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ABSTRACT

Combining alignment-free methods for phylogenetic
analysis with multi-regional sampling using next-
generation sequencing can provide an assessment
of intra-patient tumour heterogeneity. From multi-
regional sampling divergent branching, we validated
two different lesions within a patient’s prostate.
Where multi-regional sampling has not been used,
a single sample from one of these areas could mis-
guide as to which drugs or therapies would best ben-
efit this patient, due to the fact these tumours ap-
pear to be genetically different. This application has
the power to render, in a fraction of the time used
by other approaches, intra-patient heterogeneity and
decipher aberrant biomarkers. Another alignment-
free method for calling single-nucleotide variants
from raw next-generation sequencing samples has
determined possible variants and genomic locations
that may be able to characterize the differences be-
tween the two main branching patterns. Alignment-
free approaches have been applied to relevant clin-
ical multi-regional samples and may be considered
as a valuable option for comparing and determining
heterogeneity to help deliver personalized medicine
through more robust efforts in identifying targetable
pathways and therapeutic strategies. Our study high-
lights the application these tools could have on
patient-aligned treatment indications.

INTRODUCTION

Tumour heterogeneity and its complexity can now be ex-
plored in more detail, thanks to advances in technology
within genomics and sequencing (1). Key functional genetic
roles in the progression of prostate cancer can be highly af-
fected by interfocal heterogeneity, where mutational hetero-
geneity can be high across different sites within the same
patient (2). Such tumours that display heterogeneous traits
impede, and ultimately fail, in our capabilities to deliver
treatment options for optimal clinical care. Studies using ex-
ome (3,4) and multi-region sequencing on multiple different
types of cancers have revealed intra-tumour heterogeneity
within each (3–11). Examples of this include human clear
cell renal cell carcinomas’ spatial heterogeneity, where two-
thirds of non-synonymous somatic mutations across differ-
ent regions could not be seen in all biopsies (12). Spatial
variations within patient samples could hinder delivering
personalized medicine or developing biomarkers in the fu-
ture. Treatment decisions for metastatic disease are often in-
fluenced by information from the original primary tumour,
which again highlights the need to overcome the issues that
heterogeneity presents.

Other scenarios where tumours are genetically distinct
would rely on the need for multi-regional sampling over
biopsies. The reconstruction of phylogenetic trees can be
achieved through the inclusion of the tumours’ full mu-
tational landscape that can begin to unravel explanations
of treatment resistance, relapse and metastatic disease (13).
Popular techniques for comparative sequence analysis and
phylogenetic tree reconstruction tend to follow alignment-
based methods (14,15). These methods are focused towards
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purpose-built programs that can take sequencing reads
from sequencing technologies and align them towards al-
ready pre-defined reference genomes to determine which
are part of the target genome (16). Alignment-based tech-
niques provide accurate results when a study can be re-
liably and well aligned to its reference genome; however,
drawbacks include diverging sequence or unreliable align-
ment where vital information may be lost (17). Other is-
sues include tools that lack speed and may not be appro-
priate for some computer systems or large next-generation
sequencing (NGS) studies. Most NGS data are commonly
used with short read sequencers, presenting issues in the
alignment process. Sequence comparison without the use of
alignment methods has the potential to overcome these is-
sues. Alignment-free techniques, in which shared properties
of sub-sequences or k-mers are extracted to determine dis-
tance matrices, have previously been used in phylogenetic
studies (18). Alignment-free analysis has been used across
different areas, highlighting its strength within NGS analy-
sis that can be seen across various studies (19).

Alignment-free methods with phylogenetic analysis have
shown promising results in the assessment of spatiotem-
poral heterogeneity in NGS cancer datasets (20). The
NUQA (NGS tool for Unsupervised analysis of fastQ us-
ing Alignment-free) tool can produce different phyloge-
netic trees from the same patient data when compared to
alignment-based approaches, potentially highlighting key
sequence that may have been missed in alignment meth-
ods that are influencing the mutational landscape of these
tumours. To complement this, other alignment-free tech-
niques can count the number of unique k-mers in raw se-
quencing to infer genotypes of known variants (21). FastGT
identifies variants with speed on basic computer systems.

In this study, we aim to utilize multi-regional sampling
from prostate cancer patients following prostatectomy,
where their associated whole exome sequencing (WES) pro-
files were captured (22). From here, we will apply their raw
sequencing reads for alignment-free phylogenetic analysis
from NUQA to compare intra-tumour heterogeneity, as
well as calling variants from FastGT to highlight their loca-
tions in order to determine why intra-tumour heterogene-
ity could potentially be seen for any of these patients. By
visualizing these locations using the Integrative Genomics
Viewer (IGV) (23) through aligning these FASTQ files with
the Burrows–Wheeler Aligner (24), we can demonstrate ev-
idence as differential read build-up using analysis from R
Studio. This could potentially allow for the application of
alignment-free techniques to translate towards use within
clinical practice in the future due to its much faster pro-
cesses to complete analysis and its highlighted abilities over
traditional approaches.

MATERIALS AND METHODS

Details of all the relevant sample collection and sequencing
procedures for the prostate cancer patient multi-regional
sampling study can be found in the original manuscript (22).
Regarding those most relevant to this study, six prostate
cancer patients had their whole genetic profile captured
from their whole prostate glands resulting in 43 prostate
cores taken in total, 22 of these being tumour samples and

21 of these being tumour adjacent samples. Five of these
patients also had their circulating free and germline DNA
assessed from their blood, which we used as a control nor-
mal core for these patients. All raw FASTQ WES samples
corresponding to each patient multi-regional sampling core
were quality controlled, pre-processed and analysed using
the same pipeline. FastQC was used to perform QC on the
raw sequence to highlight any potential issues with the data
quality. MultiQC created single reports for all the patient
cores to better visualize and compare FastQC outputs (25).
Trimmomatic ensured the best quality raw sequence input
to allow NUQA to produce the most reliable and relevant
phylogenetic trees (26). Default paired-end parameters were
used when using Trimmomatic: removing Illumina TruSeq3
paired-end adapters, reads below 36 bases long and reads
with a phred score below 33 to retain only the high-quality
score reads. Clumpify from BBMap was used for deduplica-
tion of possible duplicated reads to again allow for the best
quality input for NUQA. Again, default paired-end param-
eters were used to remove normal optical duplicates from Il-
lumina sequencers. All the samples for each core were then
merged to create a single FASTQ file for each core. FastQC
and MultiQC were again applied for QC following the pre-
processing pipeline to validate the removal of any potential
issues. Each of the core’s FASTQ files were decompressed
and used as an input for NUQA to create a tree of cores for
each patient. NUQA’s input parameters used default k-mer
length 21 and the Jensen–Shannon divergence distance met-
ric. The shell script generated to perform our pre-processing
and analysis pipeline on the raw FASTQ files can be seen
in Supplementary Data S1. The resulting NUQA output in
Newick tree format is used as input for the Interactive Tree
Of Life (iTOL) for visualizing the phylogenetic tree analysis
(27).

For patient case 1, eight cores were taken in total, as well
as their associated circulating free and germline DNA as-
sessed from their blood as a control normal core. Four of
these cores were tumour samples, and the remaining four
were tumour adjacent samples. For this patient’s cores, the
FASTQ files were also used as input for FastGT to call pos-
sible variants on each of these cores using alignment-free
methods. We used the exome k-mer database as our input
was WES and followed the standard genotyping procedure
to count matching k-mers and call their genotype for each
possible variant on the database. Using RStudio, we loaded
each FastGT calls’ output file corresponding to each of pa-
tient case 1’s multi-regional cores into our session and took
reference and alternative allele calls to build data frames for
each core. From here, we applied variance filtering to keep
the top 20% most variant calls across all the cores, using
the varFilter function in the genefilter Bioconductor pack-
age (28). Scaling of the data frames was performed as a
method of normalization among the call counts. Branching
groups seen from the phylogenetic tree analysis were cre-
ated, such as the top and bottom branching groups seen
from patient case 1, to allow for t-tests to be performed
among these groups for the variant alleles that had been
called to determine those that were statistically significant
(those with a two-sided P-value of ≤0.05) against these
groups. The biomaRt Bioconductor package allowed for
these variants to be annotated to their corresponding genes
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Figure 1. Multi-regional sampling WES to asses intra-patient heterogeneity with NUQA. (A) Patient case 1’s coloured cores in their haematoxylin and
eosin whole-mount sections [adapted from (22)], as well as their associated axial T2-weighted image and apparent diffusion coefficient maps that align with
the phylogenetic tree from NUQA. The patient’s magnetic resonance imaging (MRI) scans show visible tumour sites on both sides of the prostate, indicated
by red arrows as annotations. (B) Phylogenetic tree from NUQA that adheres to branch lengths of the tree to show the calculated distance between samples,
and the tree produced when these branch lengths are ignored to highlight their ordering and clustering (C).

and those without a gene annotation were removed from the
data frames (29). For genes with multiple variant results for
the given gene, the mean of the variants with annotation
duplicates was taken for each core sample to create an aver-
aged single representation of the gene. Hierarchical cluster-
ing heat maps were created using the pheatmap R package
where the variant call counts were standardized through the
mean of counts for each variant against the standard devia-
tion of counts for each variant. The RColorBrewer R pack-
age was used to help create the colour palette for visualizing
the heat map. These statistically significant calls were finally
grouped as a data frame to make comparisons as to how
each variant call was made for each given genomic location
or single-nucleotide variant (SNV) position for each core in
patient case 1. This would allow us to identify interesting
locations that had different genotype calls among different
cores.

RESULTS

Phylogenetic analysis with NUQA

The NUQA analysis on patient case 1 displayed a tree
depicting a divergent pattern. Areas within the prostate,
from which the samples were taken (Figure 1A), associate
strongly with patient case 1’s phylogenetic tree (Figure 1B

and C). The right-hand side of the prostate sample (left-
hand side of the image) was defined as having one distinct
tumour lesion where tumour cores 1 and 2 and tumour ad-
jacent cores 3 and 4 have been punch biopsied. The left-
hand side of the prostate sample (right-hand side of the im-
age) was also defined as having one distinct tumour lesion
where tumour cores 5 and 6 and tumour adjacent cores 7
and 8 have been punch biopsied. Tumour cores are punch
biopsies from within the tumour lesion, whereas tumour ad-
jacent cores are punch biopsies outside of the tumour le-
sion. The two branching patterns, stemming from the con-
trol blood WES sample, map strongly to the sampling loca-
tions and, more subtlety, indicate whether samples were tu-
mour or tumour adjacent. The top branch of NUQA’s phy-
logenetic tree maps with the four punch biopsies seen on
the right-hand side of the prostate (left-hand side of the im-
age), whereas the bottom branch maps with the four punch
biopsies seen on the opposite side of the prostate.

Variant calling with FastGT

Using this evidence to employ FastGT for patient case 1,
we can identify variant calls against the two main branches
seen due to the differential build-up of k-mers (Figure 2).
FastGT’s output included a median value of 26 for all the
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Figure 2. Heat map of variant calls from patient case 1’s cores using FastGT. The heat map’s dendrogram shows the two main branching patterns from
NUQA’s phylogenetic tree, as well as the two tumour and tumour adjacent samples being more related to each other for each of the branches. Gene
annotations associated with each of the variant calls in the heat map, in order from top to bottom, can be found in Supplementary Tables S3 and S4. High
expression changes are shown in red, low expression changes are shown in blue and little expression changes are shown in yellow.

calls on these different k-mer genomic locations, as well as
a median value of 33 for all the calls on the top divergent
branching pattern and a median value of 20 for all the calls
on the opposite divergent branching pattern. Variance fil-
tering resulted in retaining 141,760 SNVs with a median
value for all the calls increasing to 41, the median value for
all the calls on the top divergent branching pattern cores
increasing to 52 and the median value for all the calls on
the opposite divergent branching pattern cores increasing
to 29. Scaling the whole data set and filtering these k-mer
genomic locations using t-tests resulted in 7688 statistically
significant SNV positions. Multiple comparisons were not
made on these P-values due to the large amount of input
SNVs, which made retaining several statistically significant
SNVs difficult. This median value for the filtered data set
was 0.73, where the top branching pattern cores had a me-
dian value of 0.82 and the opposite branching pattern cores

had a median value of 0.62. The annotation of SNVs to their
associated genes further reduced the data set to 248 statisti-
cally significant genomic locations, with a further decreased
median value of 0.72 for the whole data set and decreased
median values of 0.81 and 0.61 for both the top and bottom
branching pattern cores, respectively. Averaging the values
of SNVs annotated to the same gene produced a final 183
gene annotations representing the 248 statistically signifi-
cant genomic locations. The median value increased to 0.72
for the final data set, while also increasing the median val-
ues for the top and bottom branching pattern cores to 0.84
and 0.62, respectively.

The vast majority of statistically significant genomic lo-
cations had reference genotype calls as genotype AA across
all of the eight cores, with the exception that there were
calls across the cores that failed to determine the correct
genotype for the given genomic location and thus regis-
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Figure 3. IGV visualization of area around CDAN1 for patient case 1. Zoomed-in visualization for the genomic location where SNV rs12917189 is found
showing tumour adjacent core 4 (top track) and tumour adjacent core 7 (bottom track).

tered as a non-call, as well as three locations that had cores
that had alternative genotype calls within them. These three
locations were within the area around SNVs rs12917189,
rs60000174 and rs6179. These SNVs were related to the
genes CDAN1, APOL4 and GHR, respectively. All cores
across APOL4 had both a reference and an alternative allele
call as genotype AB, whereas all cores across GHR had al-
ternative allele calls as genotype BB. One interesting statisti-
cally significant candidate was rs12917189, associated with
CDAN1. This would be ranked according to where there is a
significant difference in the number of k-mers in one branch
in comparison with the other for the same variant call, re-
alizing that one core sample did not call this variant where
the other cores had. This was selected as our target example
to validate with traditional alignment pipelines.

IGV for tumour adjacent core 4 that is seen in the top
branch was able to confirm differential abundances of in-
formation in this location when contrasted with that of tu-
mour adjacent core 7 that is seen in the bottom branch
(see Figure 1A for site number and Figure 3 for IGV). For
the genomic location of rs12917189, there were a total of
46 aligned reads for tumour adjacent core 4 in which 27
of these reads contained the alternative C calls and the re-

maining 19 of these reads contained the reference T call. In
comparison with tumour adjacent core 7 below, while some
reads contain the blue alternative C call, this only amounts
to 4 reads in total out of a total 25 aligned reads in this lo-
cation.

DISCUSSION

We used NUQA and highlighted its ability to assess pa-
tient heterogeneity in each case where prostate MRI show-
cased two geographically separate tumour masses. In com-
bination with FastGT, the difference in genotyping calls
for the highlighted tumour adjacent cores and the statisti-
cal significance of this SNV through our analysis have pro-
vided evidence that NUQA can detect genetically distinct
samples from within the same patient. This has proved a
unique opportunity to validate new approaches on modern
drives within clinical practice. It enables rapid assessment
of tumour heterogeneity and identification of key drivers
within samples in a shorter time frame than traditional ap-
proaches. In the future, this may improve treatment selec-
tion at diagnosis.
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We have applied NUQA towards six prostate cancer pa-
tients within the original multi-regional sampling study
(22). Here, we have focused on patient case 1 due to the com-
plexity within this patient’s resulting phylogenetic tree and
the interest around the two main divergent branching pat-
terns seen that align with the prostate sample locations. Re-
garding the other cases, one other patient also showed an
interesting phylogenetic tree mapping towards the locations
on the patient prostate, but only contained five cores, lim-
iting the assessment. This patient case can be seen in Sup-
plementary Figure S2. Out of the remaining four patients,
the trees produced were more typical of a singular evolv-
ing mass. All of the other five patient cases can be found
in Supplementary Figures S1–S5, with their associated dis-
cussion found in Supplementary Information S1–S6. Each
patient case’s clinical and pathological information is dis-
played in Supplementary Table S1. Additional information
for each tumour core in the patient cohort can be seen in
Supplementary Table S2. Intra- and inter-tumour hetero-
geneity remains a clinical challenge in prostate cancer for
diagnosis and treatment (30). When analysed for multifo-
cality across the cases in this study, inter-tumour hetero-
geneity can be observed in the majority of cases where there
was divergence between different tumour foci from the same
prostate. However, in some of the patients, including case 1,
both inter- and intra-tumour heterogeneity can be observed
where samples from the same patient tumour are exhibit-
ing some differences. This reflects the variability of prostate
cancer observed in the clinic.

We also used matched low-pass WGS for each of the cores
of the six patients. For these results, all the phylogenetic
trees produced by NUQA demonstrated no intra-patient tu-
mour heterogeneity for any of the cases, despite the WES
phylogenetic trees demonstrating otherwise. We believe the
phylogenetic trees were produced in this fashion due to the
very low coverage seen across the WGS (0.7× coverage), in
comparison to the high coverage seen across the WES (54×
and greater coverage).

Other potentially relevant SNVs may also exist from our
analysis that were not selected due these locations failing
to be annotated by their associated gene. Genes of interest
involved in prostate cancer were also selected and parsed
from the data frames as a separate analysis and visual-
ization to find variants calls associated with the disease
(22). The analysis and visualization of the genes of inter-
est followed the previous RStudio analysis pipeline that
has been described. In this analysis, we found that there
was little evidence of significant variant calls for SNVs as-
sociated with these genes across all the cores for patient
case 1.

In the precision medicine era, we will care for our pa-
tients over extended time periods utilizing multiple data
modalities. This digital ‘data lake’ should adopt tools that
can demonstrate new insights into an individual’s tumour
profile and ultimately start pointing towards mechanisms
of treatment resistance or alternative therapies. Alignment-
free applications represent such an opportunity and are
perfectly placed to harness applications within accelerative
computing, artificial intelligence and machine learning to
enable this reform.

DATA AVAILABILITY

NUQA is an open-source software that can be accessed
from the GitHub repository (https://github.com/ACRoddy/
NUQA/).

FastGT is an open-source software and its source code
is available in the GitHub repository (https://github.com/
bioinfo-ut/GenomeTester4/).

The prostate cancer multi-regional sampling WES cohort
was provided by the original data authors on request and
cited in (22).

RStudio is an open-source software that can be accessed
from their website (http://www.rstudio.com/).

FastQC is an open-source software that can be accessed
from their website (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/).

MultiQC is an open-source software that can be ac-
cessed from the GitHub repository (https://github.com/
ewels/MultiQC/).

Trimmomatic is an open-source analytical package that
be accessed from their website (http://www.usadellab.org/
cms/?page=trimmomatic).

BBMap is an open-source analytical package that can
be accessed from the SourceForge repository (https://
sourceforge.net/projects/bbmap/).

The iTOL is an online tool that can be accessed from their
website (https://itol.embl.de/).

Bioconductor is an R package that can be installed using
R.

genefilter is a Bioconductor R package that can be in-
stalled using R and Bioconductor.

biomaRt is a Bioconductor R package that can be in-
stalled using R and Bioconductor.

Pheatmap is an R package that can be installed using R.
RColorBrewer is an R package that can be installed using

R.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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