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Abstract
External morphology is commonly used to identify bats as well as to investigate flight and

foraging behavior, typically relying on simple length and area measures or ratios. However,

geometric morphometrics is increasingly used in the biological sciences to analyse variation

in shape and discriminate among species and populations. Here we compare the ability of

traditional versus geometric morphometric methods in discriminating between closely relat-

ed bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) –

based on morphology of the wing, body and tail. In addition to comparing morphometric

methods, we used geometric morphometrics to detect interspecies differences as shape

changes. Geometric morphometrics yielded improved species discrimination relative to tra-

ditional methods. The predicted shape for the variation along the between group principal

components revealed that the largest differences between species lay in the extent to which

the wing reaches in the direction of the head. This strong trend in interspecific shape varia-

tion is associated with size, which we interpret as an evolutionary allometry pattern.

Introduction
Studies relating bat wing morphology to flight characteristics date back to the beginning of the
20th century [1–4]. Lengths and areas of wings or their parts were typically measured to com-
pare wing morphology among species. Wing loading, the first ratio proposed, is still used for
size-independent species comparison [3]. In following decades, further ratios, such as aspect
ratio, tip length ratio, tip area ratio and the wingtip shape index were defined [5–7]. Many
studies of wing morphology were conducted using these ratios to compare interspecies mor-
phology [5,8–13]. The methods for obtaining raw morphometric variables (e.g. wing area or
arm wing area) to construct such ratios often varied among studies, making results difficult to
compare (see [5,7,10,11,14–16] for examples). Another problem was the way in which bats
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were measured. That is, early studies collected measurements on museum specimens [5,7],
while later ones relied on wing tracings from live bats [10,12,17,18]. Finally, in recent years,
photographs of bats with fully extended wings have been analysed with image programs
[19,20]. For a long time, differences in total wing area and shape in relation to flight and forag-
ing performance were emphasized and in most studies the tail was assumed to play a minor
role or was not measured independently. Typically, the tail area was included in measurements
of the wing area together with the body or parts of the body [5,8,10–13]. However, Schmieder
et al. [16], used two ratios to exclusively capture tail morphology and found differences be-
tween two similar species.

Since the 80s a new set of morphometric techniques has been established: geometric mor-
phometrics [21–23]. This set of techniques has gained enormous popularity and has been used
across a large number of taxa and questions (for a recent review see [22]). These methods have
become popular because they permit separation of the size and shape components of morpho-
metric variation. The resulting variables are not redundant and these approaches allow visuali-
zation of results in terms of shape changes while retaining the geometric properties of objects
throughout the analysis [24]. Moreover, geometric morphometrics allows quantifying changes
in the position of anatomical structures relative to one another, which sometimes are not cap-
tured by linear morphometric techniques. Contrasting this popularity in studies of other taxa,
geometric morphometrics has had limited use in studies of external morphology in bats (but
see [25,26]). In the present study, we quantitatively compared the ability of traditional and geo-
metric morphometric methods to discriminate among species of bats based on external mor-
phology. If geometric morphometrics proves to be better in capturing differences in bats’
external morphology, this method could be a helpful tool where traditional morphometrics is
limited (i.e. when traditional morphometrics cannot be used to discriminate among species or
when shape is itself of interest). We quantitatively compared the different methods by using
classification rates in discriminant analysis and we focused on bat species that are closely relat-
ed and known to be very similar in morphology. We, therefore, set out to analyse the differ-
ences in morphology of the five European horseshoe bat species (Rhinolophidae, Chiroptera).
These species sometimes overlap in size and they are very similar in morphology [5,13,27–29].
The smallest European horseshoe bat is Rhinolophus hipposideros Bechstein, 1800 and the larg-
est is Rhinolophus ferrumequinum Schreber, 1774. The other three species: Rhinolophus blasii
Peters, 1866, Rhinolophus euryale Blasius, 1853 and Rhinolophus mehelyi Matschie, 1901 are of
intermediate size and sometimes difficult to differentiate. European horseshoe bats do not only
overlap in size (especially the intermediate species). In fact, all five species are known to forage
in or close to vegetation [30–37] and belong to the same foraging guild—the flutter detecting
foragers [38]. In south-eastern Europe all five species occur sympatrically [34] and can partly
overlap in diet (e.g. moths [34,39–41]) and hunting strategies (foraging on the wing, foraging
from perches and foraging on the ground) [34,42,43]. The species choose similar summer
roosting places like caves (in the Mediterranean regions) or roof spaces and other parts within
buildings [30,34,36,37]. Although the phylogenetic relationships of this group are not fully re-
solved, all phylogenies published to date agree in considering R.mehelyi and R. euryale to be
closely-related [44–46]. R. hipposideros seems most distantly related to the other four horse-
shoe bat species and R. blasii is considered as a sister group of R. ferrumequinum [47].

Materials and Methods

Ethics Statement
Capture and handling of bats was in accordance with recommendations of the Canadian Coun-
cil on Animal Care on bats [48] and the EUROBATS Resolution [49] and was licensed by the
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responsible Bulgarian authorities (MOEWSofia and RIOSV-Ruse, field permit numbers 297/
09.03.2011, 465/29.06.2012, 554/20.01.2014). The mentioned field permits authorized us to
capture and measure (including taping of bats for making wing pictures) the studied species at
the differing capture sites (S1 Table). Officials from the Bulgarian Ministry of Environment
andWater (MOEW) inspected our work in accordance with Section 8, Article 23, Paragraph 3
and 4 of the Bulgarian Biodiversity Law. According to Bulgarian laws no further ethical ap-
proval by a committee is required for a non-invasive study. These procedures were not part of
a routine care or monitoring project. No bats were harmed. After the experiments all bats were
released in good health at their respective capture sites.

Animals
We caught bats in a harp trap (Faunatech, Victoria, Australia), mist nets (Ecotone, Sopot, Po-
land) or hand nets at the entrances of caves, in or near abandoned buildings in north-eastern,
central and southern Bulgaria (maximal distance between capture sites approx. 260 km, S1
Table) between May and September in 2011, 2012 and 2014. We identified the five European
horseshoe bat species using an identification key [50]. Only adult male bats with no wing inju-
ries were used for wing pictures. We analysed pictures of 6 Rhinolophus hipposideros, 7 Rhino-
lophus blasii, 22 Rhinolophus euryale, 20 Rhinolophus mehelyi and 21 Rhinolophus
ferrumequinum.

Wing pictures
Wing photographs were taken by fixing each individual with its ventral side held firmly against
the board of a copy stand (custom-made, Max-Planck Institute for Ornithology, Seewiesen,
Germany). The board of the copy stand was covered with graph paper and transparent self-ad-
hesive cover film pasted on top of it. The wings and tail membrane were carefully extended
(starting with the right wing, then the left wing and ending with the tail membrane) with the
largest possible stretching of the wing and tail membrane and fixed each time with transparent
adhesive tape (width 19 mm) to the board. For the standardization of wing position, we have
considered that the upper arm was at a 90° angle to the midline of the body. Before taking pic-
tures, we ensured that the wings and the tail were properly fixed and that no movement of the
fixated body parts was possible. In the rare cases where movement of fixated body parts oc-
curred, we readjusted and re-fixated the wing or tail before taking pictures. While fixating the
bat, the head was covered with a black cotton cloth to calm the animal down and to reduce at-
tempts of the bat to move. Each individual was fixed two times to reduce measurement error
due to fixation. For each fixation, we took several digital photos with a digital camera (12 mega-
pixel, DMC-TZ10, Panasonic, Ōsaka, Japan) mounted on the copy stand at a height of 47 cm.
The tape was then carefully removed without injury. From each of the 76 individuals, we chose
the three best pictures (one or two per fixation) which were then used in downstream tradition-
al and geometric morphometric analyses. A picture was chosen as best picture if there was no
blurriness in the picture, the wings were fixated symmetrically, the wing and tail membranes
were fully extended and the head was straight and pointed towards the plate.

Measurements
For traditional morphometrics, we measured the right wing, tail and body to obtain multiple
lengths (hand wing length, arm wing length, wing span) and areas (arm wing area, hand wing
area, tail area and wing area) (Fig 1), using an image processing program (Adobe Photoshop,
version 13.0.1, Adobe Systems, San Jose, USA). We also digitized 17 landmarks on the right
side of each specimen (Fig 2), using tpsDig [51]. From landmark coordinates, we obtained

Bat Species Comparisons Based on External Morphology

PLOS ONE | DOI:10.1371/journal.pone.0127043 May 12, 2015 3 / 13



using the program TMorphGen6 of the IMP package [52], linear distances between the land-
marks 1 and 7 (3rd digit), 7 and 9 (5th digit), 5 and 6 (first phalanx of 4th digit) as well as 4 and
5 (second phalanx of 4th digit). For reduction of measurement error in geometric morpho-
metrics, for each bat we subjectively determined and digitized the best two pictures of the best
fixation and the best picture of the other fixation. We quantified the measurement error pres-
ent in the dataset obtained with the above-mentioned experimental design using a Procrustes
ANOVA [53], which showed that measurement error was small relative to the variation among
individuals and among species (S2 Table). The resulting coordinates were then averaged—thus
further reducing measurement error [54–56]—for each bat after a generalized Procrustes anal-
ysis [57] in MorphoJ [58]. As a preliminary MANCOVA showed that the interaction between
species and centroid size was not significant, residuals of a pooled within-group regression of
shape on centroid size (accounting for 16.08% of total variance) were obtained to take into ac-
count intra-species allometry and these were used in subsequent analyses.

Comparison of morphometric methods in species discrimination
In this study we compared four morphometric methods for their ability in discriminating bat
species based on external morphology.

Fig 1. Length and area measurements taken for each analysed wing photograph. These measures were used for methods 1 and 2.

doi:10.1371/journal.pone.0127043.g001

Fig 2. Landmarks used to generate data for methods 3 and 4. All landmarks were used in the geometric morphometric approach (method 4). Arrows
show the linear distances that were taken for method 3.

doi:10.1371/journal.pone.0127043.g002

Bat Species Comparisons Based on External Morphology

PLOS ONE | DOI:10.1371/journal.pone.0127043 May 12, 2015 4 / 13



The first method involved ratios and other measures that are thought to be “size-indepen-
dent” (i.e. corrected for allometry): tip length ratio, tip area ratio, wing tip shape index, aspect
ratio and wing loading [5] (S3 Table). The second method includes measures from the first
method except that wing loading is replaced by relative wing loading (which is less dependent
on size) and that the tail-to-wing area ratio is added to the other variables [5,9,16]. In the third
method we followed Dietz and colleagues [27], using residuals of regression on forearm length
for each of the length measurements of digits 3 and 5 and also the first and second phalanges of
the fourth digit. These three methods represent the traditional morphometric methods most
commonly used to analyse external bat morphology of European horseshoe bats. In a fourth
and final method we employed geometric morphometrics using the set of landmarks defined
above. We used landmarks only on the right wings to maintain consistency with the other
methods and because preliminary analyses on a subset of the specimens showed a lower mea-
surement error due to fixation, as compared to a symmetric configuration of landmarks on
both sides of the bat.

To compare methods, we used the correct classification rate of discriminant analysis esti-
mated using a leave-one-out cross-validation procedure. We obtained discriminant analyses
and correct classification rates both for pairwise comparisons among species and using a single
discriminant analysis on all the species at the same time (canonical variate analysis). We ob-
tained discriminant functions and correct classification rates for the pairwise comparisons
among species using geometric morphometric data (method 4) in MorphoJ. All the other dis-
criminant functions and correct classification rates were computed in SPSS (Version 21.0, IBM
Corp. Armonk, NY). Given that linear discriminant analysis is known to have artefactually
high classification rates at increasing number of dimensions [59], for the geometric morpho-
metric dataset, we also performed discriminant analyses on, respectively, the first two, three,
ten, seventeen and twenty-five principal components. The first twenty-five principal compo-
nents were chosen performing in the R package nFactors [60] the Anderson's test [61], as sug-
gested by Mitteroecker and Bookstein [59] for dimensionality reduction prior to discriminant
analyses. The first two, three, ten and seventeen principal components were chosen arbitrarily
as lower numbers of principal components.

To test for the presence of a species signal in the raw geometric morphometric data prior to
allometric correction, we also performed discriminant analyses on the geometric morphomet-
ric dataset obtained from the measurement reduction procedure without subjecting it to the re-
gression-based removal of the allometric component.

Geometric morphometrics—testing and visualizing differences among
species
In addition to the comparison of different morphometric methods, we exploited the advantages
of geometric morphometrics by further analysing the geometric morphometric dataset and vi-
sualizing differences among species as shape changes. All the analyses were performed on the
right-side configurations described above. However, to visualize results we reflected the config-
urations of points obtained as results [62], thus producing more easily interpretable “bat-like”
symmetric displays.

To visualize patterns of variation among species, we used between-group principal compo-
nent analysis [63]. This method has been suggested to produce ordinations that are preferable
to the commonly used scatterplots of canonical variate scores [59] and is increasingly used in
geometric morphometric studies [64,65] as the ordinations do not exaggerate the extent of sep-
aration between groups. To better interpret variation along the first between-group principal
component (bwgPC1)—which was computed based on data after a pooled within-group
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regression on centroid size and is therefore already corrected for intra-specific allometry—in
terms of evolutionary allometry, we regressed bwgPC1 scores on centroid size. We tested for
pairwise differences in mean shape among species using the permutational procedure based on
Procrustes distances implemented in MorphoJ (10,000 permutations). Differences between
species were visualized through wireframe graphs of each species’mean shape relative to the
grand mean.

Results

Comparison of morphometric methods in species discrimination
There are clear differences in correct classification rates across the four methods (Table 1 and
S4 Table). The poorest classification rate was found for method 1 [5] which uses ratios related
to the wing, followed by method 2 [5,9,16] which uses ratios related to wing and tail and meth-
od 3 [27] which employs linear measurements on the wing. The latter two methods were rather
similar in correct classification rates. Method 4 (data obtained through geometric morpho-
metrics) achieved the greatest success as correct classification was achieved with 94.7% accura-
cy when comparing all the species (canonical variate analysis) and ranged between 84.6% and
100% in the pairwise comparison (Table 1). Consistent across-methods among-species differ-
ences in correct classification were found. For instance, R. hipposideros showed consistently
high correct classification rates in all methods. Correct classification was higher for geometric
morphometrics relative to traditional methods also when the geometric morphometric dataset
was subjected to dimensionality reduction (i.e. when discriminant analysis was performed on a
subset of principal components; S5 Table).

Discriminant analyses on the geometric morphometric dataset containing allometric varia-
tion produced lower correct classification rates when compared to the geometric morphomet-
ric dataset obtained after allometric correction. However, correct classification rates in the
former case were still higher than the ones obtained using a traditional morphometric dataset.

In fact, the cross-validated correct classification rate for the CVA on the geometric morphomet-
ric dataset containing allometric variation was 93.4% (the same percentage of correct classification
is obtained both using the full-dimensional space and using the first 25 principal components) and
on average 91.63% in pairwise comparisons (range 76.92–100%). This shows that bat species could
be discriminated with geometric morphometrics even in the presence of significant allometry.

Geometric morphometrics—testing and visualizing differences among
species
The first between-group principal component accounts for most (91.03%) of the shape varia-
tion in the dataset. The second principal component accounted for a mere 4.26% percent of

Table 1. Cross-validated correct classification rates using traditional and geometric morphometrics.

Discriminant analysis using all the species (canonical variate analysis) Discriminant analyses for
each pair of species

Data acquisition Method Overall
rate

R.
hipposideros

R.
blasii

R.
euryale

R.
mehelyi

R.
ferrumequinum

Average
rate

Range of
rates

Traditional
morphometrics

1 37.0 66.7 28.6 31.8 42.1 31.6 68.6 46.2–89.3

2 63.0 100 57.1 59.1 64.7 57.1 88.5 58.6–100

3 67.1 83.3 85.7 72.7 60.0 57.1 88.7 69.0–100

Geometric
morphometrics

4 94.7 100 100 86.4 95.0 100 95.3 84.6–100

Correct classification rates for each pairwise comparison are provided in S3 Table.

doi:10.1371/journal.pone.0127043.t001
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total variance. Interestingly, the different species show little overlap in the scatterplot of the
first two between-group principal components (bwgPC), and variation along bwgPC1 mirrors
inter-specific variation in body size as species with lower scores on bwgPC1 are larger (Fig 3).
This is confirmed by the regression of bwgPC1 scores (which are already corrected for intra-
specific allometry) on centroid size, which is significant (p<0.0001) and accounts for 83% of
the variation in bwgPC1 scores. Predicted shape for the variation along bwgPC1 (Fig 3) re-
vealed that the largest differences between species lay in the extent to which the wing reaches
in the direction of the head. Not much variation among species was present along bwgPC2,
with the only exception that R. blasii has, on average, lower scores along this axis. Considering
the low amount of variance explained by bwgPC2 and the fact that it is constructed, by defini-
tion, to be orthogonal to bwgPC1, differences along this direction are difficult to interpret and,
possibly, of little biological significance. R.mehelyi and R. euryale showed the largest level of
overlap in the scatterplot.

Permutation tests of difference in average shape were significant across all pairwise compar-
isons (Table 2). The lowest Procrustes distance was found between R.mehelyi and R. euryale,
as suggested by their close position in the scatterplot of the scores on the first two between-
group principal components.

Fig 3. Between-group principal component analysis and average species shapes. Scatterplot of the scores along the first two between-group principal
components. Overlaid, predicted shape changes along the first between-group principal component and average shape of each species. Points in the
scatterplot are color-coded as the average shapes. In the plots of average species shape, the grand average shape is depicted in grey.

doi:10.1371/journal.pone.0127043.g003

Table 2. Pairwise Procrustes distances among horseshoe bat species (above the diagonal) and p-values for the null hypothesis of equal means
(below the diagonal).

R. hipposideros R. blasii R. euryale R. mehelyi R. ferrumequinum

R. hipposideros - 0.0656 0.0889 0.1278 0.2005

R. blasii 0.0003 - 0.0439 0.0760 0.1472

R. euryale <.0001 <.0001 - 0.0418 0.1180

R. mehelyi <.0001 <.0001 <.0001 - 0.0807

R. ferrumequinum <.0001 <.0001 <.0001 <.0001 -

doi:10.1371/journal.pone.0127043.t002
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A narrative description of the differences of each species average shape relative to the overall
average shape is provided in Table 3 and documents extensive variation in arm-wing, hand-
wing, body and tail regions.

Discussion
We compared the ability of four multivariate approaches to discriminate between morphologi-
cally similar, closely related species of European horseshoe bats. Landmark-based geometric
morphometrics performed best at species discrimination—as measured by its highest levels of
correct classification in discriminant analysis. This is not surprising since geometric morpho-
metrics has long been suggested as particularly useful in detecting even relatively small, local-
ized changes in shape [26], making this approach particularly useful in intraspecific studies
[66]. Our results suggest that geometric morphometric analyses are as useful in bats as in
other groups.

This approach is not practical for rapid species identification in the field. However, it can be
used to find anatomical regions where linear measures for species identification in the field
should be taken, e.g. for other bat species where no field identification keys exist. Perhaps most
importantly, when external morphology and species discrimination are themselves of interest
geometric morphometric methods may be especially helpful.

Using geometric morphometrics, we found interspecific differences in horseshoe bats that
were not detected by previously used methods. What is more interesting is that we were able to
identify strong trends in interspecific shape variation associated with size. In fact, by taking
into account allometric variation using a pooled within-group regression, we removed intra-
specific allometric variation but not interspecific size-associated shape changes. We, therefore,
conclude that the clear trend observed along the first between-group principal component—
which accounts for a very high proportion of total variance—can be interpreted as a pattern of
evolutionary allometry. Allometry in bats already has been described for various traits (e.g.
[67–71]). The comparison of the elongated fingers of bats compared to other mammals may be
the most famous example of allometry in regard to morphology [72]. However, to our

Table 3. Overview of species differences found with geometric morphometrics.

Species Overall
comparison to
average shape

Handwing region Armwing region Body Tail

R. hipposideros wing reaches
farther in cranial
direction

LM 1 and 4 are farther apart
resulting in LM 1 being shifted
more in cranial direction handwing
slightly longer

armwing between LM 13 and 9
enlarged, between LM 8 and 9
broader

shoulder region
broader

enlarged tail area
and tail longer

R. blasii wing reaches
farther in cranial
direction

handwing slightly longer armwing between LM 13 and 9
enlarged, Propatagium slightly
enlarged, between LM 8 and 9
broader

body longer shorter tail,
enlarged (lateral
direction) tail area

R. euryale very similar to
average shape

normal normal normal smaller tail area

R. mehelyi wing reaches less
far in cranial
direction

normal armwing between LM13 and 9
shorter

normal smaller tail area

R.
ferrumequinum

wing reaches less
far in cranial
direction

handwing between LM 9 and 4
and between 4 and 1 shorter

armwing between LM 13 and 9
shorter, between LM 12 and 8
slightly longer

slightly shorter,
in shoulder
region broader

slightly longer tail

doi:10.1371/journal.pone.0127043.t003
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knowledge, this is the first study to describe evolutionary allometry of external wing morpholo-
gy in a detailed way and across a group of closely-related bat species.

When considering the functional implication of the shape variation we documented in
horseshoe bats, we speculate that a wing reaching farther toward the head—i.e. moving in the
positive direction of bwgPC1 (Fig 3)—might be advantageous for flight in dense vegetation. In-
cidents when bats touch obstacles while wings are positioned in front (ahead of the body cen-
tre) might be easier to cope with and therefore less risky. Furthermore it may be easier for bats
to evaluate their ability to fly through a specifically narrow spot as well as increasing their man-
oeuvrability. Especially R. hipposideros and R. euryale—which have wings reaching farther to-
wards the head—forage regularly in dense vegetation [30,33–35,73,74]. The foraging behaviour
of R. blasii is less studied, but it is known to forage close to shrubs and hedges [34]. In contrast,
the larger species R.mehelyi and R. ferrumequinum are at the negative extreme of our bwgPC1
(Fig 3 and Table 3) and these species spend more time in less-cluttered habitat foraging above
or along vegetation (e.g. pastures, hedges or arable land) [28,34,37]. Furthermore, both species
frequently hunt from perches (flycatcher style) [29,34]. We assume that, for this foraging be-
haviour, wings reaching less far toward the head should be energetically more efficient during
flight. These assumptions should be tested in a biomechanics experiment since bats flight per-
formance cannot be predicted from wing shape alone [71,75]. We cannot determine to which
extent the foraging performance of the studied bat species in different environments might be
influenced by wing shape alone as opposed to body size as we have shown that these co-vary
across species. Former studies, however, have reported that smaller species have better flight
performance close to or within cluttered environments [8,14,16,76].

An interesting possibility to test in the future is that our results may describe a more general
phenomenon, i.e. bats foraging in dense vegetation have wings reaching farther towards the
head compared to bats foraging in edge or open space. Norberg [69] reported that the wings of
some bat species show strong convergence with some bird wings, e.g. Mollosid bats have wings
similar to the ones of swifts and swallows. Geometric morphometrics is scarcely used to study
wing morphology also in birds (but see [77]). It is, therefore, possible that future geometric
morphometric studies on birds will allow further (and more precise) tests of the parallelism
across taxa of the relationship between wing shape and its functional significance.

Supporting Information
S1 Table. Locality and method of capture for all individuals used in this study.
(PDF)

S2 Table. Procrustes ANOVA on repeated mesures of shape in the geometric morphomet-
ric dataset. SS = sum of squares; MS = mean squares; df = degrees of freedom.
(PDF)

S3 Table. List of all traditional morphometric variables used for the discriminant analysis
and description of how the measures were taken and what general functional importance
they have for flight performance.
(PDF)

S4 Table. Cross-validated correct classification rates for each pairwise species comparison
across different morphometric methods. Rates are expressed as percentages. Species abbrevi-
ations as follows: Rhip = R. hipposideros, Rbla = R. blasii, Reur = R. euryale, Rmeh = R.mehelyi,
Rfer = R. ferrumequinum.
(PDF)
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S5 Table. Correct cross-validated classification rates (CV rate) for the geometric morpho-
metric dataset after dimensionality reduction when performing discriminant analysis on
multiple groups (canonical variate analysis = CVA) and in pairwise comparison. Species ab-
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mehelyi, Rfer = R. ferrumequinum.
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