granule cell layer and the border between the hilus and

granule cell layer) as previously described.11 Briefly, grids

of 5,000 mm2 boxes (50 � 100 mm) were superimposed

along the hilar/granule cell layer border. Each grid was

numbered, and a random number generator was used to

randomly select * 60% of the grids from within which to

count DCX-labeled cells. The number of grids to be

counted was determined using the StereoInvestigator soft-

ware (MBF Bioscience Inc., Williston VT). These
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principles are consistent with stereological quantification

and ensure random and unbiased sampling throughout the

tissue. A 1-way analysis of variance was performed (SPSS

V. 9; IBM, Armonk, NY), with post hoc Bonferroni analysis

to examine differences between groups after FPI. It is perti-

nent to note that the analysis was initially performed sepa-

rately for each hemisphere. Analysis comparing the ipsilateral

to the contralateral hemisphere revealed no significant differ-

ences (not shown). Therefore, ipsilateral and contralateral

hemispheres were combined, and the data presented are com-

prised of bilateral changes in DCXþ cell numbers.

Results

DCX-labeled Cells Are Significantly Increased in the
Dentate Gyrus 7 D After FPI

The results demonstrated a trend toward an increase in DCX

labeling at 1 d after FPI (P ¼ 0.0806), compared to sham

(Fig. 1a to c), and a significant increase in DCX-labeled cells

in the dentate gyrus at 7 d after FPI (P < 0.05), compared to

sham (Fig 1a to c).

Ectopic Cells Are Increased in the Hilus at 7 D after FPI

The results demonstrated an increased number of DCX-

labeled cells in the hilus at 7 d after FPI (P < 0.04), compared

to sham (Fig. 2a to c). There was no significant difference at

1 d after FPI (Fig. 2a to c).

Discussion

The results from this study demonstrate that an FPI in mice

results in an increase in the number of DCX-labeled cells in the

dentate gyrus, as well as an increase in the appearance of DCX-

labeled hilar ectopic cells. The finding of an early increase in

neurogenesis after an FPI is consistent with findings from sev-

eral different models of TBI,12,24–26 and the observation of hilar

ectopic cells within a week of an FPI in mice is novel.

Several studies have previously demonstrated altered

numbers of immature cells in the dentate gyrus in different

models TBI.12,24–26 Notably, the severity and/or type of

injury was found to impact differential changes in hippocam-

pal neurogenesis,12 and altered neurogenesis was found to be

associated with cognitive impairment.27–29 Interestingly,

Figure 1. Doublecortin (DCX) labeling in the hippocampal dentate gyrus at 1 d after fluid percussion injury (FPI). (a) A sham mouse is shown to
represent the normal staining pattern of DCXþ cells in the dentate gyrus. (b) DCX labeling is shown from a mouse at 7 d after FPI to illustrate an
increase in immature neurons at this time point after FPI. (c) A graph of the mean number ofDCXþ cells is shown. As can be seen in this figure, the
number of DCXþ cells is increasing 1 d after FPI, and the increase is significant at 7 d after FPI. *P < 0.05. Scale bars ¼ 25 mm.

Figure 2. Hilar ectopic cells in the dentate gyrus after fluid percussion injury (FPI). (a) A representative photomicrograph showing a sham
mouse at 7 d after FPI. (b) A photomicrograph is provided to illustrate an increase in the number of DCXþ cells, as well many hilar ectopic
cells (arrowheads) in the dentate gyrus of a mouse at 7 d after FPI. (c) A graph of the mean number of hilar basal dendrites reveals a
significant increase in the number of hilar ectopic granule cells at 7 d after FPI. *P < 0.04. Scale bars ¼ 50 mm in (a) and (b).
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Robinson et al.11 used the same model as in the current study

and found no significant differences in the DCX-labeled

cells in the dentate gyrus at 30 d after an FPI.11 There are

several possible explanations for this discrepancy. First, it

is possible that while there is an initial increase in neuro-

genesis after FPI, many of these cells either do not survive

or become functionally integrated. Previous studies have

demonstrated that TBI alters the functional integration of

newborn neurons.13 From the context of cell replacement, it

is important to understand the expected functional survival

of the endogenous population of newborn neurons. It would

similarly be important to understand approximately what

percentage of the newborn neurons die, so that more accu-

rate survival expectations can be formulated. Studies that

incorporate a retroviral vector to label newborn neurons,

and/or bromodeoxyuridine labeling, combined with anti-

neuronal nuclei (NeuN) double labeling at 30þ d after FPI

(the duration of time for integration and maturation of new-

born neurons) could further address this possibility.

Another possible explanation for the discrepancy in neu-

rogenesis at 7 and 30 d post-FPI could be that the increased

neurogenesis observed 7 d after FPI is transient and returns to

near baseline levels by 30 d after FPI. In this case, it is impor-

tant to understand whether, at time points later than 30 d,

neurogenesis is significantly decreased. Indeed, previous stud-

ies in epileptogenesis models have demonstrated early

increases, followed by long-term deficits in neurogenesis that

are associated with behavioral impairments.30 From a transla-

tional perspective, these latter studies would be extremely

important for determining at what time point it would be most

advantageous to consider cell transplantation or other meth-

ods to stimulate endogenous neurogenesis and/or methods to

ensure better survival/integration of the newly born cells.

Previous studies have demonstrated a rapid inflammatory

response in the hippocampus in this model of TBI.31 It is

possible that rapid hippocampal inflammation plays a role in

the changes to neurogenesis. Such changes could include

increased survival factors, such as cytokines and chemokines

that can also serve as growth factors. Considering that a vast

majority of newborn granule cells will die before becoming

functionally integrated into circuitry,11 it is possible that the

elevated cytokines and chemokines might prolong the sur-

vival of some of these recently born neurons. A similar

hypothesis has been previously postulated in models of epi-

lepsy, in which hippocampal neurogenesis is also initially

increased.15–17 Such enhanced survival might also contribute

to aberrant hippocampal circuit formation.15–17 Considering

that we have recently demonstrated a TBI-induced alteration

to the radial glial-like processes in the dentate gyrus and that

these cells provide a scaffold for the normal growth and

integration of newborn granule cells,11,21,22 it is possible that

the alterations we have observed to hippocampal neurogen-

esis are related to hippocampal inflammation, including the

activation of the radial glial-like astrocytes.

The observation of an increase in DCXþ hilar ectopic

cells illustrates another important consideration for cellular

transplantation studies. The possibility that cells migrate into

aberrant regions or circuits must be addressed. In the case of

seizures, hilar ectopic granule cells have been demonstrated

to contribute to a hyperexcitable recurrent hippocampal

circuitry.32,33 This circuit has also been demonstrated

anatomically15–17 and in previous studies using the same FPI

model. It has been demonstrated that this model has anato-

mical alterations consistent with aberrant hippocampal cir-

cuitry.11 Interestingly, the FPI model used in the present

study has also been shown to have increased seizure sus-

ceptibility 30 d after FPI.18 Therefore, aberrant growth and

integration of newborn neurons, whether endogenous or

transplanted, can contribute to abnormal brain functioning,

further underscoring the necessity to fully elucidate endo-

genous neurogenic processes.

When transplanting cells into a normal brain, there is a

relatively reasonable expectation that the implanted cells

will grow along the established, normal brain circuitry.

However, cell transplantations are only required in cases

of extreme neuropathology. Therefore, studies that provide

insight into the endogenous neurogenic processes in disease

models are important for providing experimental evidence

for optimization of stem cell therapy strategies. The current

study demonstrates an increased number and ectopic growth

of newborn neurons 7 d after FPI. Follow-up studies are

required to fully appreciate the timing of integration as well

as molecular and/or anatomical cues that promote both nor-

mal and ectopic growth of newborn neurons.
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