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ABSTRACT Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen ca-
pable of causing invasive aspergillosis, a globally distributed disease with a mortality
rate of up to 90% in high-risk populations. Effective control and prevention of this
disease require a thorough understanding of its epidemiology. However, despite sig-
nificant efforts, the global molecular epidemiology of A. fumigatus remains poorly
understood. In this study, we analyzed 2,026 A. fumigatus isolates from 13 countries
in four continents using nine highly polymorphic microsatellite markers. Genetic
cluster analyses suggest that our global sample of A. fumigatus isolates belonged to
eight genetic clusters, with seven of the eight clusters showing broad geographic
distributions. We found common signatures of sexual recombination within individ-
ual genetic clusters and clear evidence of hybridization between several clusters.
Limited but statistically significant genetic differentiations were found among geo-
graphic and ecological populations. However, there was abundant evidence for gene
flow at the local, regional, and global scales. Interestingly, the triazole-susceptible
and triazole-resistant populations showed different population structures, consistent
with antifungal drug pressure playing a significant role in local adaptation. Our re-
sults suggest that global populations of A. fumigatus are shaped by historical differ-
entiation, contemporary gene flow, sexual reproduction, and the localized antifungal
drug selection that is driving clonal expansion of genotypes resistant to multiple
triazole drugs.

IMPORTANCE The genetic diversity and geographic structure of the human fungal
pathogen A. fumigatus have been the subject of many studies. However, most previ-
ous studies had relatively limited sample ranges and sizes and/or used genetic
markers with low-level polymorphisms. In this paper, we characterize a global collec-
tion of strains of A. fumigatus using a panel of 9 highly polymorphic microsatellite
markers. Using these markers, we analyze 2,026 isolates, which is ~3 times the num-
ber of isolates reported so far in previous studies. Our analyses suggest that A. fu-
migatus contains historically differentiated genetic populations but that its evolution
is significantly impacted by contemporary forces such as widespread gene flow and
local antifungal drug pressure. In the wake of a global rise in resistance to azoles in
fungal pathogens, our findings should aid in developing management strategies to
mitigate current increases to azole resistance.
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Aspergillus fumigatus is a globally distributed opportunistic human fungal pathogen.
While its primary ecological niche is decomposing organic matter, A. fumigatus is

ubiquitous in the environment and can be found in a broad range of ecological niches.
In humans, it can colonize the lung and several other body sites, causing infections
collectively known as aspergillosis. A. fumigatus is a major source of morbidity and
mortality in immunocompromised patients causing approximately 4 to 5 million cases
of allergic bronchopulmonary aspergillosis globally, approximately 10% of which be-
come chronic (1). Invasive aspergillosis is the most severe form of aspergillosis; it is
estimated to have a global annual incidence of up to 10% and a mortality rate as high
as 90% in high-risk groups (2, 3).

Compounding the increasing incidences of aspergillosis is antifungal drug resistance
associated with such infections. Targeting the highly conserved fungal ergosterol
biosynthesis pathway, triazoles are the most common and effective drugs used in
first-line treatment of aspergillosis. However, due to the increasing frequency of azole
resistance in A. fumigatus, treatment failures are increasingly common and drug-
resistant aspergillosis has become a significant global health issue (4, 5). The medical
significance of aspergillosis and azole resistance has attracted significant attention from
microbiologists, health care workers, and public health agencies worldwide. Indeed,
several studies have examined the genetic relationships among A. fumigatus strains
from different geographic areas (6–10). For instance, Debeaupuis et al. (6) examined
879 isolates from five countries using restriction fragment length polymorphisms (RFLP)
based on the Southern hybridization pattern of a retrotransposon-like element and
reported no evidence of genetic differentiation between environmental and clinical
isolates. Similarly, Rydholm et al. (7) examined patterns of genetic variation at three
intergenic loci for 70 isolates from 22 countries using multilocus sequence typing
(MLST) and obtained similar results. Interestingly, Pringle et al. (8) examined 63 isolates
collected from 14 countries based on DNA sequence data at five loci and identified two
globally distributed and genetically differentiated clusters. More recently, in 2009,
another study analyzed 55 isolates from four countries using amplified fragment length
polymorphisms (AFLP) and showed some evidence of differentiation by geographic
and ecological origins (9). Klaassen et al. (2012) analyzed 255 isolates from the Neth-
erlands using 20 molecular markers, including nine highly polymorphic microsatellite
markers, and found no evidence of differentiation among geographic populations
within the Netherlands (10). However, they found that samples from the Netherlands
could be grouped into five genetic populations and that all the isolates containing the
multiple-triazole-resistant allele at the CYP51A gene belonged to only one of the five
genetic populations (10). Discrepancies in results obtained by these studies were likely
due to the use of relatively small sample sizes and/or different markers. It was
previously suggested that using markers with higher discriminatory power and ana-
lyzing more-diverse and larger sample sizes would likely produce more-robust and
more-consistent results for A. fumigatus (10).

Over the last few decades, several molecular methods, including MLST, microsatel-
lite markers, randomly amplified polymorphic DNA (RAPD) typing, PCR-RFLP, RFLP
detected through Southern hybridization, and AFLP, have been used for genotyping
A. fumigatus (11, 12). However, results obtained with some of these typing methods,
such as RAPD and AFLP, have limited reproducibility and are difficult to interpret or
compare among laboratories. Among these methods, the use of microsatellite markers
has emerged as the best typing method in terms of reproducibility, costs, and discrim-
inatory power (13). For example, Klaassen et al. showed that of the 225 A. fumigatus
genotypes revealed by 20 combined markers—9 microsatellite, 1 indel, and 10
sequence/PCR-typing markers—224 could be recognized by the 9 microsatellites alone
(10). Although the nine microsatellite markers in this set are likely neutral and suitable
for population genetic and epidemiological studies, they have not been used to
characterize the global population of A. fumigatus (10, 14).

Using the aforementioned nine microsatellite markers, we analyzed 2,026 A. fumiga-
tus isolates from 13 countries in 4 continents. We aimed to (i) critically examine the
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genetic relationships of the isolates within and among geographic populations of
A. fumigatus, (ii) investigate how antifungal drug susceptibility patterns are related to
genetic variations, and (iii) evaluate the roles of sexual and asexual reproduction in
shaping the evolution of azole resistance globally. We tested the Baas Becking hypoth-
esis that “everything is everywhere, the environment selects” (15). Due to its close
associations with humans and human activities, both intrinsic natural factors and
anthropogenic factors are expected to influence the genetic structure of A. fumigatus
populations. For example, diverse microbial populations can often be structured by
environmental factors (16–20), including the use of antifungal drugs. Thus, we hypoth-
esize that there should be some genetic differentiation among samples of A. fumigatus
with regard to geographic origin, triazole resistance, and other ecological factors.
Indeed, recent investigations identified that local clonal expansion played a significant
role in the spread of triazole resistance genotypes in the Netherlands and India (10,
21–23). However, given the abundance of asexual spores in A. fumigatus, their capa-
bility of long-distance dispersal, and their nonfastidious requirements for growth and
reproduction, gene flow was expected to be common among geographic populations
of A. fumigatus, potentially obscuring the geographic and ecological patterns of genetic
variations. Below, we describe the relative roles of various factors that impact the global
A. fumigatus population structure.

RESULTS
Limited but statistically significant geographic and ecological niche contribu-

tions to genetic variation. Analysis of molecular variance (AMOVA) showed that 6% of
the total genetic variation was contributed by geographic separation, with the majority
of genetic variation found within individual geographic populations (P � 0.001) (see
Fig. S1 in the supplemental material). Several pairwise geographic differentiations were
significant, with the biggest differentiations found between India and other countries,
including those between India and China (PhiPT [pairwise population heterogeneity
index of the proportion of total genetic variance] � 0.375, P � 0.001), India and Italy
(PhiPT � 0.375, P � 0.001), and India and Australia (PhiPT � 0.357, P � 0.001). Similarly,
we observed relatively limited but statistically significant genetic differentiations based
on ecological niches. Among the 2,026 isolates, 434 had unspecified ecological origins
and they were excluded from this analysis. The remaining 1,592 isolates were classified
into four ecological niches (clinical, air, water, and soil), and only 3% of the total genetic
variation was contributed by such ecological niche separation (P � 0.001) (see Fig. S2).

Distinct genetic clusters and evidence of historical differentiation. Given the
diverse geographic and ecological niches of the samples, the relatively limited contri-
butions of geography and ecological niche to the total genetic variations were surpris-
ing. Among the factors contributing to the limited geographic and ecological differ-
entiation were the high levels of allelic and genotypic diversities within most
geographic and ecological niche populations (see Fig. S3). In total, 1,230 multilocus
microsatellite genotypes were found among the 2,026 analyzed isolates. In order to
examine potentially divergent genetic clusters, the Bayesian algorithm as implemented
by STRUCTURE software was used. However, since STRUCTURE was unable to analyze
all 2,026 isolates at the same time to infer an optimal number of genetic clusters from
our set of isolates, a clone-corrected sample of 1,230 genotypes was used instead. Here,
one randomly selected isolate was picked to represent each individual multilocus
genotype. Structure analyses separated the 1,230 genotypes into eight genetic cluster
populations, Pop 1 to Pop 8 (Fig. 1). Less than 1% of all 1,230 genotypes were assigned
to Pop 1 (8/1,230), whereas 18.7% (230/1,230), 7.7% (95/1,230), 13.4% (165/1,230),
16.7% (206/1,230), 7.3% (90/1,230), 9.8% (120/1,230), and 25.7% (316/1,230) were
assigned to Pop 2, 3, 4, 5, 6, 7, and 8, respectively.

AMOVA performed on the eight STRUCTURE-inferred genetic clusters showed that
18% of the total genetic variance was found among the eight clusters (P � 0.001)
(Fig. S4). One of the eight clusters (Pop 1) was found in only one country, Belgium,
suggesting that Belgium was most likely the geographic origin for this cluster. However,
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all other clusters contained isolates from at least 9 of the 13 countries analyzed here
(Table 1). The inference of the eight genetic clusters on the basis of the STRUCTURE
analyses is supported by results from the discriminant analysis of principal components
(DAPC), a non-model-based approach implemented in R. We note that, although the
Bayesian information criterion (BIC) value was still decreasing after separation of the
genotypes into eight genetic populations, the rate of change dropped considerably
after that point (Fig. 1). The existence of distinct genetic clusters is consistent with
historical differentiation within A. fumigatus.

While STRUCTURE analysis is based on the use of allelic association patterns to
separate reproductively isolated strains into genetic populations/clusters and can be
used to indicate historical differentiations, other indicators can also be used to support
the hypothesis of historical differentiation in A. fumigatus. In this study, six of the eight
clusters had at least five private alleles each at the nine analyzed loci. The percentages

FIG 1 The optimal number of genetic clusters inferred by STRUCTURE and DAPC for our data set. (A) Rate
of change in the log probability (prob.) of data between successive runs of K (ΔK) (52) and the average
posterior probability (ln K) for each K (i.e., K 1 to 14). The optimal predicted number of populations (K)
for our set of isolates is eight. est., estimated. (B) Plot of the optimal number of clusters (K) versus the
Bayesian information criterion (BIC). The BIC rate of change drops considerably after 8 clusters and
flattens after ~14 clusters.

TABLE 1 Global distribution of the 8 inferred genetic clustersa

Genetic
clusters
(no. of
genotypes)

% prevalence (no. of genotypes) in indicated country

Australia Belgium China Cuba France Germany India Italy Netherlands Norway Spain Switzerland United States

Pop 1 (8) 100 (8)
Pop 2 (230) 4 (9) 2 (5) 2 (4) 1 (3) 5 (12) 4 (10) 43 (99) 8 (18) 10 (24) 6 (14) 14 (32)
Pop 3 (97) 7 (7) 1 (1) 1 (1) 7 (7) 2 (2) 1 (1) 66 (66) 4 (4) 2 (2) 8 (8)
Pop 4 (165) 1 (2) 5 (9) 1 (1) 5 (9) 7 (11) 1 (1) 1 (2) 61 (101) 8 (13) 5 (8) 2 (3) 3 (5)
Pop 5 (206) 1 (2) 6 (12) 3 (7) 2 (5) 2 (4) 50 (102) 8 (17) 14 (29) 8 (16) 6 (12)
Pop 6 (90) 6 (5) 3 (3) 19 (17) 3 (3) 47 (42) 7 (6) 9 (8) 6 (5) 1 (1)
Pop 7 (120) 1 (1) 3 (4) 3 (3) 1 (1) 41 (49) 44 (53) 3 (4) 3 (4) 1 (1)
Pop 8 (316) 6 (19) 1 (2) 1 (4) 6 (20) 1 (4) 2 (5) 1 (2) 56 (178) 13 (42) 7 (21) 4 (12) 2 (7)
aNumbers in parentheses represent the numbers of genotypes in individual genetic clusters and in geographic subpopulations of said genetic clusters.
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of private alleles by genetic cluster were as follows: for Pop 2, 23% (53/230); for Pop 3,
5.3% (5/95); for Pop 4, 15.8% (26/165); for Pop 5, 12.6% (26/237); for Pop 6, 25.6%
(23/237); and for Pop 8, 23.9% (104/237). Pop 1 and Pop 7 had no private alleles.

Evidence for recombination within genetic and geographic populations and
hybridization among genetic clusters. We found various levels of linkage equilibrium
and evidence of recombination within each of the eight A. fumigatus genetic clusters
(Table 2). For example, all eight genetic clusters had phylogenetically incompatible
pairs of loci (Table 2). However, as expected, evidence for clonal reproduction was also
found and the findings led to a strong rejection of the null hypothesis of random
recombination for all eight genetic clusters (P � 0.01). Similarly, evidence for both
clonality and recombination was also found within individual geographic populations
of A. fumigatus (Table 2). Specifically, phylogenetic incompatibility was found in each of
the 13 geographic populations. We further tested the effects of clone correction on the
index of association, and our analyses showed that the clonally corrected geographic
samples all had reduced levels of linkage disequilibrium (LD) but still deviated from
random recombination. Populations from four countries (Australia, China, Cuba, and
Italy) were each represented by less than 10 isolates after clonal correction, and these
populations were excluded from this analysis.

Some of the phylogenetic incompatibilities observed within individual geographic
populations may represent evidence of hybridization and genetic recombination be-
tween different genetic clusters. Specifically, a number of microsatellite genotypes
within the eight genetic populations showed evidence of ancestry corresponding to
two or more genetic clusters. For example, certain strains within Pop 1 had mixtures of
alleles from Pop 2, 3, 4, and 8 in Belgium. Specifically, loci 2A and 2B of Pop 1 had allelic
matches with those in Pop 2; locus 2C had an allelic match with that in Pop 4; loci 3A
and 3B had allelic matches with that in Pop 3; locus 4A had an allelic match in Pop 2
and 4; and locus 4C had a match in Pop 8. Locus 4B did not have any exact matches
with other genetic clusters within Belgium and was significantly differentiated from all
other genetic clusters in Belgium. While these results are consistent with potential
recent hybrid origins of certain strains in Pop 1, there is another possibility: the sharing
of alleles among genetic clusters might represent the results of recent mutational
convergence from different populations. Furthermore, interestingly, for some strains
with evidence of multiple ancestries, the putative ancestral populations were often
closely related. Thus, for these strains, there is a third possibility, i.e., that their mixed
ancestries were due to incomplete lineage sorting among the ancestral polymorphisms.

Evidence of contemporary gene flow. Our results showed abundant evidence of
gene flow among ecological and geographic populations of A. fumigatus (see Fig. S1

TABLE 2 Indices of association and phylogenetic compatibility within individual genetic
clusters and geographic populationsa

Population Index of association Phylogenetic compatibility

Pop 1 1.18 0.97
Pop 2 0.30 0.00
Pop 3 0.38 0.06
Pop 4 0.67 0.00
Pop 5 0.78 0.00
Pop 6 0.40 0.20
Pop 7 0.37 0.06
Pop 8 0.34 0.00
Belgium 2.24 (0.73) 0.00
France 1.72 (0.95) 0.00
Germany 1.38 (0.88) 0.00
India 6.66 (0.30) 0.30
Netherlands 0.75 (0.69) 0.00
Norway 0.89 (0.80) 0.00
Spain 1.72 (0.48) 0.00
Switzerland 0.74 (0.55) 0.00
United States 0.88 (0.84) 0.00
aThe eight genetic clusters are represented by Pop 1 to Pop 8.
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and S2). For example, of the total of 625 environmental (air, soil, and water) and 582
clinical A. fumigatus genotypes, 90 were shared between the two ecological types (see
Fig. S5). However, the numbers of genotypes shared between clinical and environmen-
tal samples differed from country to country, with some countries having as many as
50 genotypes shared between the clinical and environmental sources.

Similarly, there is abundant evidence for gene flow among geographic populations.
First, pairwise PhiPT values between most geographic populations were low (Fig. S1).
Second, the allelic distribution patterns across geographic populations revealed that
many alleles were shared by countries located far from each other (Fig. S3). Third,
certain genotypes were shared by isolates from countries separated by long distances.
For example, genotype 115 has a microsatellite allelic combination of 13-10-9-10-11-
9-8-9-19 at loci 2A-2B-2C-3A-3B-3C-4A-4B-4C, respectively, with the allelic numbers
representing the number of di- or trinucleotide repeats at each of the microsatellite loci.
This genotype was isolated from an air sample collected in Belgium and from a patient
in the United States, while genotype 1153 with the allelic combination 25-19-19-26-
19-17-10-16-8 was isolated from an air sample collected in Norway and from a patient
in India. Genotype 356 with the allelic combination 18-12-8-28-10-20-9-9-5 was isolated
from both an air sample and a patient in the Netherlands and was also isolated from
a patient in the United States. Furthermore, cluster analysis performed using the
minimum spanning network identified evidence of dispersal for clonal complexes
across countries that are up to 1,800 km apart (Fig. 2). Indeed, the Mantel test revealed
no significant correlation between genetic distance and geographic distance (r2 �

0.002) at the global scale.
While the allele and genotype sharing between geographically distant countries

such as those described above represents long-distance gene flow, evidence for gene
flow among regions within individual countries is also abundant. For example, the
samples from within India were obtained from diverse locations separated by hundreds
of kilometers and several genotypes were found to be widely distributed across several
locations. Taken together, our results suggest frequent gene flows among regional and
continental populations of A. fumigatus.

Evidence of local contemporary drug selection followed by clonal expansion.
About 6% of the isolates in our data set showed resistance to triazole antifungal drugs.
Overall, there was a small but statistically significant genetic difference between the
triazole-susceptible and triazole-resistant samples (PhiPT � 0.063, P � 0.001). Interest-
ingly, while the triazole-susceptible populations showed relatively little genetic differ-
ence among geographic populations, the triazole-resistant isolates separated based on
geographic origins showed a large amount of genetic differentiation (PhiPT � 0.57, P �

0.001) (see Fig. S6). We further tested the hypothesis that the differences between the
triazole-susceptible and triazole-resistant samples were due to local clonal expansion.
Indeed, after clonal correction, the level of differentiation among geographic popula-
tions of the triazole-resistant samples was reduced significantly (PhiPT � 0.23, P �

0.001). Taken together, the results from these analyses suggest that clonal expansion of
triazole resistance genotypes plays a significant role in geographic structuring of
A. fumigatus.

DISCUSSION

We investigated the global population structure using nine highly informative
microsatellite markers to analyze a comprehensive set of isolates from four continents.
Our analyses showed the existence of eight significantly differentiated genetic clusters
within the global sample of A. fumigatus, a result consistent with historical differenti-
ation. However, we noted low differentiation levels and frequent sharing of alleles and
genotypes among geographic and ecological populations, suggesting that contempo-
rary gene flow is prevalent. Our analyses also identified abundant signatures of both
sexual recombination and local clonal expansion. Local clonal expansions were most
evident in geographic populations where resistance to triazole antifungal drugs was
prevalent. Taken together, our results suggest that both historical and contemporary
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factors have played a significant role in shaping the global population structure of
A. fumigatus.

Structure analyses separated all 1,230 genotypes into 8 genetic clusters, 3 to 6 more
than previously identified (8, 10). In 2005, Pringle and colleagues reported the presence
of two globally distributed A. fumigatus genetic clusters and suggested that one of
these clusters could be a cryptic Aspergillus species. In 2012, Klaassen et al. (10)
identified five genetic clusters in the Netherlands based on analyses of 255 isolates
representing 225 multilocus genotypes. In our study, there were 1,081 isolates repre-
senting 637 multilocus genotypes from the Netherlands, revealing two additional
genetic clusters in that country (now seven genetic populations total in the Nether-
lands; Table 1). The identification of additional clusters over those identified in previous
studies suggests that there are likely more genetic clusters in both the analyzed
geographic regions and those not analyzed in this study. While the study by Klaassen
et al. (10) and our current study used the same genetic markers and the same
assumptions in inferring genetic clusters, we should note that our current inferred
“optimal cluster number” (K) of 8 represents only the samples we have and is based on
a series of assumptions that might not be entirely valid in nature (24). Indeed, the
multivariate clustering approach implied a less clear-cut solution (Fig. 1). However,
there is some consistency between the results obtained from the multivariate and the

FIG 2 Minimum spanning tree of all genotypes identified in at least three countries. Each circle represents a genotype. Thick, short, solid lines
connect variants that differ by alleles at one of the nine loci; thick, longer, solid lines connect variants with different alleles at two loci; dashed
and dotted lines connect variants at four and more loci, respectively. Unique colors were assigned to represent the countries in which genotypes
were identified. The gray shading depicts genotypes belonging to the same clonal complex.
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Bayesian clustering methods. Interestingly, most genetic clusters inferred by both
methods were globally distributed, and the majority of triazole-resistant genotypes
clustered into a single genetic population.

Comparably to results published previously, our analyses revealed that geographic
populations often contain strains of divergent genotypes from different genetic clus-
ters. At present, the putative geographic origin(s) for each of the eight genetic clusters
is unresolved. Generally, the geographic center of origin should contain the highest
allelic and genotypic diversities. In fungi, abundant evidence of sexual recombination
has also been used as a signature for ancestral populations. However, uneven sample
sizes and incomplete sampling in many countries make any conclusions at present
extremely tentative (Table 1). Additional sequence data from multiple gene loci as well
as more samples could help resolve this issue.

Though evidence for both local and long-distance dispersals was prevalent in our
samples of A. fumigatus, limited but statistically significant population differentiations
were observed among certain geographical or ecological populations. Finlay argued
that microbes smaller than about 2 �m in size are unlikely to be restricted by
geographical barriers in their dispersals (25). However, it is not uncommon to see
geographical differentiation in microbial eukaryotes (26, 27). For example, using DNA
sequence variation in four protein-coding genes, Kasuga et al. showed population
differentiation by geographic origin in the human-pathogenic fungus Histoplasma
capsulatum (26). In contrast, the global population structure of the wheat fungal
pathogen Mycosphaerella graminicola is characterized by frequent gene flow (28). In
A. fumigatus, the low but statistically significant levels of differentiation were likely due
to historical separations; however, these genetic differentiations are being broken
down by contemporary gene flow.

Our evidence for gene flow among regional populations at the global scale extends
observations reported earlier based on smaller sample sizes and/or geographically
limited samples (6–10). Gene flow within and between geographic populations of
A. fumigatus can be accomplished by wind-aided spore dispersal or by anthropogenic
activities. A. fumigatus can reproduce both sexually and asexually and can produce
abundant ascospores and conidiospores, respectively, in the process. These hydropho-
bic spores can become readily airborne and disperse by wind. The rate of emission of
A. fumigatus conidia from an undisturbed compost pile is estimated to be 8 � 103 to
11 � 103 CFU/m2/s at the mean wind speed of 1 m/s (29). Our data suggested two
major dispersal patterns. The first and most frequently observed dispersal pattern
involved intermediate-distance dispersals (IDD) and short-distance dispersals (SDD). For
example, it was common to find several isolates from diverse locations and ecological
niches within the same country sharing the same genotype. Similarly, despite relatively
limited genotype sharing, allele frequencies among local populations within the Neth-
erlands were very similar (10). Frequent gene flow can mask population differentiation
and represent a major challenge for molecular epidemiologists in their efforts to track
and contain fungal strains of public health interest.

The second dispersal pattern is long-distance dispersal (LDD), which can be assisted
or not assisted by travel by humans. Assisted LDD refers to dispersal involving humans
or associated with human artifacts whereby travelers can carry conidia on/in their
bodies or on infested inanimate objects from one region to another far away. In
contrast, unassisted LDD involves dispersals without human interventions, e.g., by air
currents. Our data here show that certain microsatellite genotypes are found in
countries up to 7,500 km apart. For example, genotype 115 was isolated from air in
Belgium and from patients in the United States. However, whether dispersal of this
genotype and other shared genotypes of A. fumigatus was assisted or not assisted by
humans is currently unknown. Documenting and understanding the frequency of and
mechanism(s) for such long-distance dispersals are of utmost importance in contain-
ment and eradication of pathogens. LDD events have been previously reported to play
a crucial role in fungal pathogen recolonization, invasion, and adaptation to host
resistance (30). For example, it was suggested that cyclonic winds introduced Puccinia
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melanocephala uredospores into the Dominican Republic from Cameroon, in early June
of 1978 (31). Similarly, Cryptococcus deuterogattii (previously C. gattii AFLP6/VGII) was
likely spread from Vancouver Island to mainland British Columbia, Canada, and the
Pacific Northwest of the United States in dust on cars and under shoes of travelers that
took the ferry to Vancouver City (32). Owing to the fact that A. fumigatus is ubiquitous,
LDD likely plays a limited role in future pathogen invasion or recolonization. However,
in view of adaptation to host resistance and recent increases in azole resistance, our
finding of single-event long-distance dispersal would be of great significance to
epidemiologists, although all cases of LDD identified in this study so far involved only
triazole-susceptible isolates.

Gene flow can have both advantageous and disadvantageous consequences with
respect to the selective maintenance of genetic variation within and between microbial
populations. For instance, gene flow is thought to limit population divergence and
hence local selection. Gene swamping into naive populations favors fixing of alleles
with the best average reproductive success, thereby counteracting the stability of local
selection (33). However, the concept of gene flow moderating population divergence
has been contested by observations indicating that several species, including fungal
species, show little genetic differentiation even though they lack sufficient gene flow to
counteract divergence (34). On the other hand, gene flow is thought to facilitate
adaptation by disseminating beneficial alleles. However, dissemination of highly ben-
eficial alleles does not necessarily require high levels of gene flow (34). In A. fumigatus,
frequent gene flow, which is known to facilitate dissemination of alleles highly bene-
ficial to the fungus such as those conferring triazole resistance, can be attributed to the
abundance of asexual spores, their capability of long-distance dispersal, and their
nonfastidious requirements for growth and reproduction. The limited geographic
differentiation, the presence of multiple private alleles within individual geographic
and genetic populations, and the evidence for gene flow among global populations of
A. fumigatus indicate that the evolution of A. fumigatus will be continuously impacted
by both local and global factors.

Our analyses suggest that genetic Pop 2 and Pop 8 are the most widely distributed
and are recombining. They also contained the most private alleles. The previous study
by Klaassen et al. (10) revealed that all multitriazole-resistant strains with the TR34/L98H
mutations at the CYP51A gene from the Netherlands belonged to one genetic cluster
(Pop 3 in their study and Pop 8 here in our study). Interestingly, while Pop 8 contained
80% (35/44) of all triazole-resistant genotypes, triazole resistance genotypes were also
found in other genetic clusters. However, our results do indicate that the frequency of
triazole resistance in Pop 8 (11%, 35/316) was at least four times higher than that in any
other genetic population, suggesting that special attention should be paid to under-
standing this genetic cluster. Since the gene(s) related to resistance is not known to be
tightly linked to the analyzed nine microstatellite loci, the tight clustering of most
triazole-resistant isolates in Pop 8 suggests three possibilities. The first possibility is that
Pop 8 is more frequently distributed in geographic regions where triazole drug use is
very common. It has been previously hypothesized that extensive agricultural use of
azole fungicides in A. fumigatus in India and elsewhere leads to resistance (2, 35, 36).
Although azoles are used worldwide, the absolute amounts used differ among coun-
tries (37). The differences in the types and absolute amounts of azole fungicides used
by individual regions and countries could act as distinct selective pressures to generate
the different frequencies of triazole-resistant strains. This hypothesis was supported by
evidence indicating that resistant isolates grouped by geographic origin were geneti-
cally highly differentiated (P � 0.001). Using Escherichia coli as a model organism, it has
been experimentally demonstrated that the strength of antibiotic exposure plays a
significant role in the evolution of antibiotic resistance (38). The second possibility is
that, when exposed to triazole drugs, strains in this genetic cluster are more likely than
those in other genetic clusters to develop triazole resistance. If so, then caution should
be taken in using triazole drugs when treating infections caused by strains in this
genetic cluster. Similar clade-specific patterns have also been shown in the plant-
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pathogenic fungi Puccinia graminis f. sp. tritici and Pyrenophora tritici-repentis (39, 40).
The third possibility is that strains in Pop 8 are more receptive than those in other
clusters in accepting triazole-resistant genes via mating and recombination. Indeed,
even though the early study by Klaassen et al. (10) did not show evidence of recom-
bination for this cluster in the Netherlands, our analysis of the expanded samples in Pop
8 showed the most evidence of recombination in our samples where all pairs of loci
among the nine microsatellite markers showed phylogenetic incompatibility. The
occurrence of recombination within and between A. fumigatus genetic populations
could have significant implications in the initiation and dissemination of resistant/
virulent strains capable of causing aspergillosis outbreaks (41).

Although sexual reproduction can generate genotypic variation among A. fumigatus
populations which may allow faster adaptation to host resistance, it can, however, be
costly in terms of energy and time and may have no measurable advantage in new
ecological niches (42). This could possibly explain why the other genetic populations
(Pop 1 and Pop 3 to 7) evolved predominantly clonally and contain significantly fewer
resistant isolates. Furthermore, although most triazole-resistant genotypes belonged to
a highly recombinant genetic cluster, our data, as well as data from previous studies,
showed that the expansion of triazole-resistant strains at the local (country) level is
predominantly clonal (10, 21–23). Such localized clonal expansion is a significant factor
that shapes the current A. fumigatus population structure. Indeed, the clonal spread of
adaptive recombinant progeny resistant to multiple triazole drugs in India was the
main cause of the significant genetic differentiations between the Indian A. fumigatus
population and those isolated elsewhere in the world.

In conclusion, using a large number of isolates from geographically and ecologically
diverse regions, our study allowed us to address several fundamental questions about
the global population of A. fumigatus. Our findings go beyond those previously
identified by other studies. We report limited but statistically significant genetic differ-
entiations among geographic and ecological populations of A. fumigatus. The identi-
fication of eight genetically differentiated clusters is consistent with historical differen-
tiation, but contemporary gene flows are blurring the historical patterns. Interestingly,
unlike the triazole-susceptible samples, where geographic populations were largely
undifferentiated, triazole-resistant samples were significantly differentiated according
to geographic region. The differences in triazole usage among the countries have likely
contributed to the genetic differences among the triazole-resistant samples. Though
evidence for clonality was found in all geographic, ecological, and genetic populations,
we also found evidence for recombination in all analyzed populations, a result different
from those reported in earlier studies (6–10). This difference is especially noteworthy for
Pop 8, the dominant genetic cluster containing most of the triazole-resistant strains,
where no evidence of recombination was found in an earlier study (10) but abundant
evidence for recombination was found in our current study. However, despite the large
sample size and broad geographic and ecological representations in our samples,
additional genetic diversities and other types of genetic relationships among samples
could exist when additional samples are analyzed. Our results provide important data
for future assessment of A. fumigatus migration patterns. From a practical perspective,
our findings should aid in better tracking and management of aspergillosis outbreaks.

MATERIALS AND METHODS
Isolates used for analyses and genotyping. Samples used in this study were obtained as part of

collaborative studies between Canisius Wilhelmina Hospital and research centers in several countries (4,
10, 14, 43–49). A total of 2,026 isolates from 13 countries in 4 continents were genotyped and included
in our analyses. Genotyping was performed with a panel of nine short tandem repeats (STRAf 2A, 2B, 2C,
3A, 3B, 3C, 4A, 4B, and 4C) as previously described (14).

Identification of genetic clusters. In order to investigate the existence of distinct genetic clusters,
we used both multivariate and model-based Bayesian clustering as implemented in the ADEGENET
package in R version 3.0 and STRUCTURE software version 2.3 (50, 51). Multivariate clustering was used
to complement Bayesian clustering, bearing in mind that this approach assumes linkage equilibrium
within clusters (50). However, multivariate clustering cannot be solely used for clustering analysis as its
efficiency is limited by correlations between variables (alleles). Moreover, the contravention of the
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assumption of uncorrelated alleles is further emphasized in the presence of linkage disequilibrium. When
multivariate clustering was used, the optimal number of clusters (K) was inferred based on BIC (50). For
model-based Bayesian clustering, we chose the admixture and the correlated allele frequencies between
population options as our ancestry and frequency models, respectively. Markov chain Monte Carlo
(MCMC) simulations were run for K � 1 to 14. However, given the huge data set, the MCMC sampling
scheme was run for only 9,000 iterations with a burn-in period of 1,000. Notwithstanding, summary
statistics values (Alpha, Fst, and likelihood) seemed to have converged at 104 iterations, thereby
validating the run length. Two approaches were used to identify the optimal number of clusters. The ad
hoc statistic DK, based on the rate of change in the log probability of data between successive runs of
K, was calculated as previously recommended (52). The second approach recommended by Pritchard et
al. (2000) calculates the average log probability [LnP (D)] of each K value (51).

Differentiations among samples separated by geographic, ecological, and triazole suscepti-
bility patterns. In order to identify the potential contributors to the observed genetic variation, the
pairwise samples grouped based on different criteria were compared using the GenAlEx version 6.5 (53).
In these analyses, three criteria were used to group the samples: their triazole susceptibility status
(triazole susceptible versus triazole resistant), their ecological niche (clinical, soil, air, or aquatic), and their
geographical origin (country). Cluster analysis was done using the minimum spanning tree algorithm as
implemented by Bionumerics version 7.0 (Applied Maths, Saint-Martens-Latem, Belgium).

Analyses of genetic variability, allelic diversity, and recombination. Nei’s genetic diversity
corrected for sample size was calculated for independent populations using GenAlEx version 6.5 (53). The
multilocus program (version 1.3b) was used to evaluate the presence and prevalence of linkage
disequilibrium (LD) and phylogenetic compatibility as indicators of clonality and recombination (54). A
diversity of samples and subsamples were analyzed, including those representing individual genetic
clusters and geographic populations. The statistical significance of each test was determined using 1,000
permutations.
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