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Abstract: Cigarette smoke (CS) is the primary cause of Chronic Obstructive Pulmonary Disease
(COPD), and an important pathophysiologic event in COPD is CS-induced apoptosis in lung endothe-
lial cells (EC). Cortactin (CTTN) is a cytoskeletal actin-binding regulatory protein with modulation
by Src-mediated tyrosine phosphorylation. Based upon data demonstrating reduced CTTN mRNA
levels in the lungs of smokers compared to non-smokers, we hypothesized a functional role for
CTTN in CS-induced mitochondrial ROS generation and apoptosis in lung EC. Exposure of cultured
human lung EC to CS condensate (CSC) led to the rearrangement of the actin cytoskeleton and
increased CTTN tyrosine phosphorylation (within hours). Exposure to CS significantly increased EC
mitochondrial ROS generation and EC apoptosis. The functional role of CTTN in these CSC-induced
EC responses was explored using cortactin siRNA to reduce its expression, and by using a blocking
peptide for the CTTN SH3 domain, which is critical to cytoskeletal interactions. CTTN siRNA or
blockade of its SH3 domain resulted in significantly increased EC mitochondrial ROS and apoptosis
and augmented CSC-induced effects. Exposure of lung EC to e-cigarette condensate demonstrated
similar results, with CTTN siRNA or SH3 domain blocking peptide increasing lung EC apoptosis.
These data demonstrate a novel role for CTTN in modulating lung EC apoptosis induced by CS or
e-cigarettes potentially providing new insights into COPD pathogenesis.

Keywords: COPD; lung injury; e-cigarette; mitochondrial ROS; endothelium; cytoskeleton

1. Introduction

Cigarette smoking (CS), a leading cause of morbidity and mortality in the US, is
the most significant factor for the development of Chronic Obstructive Pulmonary Dis-
ease (COPD) [1,2]. According to the Centers for Disease Control and Prevention (CDC),
more than 480,000 people die from smoking-related diseases each year. Regarding the
pathogenesis of CS-induced COPD, it is known that continuous exposure to nicotine and
other CS-toxic substances leads to the development of chronic bronchitis and emphysema
characterized by an enhanced inflammatory response, increased macrophage and neu-
trophil infiltration, protease-antiprotease imbalance, remodeling of the airways, and loss
of elastic properties of the parenchyma [3]. Despite recent advances, there is no effective
treatment available to improve or reverse smoking-related lung damage, and additional
studies to elucidate CS-induced cellular mechanisms are needed. CS exposure affects not
only the airways and the immune system but also alters the function of the pulmonary
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vasculature. Specifically, CS directly causes lung endothelial cell (EC) activation and in-
flammation leading to enhanced EC apoptosis and increased barrier permeability [4–6].
However, the signaling pathways underlying CS-induced lung EC dysfunction remain
poorly understood.

Lung EC responses to multiple injurious stimuli, including CS, are mediated by cy-
toskeleton changes. CS exposure directly modulates EC barrier permeability, necrosis, and
apoptosis through multiple signaling pathways involving RhoA, FAK, and p38 MAPK,
which are all involved in cytoskeletal rearrangements [4,7–9]. We have previously identified
cortactin (CTTN), a central regulator of the actin cytoskeleton, as an important modulator
of lung EC barrier function [7,10,11]. CTTN is a major substrate for post-translational
modifications (PTMs), which are dynamic and often reversible processes that regulate the
functional activities of proteins within cells [10,11]. CTTN tyrosine phosphorylation on
Y421, Y466, and Y486 sites by Src family kinases, ABL kinases, C-Met, FER, and Syk, regu-
lates key cellular mechanisms such as migration, permeability, inflammation, proliferation,
protrusion, and EC mechanics [11–14]. Despite these essential contributions to cellular
function, the potential role of CTTN in lung EC responses to CS is unknown. Intriguingly,
the gene encoding for human CTTN is one of the most differentially methylated in smokers
vs. non-smokers [15], suggesting that its expression may be altered by cigarette exposure.

As an alternative to traditional cigarettes, e-cigarettes are gaining popularity, especially
among youth. However, inhalation of e-cigarette vapors may also damage the lung
tissue [16,17], and in 2019, the CDC/FDA declared an e-cigarette epidemic due to a national
outbreak of e-cigarette-induced acute lung injury cases [E-cigarette or Vaping product use-
associated lung injury (EVALI)] [18]. In addition, e-cigarette use is associated with an
increased risk for the development of other pulmonary diseases such as COPD [19]. The
underlying mechanisms by which e-cigarettes contribute to lung disease are not well
understood, however, recent reports suggest that e-cigarettes play a role in inflammation,
apoptosis, and tissue damage [20,21]. The effects of e-cigarettes on lung endothelial function
are only now beginning to be explored.

The present study aims to explore the hypothesis that CTTN modulates the effects of
CS and e-cigarettes on lung EC responses to provide novel insights into how these injurious
stimuli contribute to the pathogenesis of COPD and other smoking-related disorders.
Here we investigate how CTTN expression and function regulate EC responses to CS
and e-cigarettes.

2. Materials and Methods
2.1. Reagents

Horseradish Peroxidase (HRP)-linked anti-mouse and anti-rabbit secondary antibod-
ies, and anti-β actin antibodies were purchased from Santa Cruz Biotechnology, Inc. (Santa
Cruz, CA, USA). Anti-CTTN antibody, phospho CTTN Y421, Y466, Y486, trypsin, Triton
X-100, and Tween 20 were obtained from Sigma-Aldrich, Inc. (St. Louis, MO, USA). An-
tibody against PARP1 was obtained from Cell Signaling (Danvers, MA, USA). Annexin
V and 7-AAD were obtained from Biolegend (San Diego, CA, USA). siRNA (control and
CTTN) and DharmaFECT1 transfection reagent were purchased from Dharmacon (Horizon
Inspired Cell Solutions, Lafayette, CO, USA).

2.2. Human Lung Tissue Specimens

Lungs from deceased organ donors that were declined for transplantation as a part of
the “Beta-agonist for Oxygenation in Lung Donors” study [22] were used to obtain lung
tissue specimens. Lungs were resected without perfusion and were transported on ice to
the investigator’s laboratory, and portions of each lobe were immediately frozen at −80 ◦C
in RNALater (Qiagen, Hilden, Germany) until RNA extraction. Clinical history including
smoking history was obtained from the donor’s medical record. Specifically, four lung
samples were obtained from chronic smokers, with smoking “pack year” histories of 50, 15,
10, and an unknown number of pack years.
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2.3. Cell Culture

Human pulmonary artery endothelial cells (HPAECs) were purchased from Lonza
(Walkersville, MD, USA) and cultured in Endothelial Cell Growth Medium-2 (EGM-2)
(Lonza) supplemented with 10% fetal bovine serum (FBS) (Sigma, St Louis, MO, USA).
Cells were maintained at 37 ◦C in a 5% CO2 incubator and used at passages 6–8 for all
experiments. Cells were starved for 2 h in 2% FBS media prior to treatments.

2.4. Cigarette Smoke Condensate (CSC)

CSC was prepared by bubbling smoke from six cigarettes [Research-grade cigarettes
(3R4F); Kentucky Tobacco Research and Development Center at the University of Kentucky]
through 100 mL of FCS-free cell culture medium at a constant airflow. The smoked medium
was then sterile filtered through a 0.20-micrometer filter (Minisart; Satorius Stedim Biotech,
Göttingen, Germany), aliquoted, and stored at−20 ◦C. This served as the CSC stock solution
(40 mg/mL concentration). For treatment, cells were exposed to 40 µg/mL of CSC in 2%
EGM-2 media, and the control cells received the equivalent volume of vehicle (10% DMSO).

2.5. E-Cigarette

“JUUL” E-cigarette obtained commercially contains nicotine, propylene glycol, glyc-
erin, and benzoic acid. 5.0% nicotine and the unflavored pod were used for our experiments.
Cells were treated with 50 µg/mL of e-cigarette liquid for 24 h.

2.6. siRNA Transfection

HPAECs were transfected with scrambled RNA or CTTN siRNA (100 nM) using the
DharmaFECT 1 transfection reagent. 48 h after transfection EC were challenged with CSC
or e-cigarette. Transfection efficiency was determined by western blotting.

2.7. Blocking Peptide Experiments

Myristoylated VDKPPVPPKPKMKPIV sequence comprising the cortactin SH3 blocking
peptide (CBP) and scrambled control peptide were synthesized by the Genome Research Core
of the Research Resources Center (RRC) of UIC. The efficacy of CBP in blocking interactions
of the cortactin SH3 domain has been described previously [23]. HPAECs were pretreated
with control or CBP, 100 µM for 45 min, followed by exposure to CSC (40 µg/mL, 24 h).

2.8. Determination of Apoptosis by Flow Cytometry

Flow cytometry was used to determine the levels of apoptosis as modified from
previous reports [24]. Cells were stained with Annexin V and 7-AAD, according to the
manufacturer’s instructions. Data were acquired using an LSR Fortessa (BD Biosciences,
San Diego, CA, USA) flow cytometer and analyzed using the FCS express 6 flow cytometry
(De Novo) software. A floating gating strategy was employed and was set based on
unstained and single-stained populations.

2.9. RNA Isolation and Quantitative Real-Time PCR Analysis (qPCR)

RNA was isolated from human lung tissues (smokers/non-smokers) according to
the manufacturer′s protocol. RNA was reverse transcribed using a cDNA synthesis kit
(Bio-Rad, Hercules, CA, USA). qPCR was performed using the cDNA mixed with iQ SYBR
Green Supermix (Life Technologies, Grand Island, NY, USA).

The primer sets used for amplification are the following:
CTTN, forward primer: 5′-GGTGTGGAACAAGACCGAAT-3′, reverse primer:

5′-GGCATGCTTCTCAGTCTTCC-3′; the housekeeping gene 18S RNA served as an in-
ternal control, and all samples were run in triplicates.
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2.10. Western Blotting

Cell lysates were prepared using RIPA buffer containing protease and phosphatase
inhibitors. Samples were sonicated and centrifuged at 10,000× g at 4 ◦C for 10 min. The
supernatants were collected, and protein concentration was determined using the BCA
protein assay (Pierce Chemical, Rockford, IL, USA). Cell lysates were then mixed with 6X
Laemmli buffer (Boston Bioproducts, Ashland, MA, USA) and boiled for 5 min. Samples
(30 µg) were subjected to SDS-gel electrophoresis and then transferred to nitrocellulose
membranes (Bio-Rad, Hercules, CA, USA). Membranes were incubated for 1 h at room tem-
perature in blocking buffer (Tris-buffered saline with 0.05% Tween-20, TBST) supplemented
with 1% bovine serum albumin (BSA) and then incubated with the indicated primary
antibodies overnight at 4 ◦C. After washing with TBST, the membranes were incubated for
1 h with the secondary antibody in 1% BSA-TBST. The membranes were washed with TBST,
and the bands were detected using Pierce ECL (ThermoFisher, Wilmington, DE, USA) or
Amersham ECL Prime (Cytiva) followed by exposure to blue-light–sensitive film Hyper-
film (Amersham Biosciences UK Limited, Little Chalfont, UK). Anti-β-actin antibody was
used to verify equal protein loading. The relative intensities of protein bands were quan-
tified by densitometry using ImageJ software (NIH, Bethesda, MD, USA). Results were
expressed as a ratio of specific protein signal to β-actin.

2.11. Immunofluorescence Microscopy

HPAECs were grown on 8 well glass chamber slides to 80–90% confluence in EGM-2
medium. After indicated treatments, cells were fixed with 3.7% paraformaldehyde for
10 min followed by three washes with PBS. The cells were then permeabilized with 0.25%
Triton X 100 for 5 min and rinsed with PBS for 5 min followed by incubation in blocking
buffer (1% BSA-PBS) for 1 h. Cells were then incubated with cortactin antibody for 1 h,
washed with PBS, and then incubated with secondary antibody-Alexa Fluor 488 and Alexa
594-Phalloidin (F-actin staining) for 1 h. After washing for at least four times, the coverslips
were mounted with profound gold DAPI (Invitrogen, Green Island, NY, USA). Images
were taken using a Zeiss confocal microscope at 40×magnification.

2.12. Mitochondrial ROS Generation

Mitochondrial superoxide generation in HPAECs upon CSC challenge was determined
using the MitoSOXTM Red Mitochondrial Superoxide Indicator (Invitrogen, Green Island,
NY, USA), according to the manufacturer’s protocol. Briefly, the cells were loaded with
5 µM MitoSOX reagent for 15 min and washed twice in phenol red-free media. Live-cell
imaging was performed at 37 ◦C using a Zeiss confocal microscope at 40×magnification.

2.13. Statistical Analysis

All data are expressed as mean ± SEM from at least three independent experiments.
Statistical analysis was performed using the GraphPad Prism 8 software. Student’s t-test or
two-way ANOVA (Tukey’s or Dunnett’s post hoc tests) were used to compare two or more
groups respectively. Values of * p < 0.05 were considered statistically significant.

3. Results
3.1. Cortactin mRNA Levels Are Decreased in Human Lung Tissues from Smokers Compared
to Non-Smokers

Given that the gene encoding for human CTTN is one of the most differentially
methylated in smokers vs. non-smokers [15], we analyzed human lung tissue RNA samples
from donors with a history of regular cigarette smoking. These samples were assessed for
CTTN mRNA levels by RT-PCR and compared to those from former or never smokers. We
observed a significant ~80% decrease in CTTN expression in lung tissues derived from
smokers compared to non-smokers (Figure 1).
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EC permeability, cell motility, and invasion [11]. In our present study, we explored the 
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Figure 1. Cortactin mRNA levels are decreased in human lung tissues from smokers compared
to non-smokers. Cortactin (CTTN) mRNA levels were analyzed by qPCR in human lung tissues
from current versus never/former smokers. The bar graph depicts fold-changes in CTTN mRNA
expression normalized to the housekeeping gene, 18S rRNA. N = 3–4, * p < 0.05.

3.2. Cigarette Smoke Condensate Induces Cytoskeletal Rearrangement in Human Lung
Endothelial Cells

Next, we employed CS condensate (CSC), a well-characterized and commonly used
stimulus to model CS exposure in vitro, to determine its effects on CTTN and actin
cytoskeletal structure in cultured human lung EC [25]. Immunofluorescence imaging
(Figure 2A) demonstrates that after CSC stimulation there is a redistribution of actin and
cortactin in HPAEC that results in a significant increase in the colocalization of these pro-
teins. Under these experimental conditions, CTTN protein expression levels are not altered
by CSC exposure (Figure 2B).
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Figure 2. Cigarette smoke condensate induces cytoskeletal rearrangement in human lung endothelial
cells. (A) HPAECs were treated with vehicle (DMSO) or CSC (40 µg/mL) for 6 h, fixed and subjected
to immunofluorescence analysis. Confocal images were taken at 40× after staining with Alexa488
-CTTN (green), Alex 594- Phalloidin (F-actin staining, red), and DAPI (nucleus staining, blue). F-actin
and total cortactin (T-CTTN) overlap was quantified. (B) HPAECs were treated with CSC (40 µg/mL,
24 h) and cell lysates were subjected to western blotting analysis for T-CTTN protein expression.
Shown are representative blots and densitometry analysis. N = 3, * p < 0.05.
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3.3. CSC Induces CTTN Tyrosine Phosphorylation in Human Lung EC

A key posttranslational modification (PTM) of CTTN is tyrosine phosphorylation by
Src, Abl, and other kinases that regulates multiple aspects of cytoskeletal rearrangement,
EC permeability, cell motility, and invasion [11]. In our present study, we explored the effect
of CSC on CTTN tyrosine phosphorylation at the important Y421/Y466/Y486 sites in lung
EC as potential signaling events [13,14]. As shown in Figure 3, upon CSC challenge, CTTN
phosphorylation is increased within 30 min at all three sites (Y421/466/486) compared to
unstimulated control EC.
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and pooled from 3 independent experiments. * p < 0.05.

3.4. Inhibition of CTTN Expression or Its SH3 Domain Augments CSC-Induced MitoROS in
Lung EC

Mitochondrial oxidative stress plays a key role in CS-induced pulmonary disorders
and is a predisposing factor in the pathogenesis of COPD [26,27]. Therefore, we next
explored the role of CTTN in oxidative stress induced by CSC [28–30]. Using the well-
established MitoSOX assay [31,32], we found that mitoROS production in lung EC is
significantly increased (~1.5 fold) after CSC exposure compared to control (Figure 4A).
To further elucidate the role of CTTN in this CS-induced response, CTTN expression was
downregulated by siRNA, which resulted in a 55–75% reduction of its expression in lung
EC (Figure 4C). Interestingly, CTTN silenced EC produced more mitoROS both at baseline
and after exposure to CSC (Figure 4A). These data suggest a novel role for CTTN expression
in mediating CSC-induced mitoROS production.

To expand upon these observations, we next treated lung EC with a peptide that
blocks protein-protein interactions with the CTTN SH3 domain (cortactin blocking peptide;
CBP). The SH3 domain of CTTN interacts with multiple proteins such as dynamin, WASP,
nmMLCK, etc. that are involved in regulating multiple EC functions [33–35]. In the current
study, CBP treatment enhanced mitoROS production at baseline and after CSC (Figure 4B),
similar to cells treated with siCTTN. These data suggest that CTTN expression or its
downstream signaling interactions are involved in mitoROS production after CSC.
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Figure 4. Inhibition of CTTN expression or SH3 domain blockade augments CSC-induced MitoROS
in lung EC. (A) HPAECs were transfected with siRNA (control or CTTN) for 48 h followed by
CSC (40 µg/mL) for 2 h. (B) HPAECs were pre-treated with peptide control or CTTN blocking
peptide (CBP) for 45 min followed by CSC challenge for 2 h. Mitochondrial superoxide production
was assayed by the MitoSOX TM Red reagent. Shown are the representative confocal images of
mitoROS staining (A,B, left images). Quantification of ROS intensity was performed in 30 cells from
5–8 different fields for three independent experiments. ** p < 0.01. (C) Representative western blot
demonstrating reduced CTTN expression in lung EC after siRNA transfection.

3.5. CSC Induces Apoptosis in Lung EC

Pulmonary EC plays an important role in maintaining vascular homeostasis, while CS
exposure causes cellular injury and leads to lung tissue damage over time. Previous studies
have demonstrated that CS induces apoptosis in endothelium in vitro [4,5]. Consistent with
these reports, here we demonstrate that CSC exposure (24 h) significantly increases apopto-
sis in human lung EC as assessed by two complementary indices: 1) western blot levels of
PARP cleavage, which is an apoptotic marker; and 2) the percentage of annexin-V/7-AAD
double-positive cells (late apoptotic) as determined by flow cytometry [24]. Our data
demonstrate that CSC induces ~1.8-fold increase in cleaved PARP1 expression (Figure 5A),
and a ~1.9-fold increase in the percentage of apoptotic cells (Figure 5B) compared to control.
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Figure 5. CSC induces apoptosis in lung EC. HPAECs were treated with CSC (40 µg/mL) for 24 h.
Apoptosis was assessed by cleavage of apoptotic marker PARP1 and by flow cytometry of Annexin-
V/7-AAD double-positive cells (% late apoptotic cells) (A) protein expression of cleaved PARP1 in cell
lysates upon CSC challenge. Shown is a representative blot from three independent experiments and
the quantification of cleaved PARP1 by densitometry. Data were normalized to β-actin. (B) HPAECs
challenged with CSC were analyzed by flow cytometry for apoptosis. Shown are representative
dot plots of cells stained with Annexin V and 7-AAD (left) and bar graphs depicting normalized
percentages of late apoptotic cells under each condition (right). ** p < 0.01.

3.6. CTTN Expression Regulates CSC-Induced Apoptosis in Lung EC

CTTN regulates endothelial permeability and other aspects of EC function [36], with
some prior reports also suggesting a role for CTTN in apoptosis [37]. However, no prior
studies have explored a potential role for CTTN in mediating EC apoptosis induced by CS.
Here we explored how CTTN expression affects lung EC apoptosis at baseline and after CSC
exposure. As assessed by flow cytometry, apoptosis is increased both at baseline (~1.5 fold)
and after CSC (~1.9 fold) in CTTN-silenced EC compared to control siRNA-exposed cells
(Figure 6A,B). These results suggest a protective role of cortactin in minimizing apoptosis
in lung EC.
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Figure 6. CTTN expression regulates CSC-induced apoptosis in lung EC. HPAECs were transfected with siRNA (control or
CTTN) before CSC challenge (40 µg/mL, 24 h). Apoptosis was assessed by flow cytometry. (A) Shown are representative
dot plots of cells stained with Annexin V and 7-AAD, and (B) Bar graphs represent the percentage of double-positive cells
(late apoptosis) pooled from 4 independent experiments. * p < 0.05, ** p < 0.01, # p = 0.053.
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3.7. CTTN SH3 Domain Interactions Regulate CSC-Induced Apoptosis in Lung EC

In additional experiments, lung ECs were pretreated with CBP or control peptide
for 45 min, followed by CSC challenge for 24 h. Flow cytometry assessment of apopto-
sis demonstrated an increase in the percentage of apoptotic cells after CBP in the vehi-
cle and CSC-stimulated EC compared to control peptide (Figure 7A,B), suggesting that
SH3-mediated interactions of CTTN are functionally involved in lung EC apoptosis.
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3.8. CTTN Expression Regulates E-Cigarette-Induced Apoptosis in Lung EC

Based on recent in vitro and in vivo studies, e-cigarettes also cause adverse effects in
cultured cells [38]. To evaluate the role of CTTN in e-cigarette-induced apoptosis, HPAEC
were treated with CTTN siRNA and then exposed to commercially available e-cigarette
extract for 24 h. Similar to CSC, e-cigarette exposure caused an increase in the percentage
annexin V/7-AAD double-positive cells, suggesting induction of apoptosis (Figure 8A,B).
In CTTN-silenced EC the percentage of apoptotic cells was significantly increased at
baseline and after e-cigarette exposure to ~1.5 and ~2.5 fold, respectively, compared to
control cells (Figure 8A,B).

3.9. CTTN SH3 Domain Interactions Regulate E-Cigarette-Induced Apoptosis in Lung EC

Inhibition of CTTN SH3 domain interactions after treating EC with CBP increased
the percentage of apoptotic cells by ~1.5-fold at baseline and by 2-fold after e-cigarette
stimulation (Figure 9A,B). Taken together, these data further support a role for CTTN
downstream signaling in regulating EC apoptosis induced by an e-cigarette.
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Figure 8. CTTN expression regulates e-cigarette-induced apoptosis in lung EC. HPAECs were transfected with siRNA
(control or CTTN) before e-cigarette (E-cig) challenge (50 µg/mL, 24 h). Apoptosis was assessed by flow cytometry.
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Figure 9. Blocking the SH3 domain of CTTN accentuates e-cigarette-induced apoptosis in lung EC. HPAECs were pre-treated
with peptide control or CTTN blocking peptide (CBP) for 45 min followed by e-cigarette (E-cig) challenge (50 µg/mL,
24 h). Apoptosis was assessed by flow cytometry (A) Shown are representative dot plots of cells stained with Annexin V
and 7-AAD and (B) Bar graphs represent the normalized percentage of double-positive cells (late apoptosis) pooled from
3 independent experiments. ** p < 0.01, # p = 0.06.

4. Discussion

The major risk factors associated with the development and progression of CS-induced
lung disease are the duration and magnitude of tobacco smoking, environmental exposures,
infections, and other genetic risk factors [39]. CS-induced lung damage causes airway
inflammation, which is characterized by functional and structural changes in the cells of the
respiratory system. CS has toxic effects on the extracellular matrix, pulmonary epithelium,
and lung endothelium, resulting in vascular inflammation, increased oxidative stress, and
altered cell homeostasis [40]. Adding to this prior literature, the major findings of our cur-
rent study are the following: (i) Gene expression of CTTN is reduced in human lung tissues
from smokers compared to nonsmokers; (ii) CSC caused actin cytoskeleton rearrangement
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in cultured human lung ECs; (iii) CSC and e-cigarette extract induce apoptosis in lung EC;
(iv) CSC induces mitochondrial ROS, while the reduction in CTTN expression by siRNA or
blocking of CTTN SH3 domain accentuated mitochondrial superoxide production; (v) Re-
duction in CTTN expression by siRNA or blocking of its SH3 domain enhanced apoptosis
induced by CSC or e-cigarettes in lung EC (Figure 10).
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Figure 10. Schema illustrating the mechanistic role of CTTN in mitoROS and lung endothelial apoptosis. CTTN contributes
to cigarette smoke-induced lung injury by causing rearrangement of actin and activating Src-mediated phosphorylation at
the major sites 421, 466, and 486. Cigarette smoke induces mitochondrial ROS production and lung endothelial apoptosis.
In vitro studies showed altering CTTN expression or blocking its SH3 interaction domain enhanced mitochondrial ROS
production and endothelial apoptosis. Here, we explore the undescribed mechanism of CTTN in mtROS induced apoptosis.

The novel focus on cortactin in this study is based upon several prior observations.
Chronic cigarette exposure may alter CTTN expression and/or function through multiple
effects. It is intriguing to speculate that these effects may include DNA methylation, which
is a critical epigenetic regulator of gene expression, and abnormalities in methylation status
contribute to human diseases [41,42]. A recent report identified the CTTN gene as one of
the most highly altered in terms of methylation status in smokers, suggesting a potential
role for CTTN in CS-induced pulmonary diseases [15]. DNA methylation status was not
addressed in our current study and remains a potential mechanism for further exploration.
Regarding other possible effects of CS, it is known to alter actin cytoskeletal dynamics in
human EC [43] and induce apoptosis [44–46]. These prior studies led us to hypothesize
that the key cytoskeletal protein, CTTN, plays a functional role in mediating CS-induced
cytoskeletal changes and apoptosis in lung EC.

Consistent with this hypothesis, in our current study, CTTN gene expression is de-
creased in the lungs of human smokers compared to non-smokers (Figure 1). Furthermore,
in the human lung, EC CSC induces cytoskeletal rearrangement, increases CTTN interac-
tion with F-actin, and stimulates CTTN tyrosine phosphorylation at the major regulatory
sites 421, 466, and 486 (Figures 2 and 3), further suggesting an important role for CTTN
in CS effects. In addition, CS is known to increase the production of ROS that leads to
exacerbated cellular injury [30]. CS-induced ROS production affects the morphology and
function of lung epithelium and endothelium, resulting in disruption of adherens junctions,
decreased Nrf2 activity, and reduced E-cadherin expression [47]. Mitochondria play a key
role in activating multiple signaling pathways and maintaining baseline ROS production,
while alteration in mitochondrial dynamics such as fission and fusion due to chronic ex-
posure of CSC causes an imbalance in the normal cellular functions of proliferation and
apoptosis [48]. Under some conditions, mitochondria associate with CTTN, suggesting
a potential role in the assembly of F-actin during apoptosis induced by mitochondrial
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fission [49]. Therefore, we examined mitochondrial dysfunction by exploring the role of
mitoROS in the context of CSC-induced lung dysfunction. In our study, CSC increases
oxidative stress in human lung EC, which is significantly exacerbated when CTTN levels
are reduced by siRNA (Figure 4), supporting a functional role for CTTN in modulating
oxidative stress in these cells.

As noted above, the carboxy-terminal SH3 domain of CTTN mediates protein-protein
interactions and regulates various cellular processes [33,35,50]. Blocking interactions at this
SH3 domain increases mitoROS production at baseline and after CSC (Figure 4), suggesting
a novel role for interactions at the CTTN SH3 domain in regulating CS-induced mitochon-
drial oxidative stress [28,29,48]. Several CTTN SH3 binding partners are associated with
the regulation of the apoptotic pathway and could participate in mediating this effect.
These include SHANK2, Arp2/3, and Dynamin 2 [51–53]. Another important cytoskeletal
binding partner for CTTN at its SH3 domain is nmMLCK [23,35]. nmMLCK dysregulation
causes caspase-dependent pulmonary EC apoptosis upon TNF-α stimulation [54]. Like
nmMLCK [54], CTTN contains two clusters of caspase cleavage sites, defining CTTN as a
substrate of caspase 3 [37]. The SH3 domain of CTTN was degraded in a caspase-dependent
manner, dissociating actin binding and SH3 domain thereby affecting cell signaling during
apoptosis [37]. These authors further identified the presence of a caspase 3 cleavage site
in the actin-binding domain of CTTN and reported that CTTN degradation is associated
with executionary apoptotic caspase during influenza infection [55,56]. In gastric cancer
cells, overexpressing CTTN resulted in an increased percentage of apoptosis, increased
pro-apoptotic marker Bax, and decreased anti-apoptotic marker Bcl-2 [57]. In contrast,
our data demonstrate that reduction in CTTN expression or inhibition of its SH3 domain
increases apoptosis in human lung EC at baseline and in response to CSC or e-cigarettes
(Figures 6–9). Differences in cell type, pathophysiologic state (e.g., cancer versus CSC expo-
sure), or other experimental factors between these studies may account for this apparent
discrepancy regarding the effect of CTTN expression level and apoptosis rates. Given these
observations, it is interesting to speculate that CTTN may function to modulate the level of
apoptosis either up or down depending on cellular status. Additional work is needed to
explore this hypothesis.

A complex mixture of chemicals in CS contributes to the development of COPD,
which is characterized by the destruction of the endothelium, epithelium, connective
tissue, and alveoli. Nicotine is a major component present in cigarettes and e-cigarettes
which leads to ROS production and mediates apoptosis [58–61]. Other active components
reportedly involved in CS-induced ROS production and apoptosis are formaldehyde,
benzene, and isoprene [46,62], while the active components of e-cigarette involved in
pulmonary dysfunction include propylene glycol and glycerin [63,64]. Additional work is
needed to explore the effect of other active components of cigarette smoke and e-cigarette
in lung endothelial apoptosis.

Because cigarette smoking causes the majority of COPD morbidity and mortality,
while quitting smoking and the use of alternate strategies lower risk and increase life
expectancy [65], some health care experts have advocated for e-cigarettes as a safer
alternative [66,67]. However, inhalation of nicotine-containing e-cigarettes leads to an
increase in cytokine levels, protease expression, and airway enlargement, similar to the
pathophysiologic effects of CS [60,68,69]. A study in human pluripotent stem cells derived
from EC showed that nicotine-containing e-cigarettes increase mucin production, decrease
cell viability, induce oxidative stress, increase caspase 3/7 activity, and impair migration,
demonstrating that e-cigarettes lead to lung EC dysfunction [70,71]. In human microvascu-
lar EC, e-cigarettes induced lung inflammation and oxidative stress, thereby causing a loss
in endothelial permeability associated with phosphorylation of MLC and Rho kinase [70].
Both e-cigarettes and CSC induce ROS, DNA damage, and vascular apoptosis, while
the antioxidant N-acetyl cysteine prevented e-cigarette/CSC-induced cell death [21,68].
E-cigarettes induce a caspase-mediated apoptotic pathway in human epithelial cells [72].
In our current study, reduction in CTTN expression via siRNA or blockage of its SH3 do-
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main resulted in an increase in the percentage of apoptotic cells after e-cigarette exposure
(Figures 8 and 9), similar to observations made with CSC (Figures 6 and 7). These data
provide novel mechanistic insights and add to the growing body of literature concerning
the potentially harmful effects of e-cigarette exposure on lung EC.

There are some limitations in the present study. First, we analyzed CTTN expression
in only a small number of human lung tissue samples, and these initial observations will
need to be confirmed with additional patient samples in the future. However, these data
are consistent with a recent study demonstrating that the CTTN gene is one of the most
highly methylated in cigarette smokers, suggesting that CTTN pulmonary expression may
be downregulated in smokers [15]. Further confirmatory expression studies in a larger
patient cohort and assessment of CTTN DNA methylation status are needed. Second, our
observations regarding a novel role for CTTN in regulating CSC/e-cigarette-induced apop-
tosis in lung ECs will require further exploration in vivo to determine pathophysiological
relevance in whole organisms. Third, commercially available e-cigarette liquid was used
for our study, and future studies should focus on vaporing e-liquid to better mimic the
real-life exposure scenario. Fourth, important functional heterogeneity can occur among
endothelial cells located in different vascular beds, and our present study characterizes
responses only in macrovascular lung EC (HPAECs). However, we have observed similar
qualitative responses to CSC in some preliminary experiments with microvascular cells
(HLMVECs), which will be further characterized in future work. Fifth, additional gain-of-
function studies will be useful to confirm the potential of CTTN expression to attenuate
CSC-induced apoptosis and help determine the additional mechanism(s) by which CTTN
regulates lung EC apoptosis pathways in response to CSC/e-cigarettes.

5. Conclusions

In summary, here we demonstrate that CS alters the cytoskeletal structure and CTTN
tyrosine phosphorylation in lung EC, increases mitoROS, and induces apoptosis. Reduction
in CTTN expression, or inhibition of its interactions with other proteins via its SH3 domain,
exacerbates CS-induced mitochondrial ROS and apoptosis in lung EC. Our results suggest
that this series of events occur in chronological order after CSC exposure. Upon exposure
to CSC, rapid phosphorylation of CTTN occurs within minutes in lung EC, followed by
cytoskeletal rearrangements and associated ROS production, and then finally induction of
apoptosis as a downstream functional effect. These data reveal a previously undescribed
important role for CTTN in regulating lung endothelial functions in response to CS and
suggest CTTN as a potential new mediator in vascular dysfunction underlying COPD.
Therefore, modulating CTTN activity during CSC-induced lung endothelial apoptosis may
have important functional effects during the key step in the pathogenesis of COPD and
other smoking-related pulmonary disorders.
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