

open 👌 access

Crystal structure of (S)-2-amino-2methylsuccinic acid

Isao Fujii

School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan. *Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

Received 3 September 2015; accepted 7 September 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, $C_5H_9NO_4$, crystallized as a zwitterion. There is an intramolecular $N-H\cdots O$ hydrogen bond involving the *trans*-succinic acid and the ammonium group, forming an S(6) ring motif. In the crystal, molecules are linked by $O-H\cdots O$ hydrogen bonds, forming C(7) chains along the *c*-axis direction. The chains are linked by $N-H\cdots O$ and C- $H\cdots O$ hydrogen bonds, forming sheets parallel to the *bc* plane. Further $N-H\cdots O$ hydrogen bonds link the sheets to form a three-dimensional framework.

Keywords: crystal structure; succinic acid; zwitterion; hydrogen bonding; three-dimensional framework.

CCDC reference: 1422827

1. Related literature

For general background and biological properties of 2-methylaspartic acid (MeASP), see: Pfeiffer & Heinrich (1936); Delbaere *et al.* (1989); Nobe *et al.* (1998). For the absolute configuration and synthesis of the title compound, see: Terashima *et al.* (1966). For the crystal structure of related racemic compounds, see: Derricott *et al.* (1979); Brewer *et al.* (2013). For the crystal structure of DL-ASP, see: Flaig *et al.* (1998).

 $V = 648.09 (14) \text{ Å}^3$

Cu Ka radiation

 $0.4 \times 0.2 \times 0.2$ mm

700 independent reflections

intensity decay: none

699 reflections with $I > 2\sigma(I)$

3 standard reflections every 300

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.14 \text{ mm}^{-1}$

T = 297 K

 $R_{\rm int} = 0.019$

reflections

refinement $\Delta \rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Z = 4

2. Experimental

2.1. Crystal data

$C_5H_9NO_4$

 $M_r = 147.13$ Monoclinic, C2 a = 8.3398 (12) Å b = 9.6725 (10) Å c = 8.0671 (10) Å $\beta = 95.175$ (5)°

2.2. Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.76, T_{\max} = 0.81$
843 measured reflections

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.27700 reflections 109 parameters 2 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N1-H7···O4	0.79 (4)	2.23 (4)	2.798 (3)	130 (3)
$O3-H6\cdots O1^{i}$	0.84(4)	1.70 (4)	2.543 (2)	177 (5)
$N1 - H7 \cdot \cdot \cdot O3^{ii}$	0.79 (4)	2.53 (4)	3.093 (3)	130 (3)
$N1 - H8 \cdot \cdot \cdot O2^{iii}$	0.86 (3)	1.90 (4)	2.754 (3)	170 (3)
$N1 - H9 \cdot \cdot \cdot O1^{iv}$	0.93 (3)	1.93 (4)	2.844 (3)	168 (4)
$C3-H3B\cdots O4^{v}$	0.97	2.52	3.279 (4)	135

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1$; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z$; (iv) -x, y, -z; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + 1$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3* for Windows (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 2012). Acknowledgements

The author thanks Tokai University for a research grant, which partially supported this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5203).

References

- Brewer, G., Burton, A. S., Dworkin, J. P. & Butcher, R. J. (2013). Acta Cryst. E69, o1856–o1857.
- Delbaere, L. T., Kallen, J., Markovic-Housley, Z., Khomutov, A. R., Khomutov, R. M., Karpeisky, M. Y. & Jansonius, J. N. (1989). *Biochimie*, 71, 449–459.

Derricott, C. & Trotter, J. (1979). Acta Cryst. B35, 2230-2232.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Flaig, R., Koritsanszky, T., Zobel, D. & Luger, P. (1998). J. Am. Chem. Soc. 120, 2227–2238.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nobe, Y., Kawaguchi, S., Ura, H., Nakai, T., Hirotsu, K., Kato, R. & Kuramitsu, S. (1998). J. Biol. Chem. 273, 29554–29564.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Pfeiffer, P. & Heinrich, E. (1936). J. Prakt. Chem. 146, 105-112.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Terashima, S., Achiwa, K. & Yamada, S. (1966). Chem. Pharm. Bull. 14, 572– 578.

supporting information

Acta Cryst. (2015). E71, o731-o732 [doi:10.1107/S2056989015016709]

Crystal structure of (S)-2-amino-2-methylsuccinic acid

Isao Fujii

S1. Comment

Solid-phase synthesis is now the accepted method to synthesis peptides, in which protected natural or non-natural amino acids are widely used; for example, 2-methylaspartic acid (MeASP) a non-natural amino acid. It has attracted attention as a substrate analog of aspartate aminotransferase (EC 2.6.1.1), and acts as a competitive inhibitor in the external aldimine (Delbaere *et al.*, 1989; Nobe *et al.*, 1998). Despite the biological and pharmaceutical interest, no crystal structures of MeASP derivatives have been reported except for the structure of DL-MeASP monohydrate (Brewer *et al.*, 2013).

In the title compound, Fig. 1, the succinic acid group has a *trans*-conformation $[C1-C2-C3-C4 = -177.1 (2)^{\circ}]$ *versus*. a *cis*-conformation [48.8 (4) °] in DL-MeASP. The carboxy group and the amino group make a hydrogen bonded half-chair S(6) ring motif (Table 1 and Fig. 1). The S(6) ring half-chair conformation and the *trans*-succinic acid arrangement are similar to the situation found in for DL-ASP (DLASPA03: Flaig *et al.* 1998).

In the crystal, molecules are linked by O—H···O hydrogen bonds, involving the succinic acid groups, to form C(7) chains along the *c* axis direction (Table 1 and Fig. 2). This is in contrast to the N—H···O hydrogen bonded C(5) chains observed in the crystal structure of DL-MeASP. The chains are linked by N—H···O and C—H···O hydrogen bonds forming sheets parallel to the *bc* plane. Further N—H···O hydrogen bonds link the sheets to form a three-dimensional framework (Table 1 and Fig. 3). The methyl groups are surrounded by the hydrophilic planes and make a columnar structure (Fig. 3).

S2. Synthesis and crystallization

The title compound was purchased from Nagase-Sangyo Co. Ltd. The absolute configuration could not be established by anomalous-dispersion effects. The (*S*) enantiomer has been chosen by referring the sign of known polarity in the synthetic procedure (Terashima *et al.*, 1966). Rod-like colourless crystals of the title compound were obtained by vapour-phase diffusion of an ethanol-chloroform mixture at room temperature.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All the H atoms were located in difference Fourier maps. The NH2 and OH H atoms were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.96-0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

Figure 1

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intramolecular N—H…O hydrogen bond (see Table 1).

Figure 2

A partial view of the crystal packing of the title compound. Dashed lines indicate the O—H…O and N—H…O hydrogen bonds (see Table 1).

Figure 3

A view along the *c* axis of the crystal packing of the title compound. Dashed lines indicate the O—H···O and N—H···O hydrogen bonds (see Table 1), and C-bound H atoms have been omitted for clarity.

(S)-2-Amino-2-methylsuccinic acid

Crystal data C₅H₉NO₄ $M_r = 147.13$ Monoclinic, C2 Hall symbol: C 2y a = 8.3398 (12) Å b = 9.6725 (10) Å c = 8.0671 (10) Å $\beta = 95.175 (5)^{\circ}$ $V = 648.09 (14) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: sealed X-ray tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.76, T_{\max} = 0.81$ 843 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.096$ S = 1.27700 reflections F(000) = 312 $D_x = 1.508 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 25 reflections $\theta = 20-28^{\circ}$ $\mu = 1.14 \text{ mm}^{-1}$ T = 297 KRod, colorless $0.4 \times 0.2 \times 0.2 \text{ mm}$

700 independent reflections 699 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 74.0^{\circ}, \ \theta_{min} = 5.5^{\circ}$ $h = -10 \rightarrow 1$ $k = -12 \rightarrow 0$ $I = -10 \rightarrow 10$ 3 standard reflections every 300 reflections intensity decay: none

109 parameters2 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0559P)^2 + 0.2563P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$
$$\begin{split} &\Delta\rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3} \\ & {\rm Extinction \ correction: \ } SHELXL2014 \ ({\rm Sheldrick, \ } \\ & 2014), \ {\rm Fc}^* = {\rm kFc} [1{+}0.001 {\rm xFc}^2 \lambda^3 / {\rm sin} (2\theta)]^{-1/4} \\ & {\rm Extinction \ coefficient: \ } 0.045 \ (4) \end{split}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
H8	0.155 (3)	0.434 (4)	0.122 (4)	0.026 (7)*	
H7	0.126 (4)	0.416 (4)	0.275 (5)	0.040 (9)*	
H6	0.207 (5)	0.170 (5)	0.725 (4)	0.071 (14)*	
H9	0.022 (4)	0.340 (4)	0.164 (4)	0.040 (9)*	
C1	0.2417 (3)	0.1802 (3)	0.0388 (3)	0.0273 (5)	
C2	0.2485 (3)	0.2608 (2)	0.2046 (3)	0.0238 (5)	
C3	0.2132 (3)	0.1603 (3)	0.3436 (3)	0.0305 (6)	
H3A	0.1108	0.1156	0.3124	0.037*	
H3B	0.2954	0.0891	0.3512	0.037*	
C4	0.2069 (3)	0.2244 (3)	0.5137 (3)	0.0284 (6)	
C5	0.4148 (3)	0.3267 (4)	0.2343 (4)	0.0386 (7)	
H5A	0.4277	0.3947	0.1498	0.058*	
H5B	0.4959	0.2567	0.2301	0.058*	
H5C	0.4254	0.3702	0.3417	0.058*	
N1	0.1250 (3)	0.3741 (2)	0.1916 (3)	0.0248 (5)	
01	0.1677 (2)	0.2358 (2)	-0.0871 (2)	0.0378 (5)	
O2	0.3164 (3)	0.0705 (2)	0.0427 (3)	0.0525 (7)	
03	0.2242 (3)	0.1339 (2)	0.6334 (2)	0.0392 (6)	
O4	0.1831 (4)	0.3463 (2)	0.5370 (2)	0.0554 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	I 711	I /22	<i>I</i> 733	I 712	I 713	I /23
	U	U	U	0	U	0
C1	0.0384 (11)	0.0263 (12)	0.0177 (10)	0.0010 (10)	0.0051 (8)	-0.0020 (9)
C2	0.0349 (10)	0.0220 (11)	0.0147 (10)	0.0029 (9)	0.0028 (8)	-0.0013 (8)
C3	0.0520 (14)	0.0239 (13)	0.0157 (10)	0.0039 (11)	0.0039 (9)	-0.0005 (9)
C4	0.0436 (13)	0.0252 (12)	0.0164 (10)	0.0015 (10)	0.0025 (9)	-0.0014 (9)
C5	0.0342 (12)	0.0476 (17)	0.0338 (13)	-0.0022 (12)	0.0020 (10)	-0.0065 (12)
N1	0.0368 (11)	0.0213 (10)	0.0164 (9)	0.0008 (8)	0.0036 (7)	-0.0007 (8)
01	0.0510 (10)	0.0455 (11)	0.0167 (8)	0.0152 (9)	0.0011 (7)	-0.0039 (8)
02	0.0930 (17)	0.0383 (13)	0.0257 (10)	0.0290 (13)	0.0023 (10)	-0.0082 (9)
03	0.0721 (13)	0.0304 (10)	0.0162 (9)	0.0085 (9)	0.0096 (8)	0.0010 (8)
O4	0.118 (2)	0.0290 (12)	0.0200 (9)	0.0126 (12)	0.0102 (10)	-0.0024 (8)

Geometric parameters (Å, °)

C1—O2	1.229 (3)	C4—O4	1.213 (4)	
C101	1.261 (3)	C4—O3	1.301 (3)	
C1—C2	1.545 (3)	С5—Н5А	0.9600	
C2—N1	1.502 (3)	С5—Н5В	0.9600	
C2—C5	1.525 (3)	С5—Н5С	0.9600	
C2—C3	1.532 (3)	N1—H8	0.86 (4)	
C3—C4	1.511 (3)	N1—H7	0.78 (4)	
С3—НЗА	0.9700	N1—H9	0.93 (4)	
С3—Н3В	0.9700	O3—H6	0.84 (2)	
O2—C1—O1	126.8 (2)	O4—C4—C3	124.0 (2)	
02—C1—C2	115.7 (2)	O3—C4—C3	112.8 (2)	
01—C1—C2	117.3 (2)	C2—C5—H5A	109.5	
N1-C2-C5	108.3 (2)	C2—C5—H5B	109.5	
N1—C2—C3	109.79 (18)	H5A—C5—H5B	109.5	
C5—C2—C3	112.5 (2)	C2—C5—H5C	109.5	
N1-C2-C1	109.67 (18)	H5A—C5—H5C	109.5	
C5—C2—C1	107.98 (18)	H5B—C5—H5C	109.5	
C3—C2—C1	108.60 (19)	C2—N1—H8	107 (2)	
C4—C3—C2	115.4 (2)	C2—N1—H7	112 (3)	
С4—С3—НЗА	108.4	H8—N1—H7	104 (3)	
С2—С3—НЗА	108.4	C2—N1—H9	112 (3)	
С4—С3—Н3В	108.4	H8—N1—H9	113 (3)	
С2—С3—Н3В	108.4	H7—N1—H9	109 (3)	
НЗА—СЗ—НЗВ	107.5	С4—О3—Н6	111 (4)	
O4—C4—O3	123.2 (2)			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H··· A
N1—H7…O4	0.79 (4)	2.23 (4)	2.798 (3)	130 (3)
O3—H6…O1 ⁱ	0.84 (4)	1.70 (4)	2.543 (2)	177 (5)
N1—H7…O3 ⁱⁱ	0.79 (4)	2.53 (4)	3.093 (3)	130 (3)
N1—H8····O2 ⁱⁱⁱ	0.86 (3)	1.90 (4)	2.754 (3)	170 (3)
N1—H9…O1 ^{iv}	0.93 (3)	1.93 (4)	2.844 (3)	168 (4)
C3—H3 <i>B</i> ····O4 ^v	0.97	2.52	3.279 (4)	135

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) -*x*+1/2, *y*+1/2, -*z*+1; (iii) -*x*+1/2, *y*+1/2, -*z*; (iv) -*x*, *y*, -*z*; (v) -*x*+1/2, *y*-1/2, -*z*+1.