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Abstract: Color parameters were used in this study to develop a machine learning model for
predicting the mechanical properties of artificially weathered fir, alder, oak, and poplar wood. A
CIELAB color measuring system was employed to study the color changes in wood samples. The
color parameters were fed into a decision tree model for predicting the MOE and MOR values of the
wood samples. The results indicated a reduction in the mechanical properties of the samples, where
fir and alder were the most and least degraded wood under weathering conditions, respectively. The
mechanical degradation was correlated with the color change, where the most resistant wood to
color change exhibited less reduction in the mechanical properties. The predictive machine learning
model estimated the MOE and MOR values with a maximum R2 of 0.87 and 0.88, respectively. Thus,
variations in the color parameters of wood can be considered informative features linked to the
mechanical properties of small-sized and clear wood. Further research could study the effectiveness
of the model when analyzing large-sized timber.

Keywords: wood characterization; mechanical properties; photodegradation; artificial weathering;
color change; ultraviolet radiation; machine learning

1. Introduction

Nondestructive evaluation (NDE) of wood is crucial for monitoring purposes and
timber grading [1,2], especially when the wood is used in load-carrying applications. The
characterization of the mechanical properties of wood, including the modulus of elasticity
(MOE) and modulus of rupture (MOR), can be performed using tensile, compression, and
bending static tests [3]. However, these methods are costly and time-consuming, and are
not suitable for in situ characterization and monitoring purposes. While visual strength
grading is being practiced in some industrial applications [4], fast and reliable assessment
of timber and wood-based materials that accounts for material variability and anisotropic
properties and natural defects requires the application of NDE methods.

Near-infrared (NIR) spectroscopy is one of the most commonly used NDE methods
for wood characterization. NIR spectroscopy is sensitive to changes in the chemical
composition of wood [5] and has been used for wood classification and the estimation
of different wood properties [6–10]. Wave propagation-based methods have also been
employed to estimate timber MOE [11,12]. For example, a wave is generated in wood
using an impact or piezoelectric actuators, respectively, in the stress wave or ultrasonic
wave methods. The propagated wave velocity, and consequently the wood dynamic
MOE, are typically calculated in wave propagation techniques using the time-of-flight
method. The prediction of the mechanical properties [13,14] and the detection of internal
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check formation [15,16] in weathered thermally modified timber have been performed
using the ultrasonic wave method. The physical and mechanical properties of thermally
modified wood have also been predicted using the stress wave method [17]. Recently, the
elastic and viscoelastic properties of wood have been characterized using the Lamb wave
propagation method [18,19]. Another readily available NDE method for wood classification
and characterization is related to measuring the surface color of wood.

The surface color is affected when the wood is used in applications that cause changes
to its chemical composition, such as through thermal treatment, or ultraviolet (UV) or laser
irradiation [20,21]. The color change has been shown to be a quality indicator for thermally
modified timber (TMT) [22,23]. It has been reported that color change can be linked to
the intensity of thermal treatment [24–29] and the mechanical properties of TMT [30].
The correlation between the color change and the pressure treatment of wood has also
been reported in the literature [31]. Color measurement has also been employed for the
classification [32] and characterization [33,34] of thermally modified timber. The color is
also an important feature to be studied during the wood weathering since the weathering
of wood causes photodegradation. The CIELAB color measuring system has been widely
employed to study the color change in wood under UV radiation [35–42]. The color
was considered as an informative parameter to monitor the wood photodegradation [43].
Additionally, the infrared spectroscopy analysis of wood has been used to assess the change
in wood chemical composition under weathering [44–48]. The critical role of color change
during wood weathering may suggest further investigations to see if the color change can
be used as a quality control tool for monitoring the in-service weathered wood. One of
these monitoring tasks is to assess the feasibility of using the color change for predicting
the MOE and MOR of weathered wood.

The mechanical degradation of wood under weathering depends on different factors.
These factors include but are not limited to the type of wood, weathering condition (UV
radiation, temperature, humidity, rain, etc.), thickness of wood under weathering, and
conditioning parameters. It has been reported that UV and solar irradiation result in the
degradation of the mechanical properties in thin wood strips [49–51]. Accelerated UV
exposure can result in a 20–40% drop in the strength of wood strips [52]. The mechanical
degradation in wood-based composites under weathering conditions with a panel thickness
of 8 mm and 12.5 mm has also been reported in the literature [53,54]. Weathering has also
been reported to cause a reduction in the impact bending properties of spruce, fir, and oak
wood with a board thickness of 20 mm [55]. The impact of weathering on the mechanical
properties of full-size timber has also been investigated [56]. van Blokland et al. [14] studied
the impact of natural weathering on the mechanical properties of Norway spruce timber.
The timbers were conditioned after the weathering and mechanically tested. They reported
that the bending strength of the control and thermally treated spruce were reduced after
weathering by 6% and 9%, respectively. A 4% reduction in the MOE of both types of
timbers was also reported.

Apart from the size of the wood cross-section, the type of wood species, weathering
situations, and conditioning also impact the mechanical properties of weathered wood.
Tomak et al. [57] showed that the reduction in the mechanical properties under weathering
is significantly dependent on the type of wood species. They reported that while the MOR
of Ash wood decreased by 18% after 24 months of weathering, Iroko wood experienced a
40% MOR reduction in the same time period. The mechanical degradation of softwood
and hardwood under weathering can also be significantly different [57]. The impact of
weathering is greatly affected by the environmental conditions. In the case of artificial
weathering, for example, the impact of UV radiation is affected by the moisture content
(MC), relative humidity (RH), and temperature conditions. Timar et al. [36] reported that
the combination of UV radiation and temperature could cause lignin degradation, while
exposure of wood to temperature alone did not affect the lignin. Persze and Tolvaj [58]
also reported that the photodegradation of wood is affected by temperature. Therefore,
while UV radiation alone is mainly known to be a phenomenon causing surface damage,
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its impact on the wood can be aggravated when combined with harsh environmental
conditions. To study the effect of UV radiation, the exposed samples are conditioned
after the weathering test. This is useful to understand the mechanism of damage caused;
however, some researchers did not condition their samples after the weathering and before
mechanical testing to simulate the practical situations [56]. For example, Boonstra et al. [56]
showed that, compared to the conditioned samples after weathering, the weathered sam-
ples that were directly tested without conditioning showed higher reduction in the MOE
and MOR. While such an approach assesses the combined effect of different parameters
(UV radiation, temperature, MC change, etc.) on the mechanical properties of wood under
weathering, this is more aligned with real situations, where in situ monitoring of in-service
weathered wood structures is intended.

The above discussion shows that it is hard to generalize the mechanical behavior of
wood under weathering conditions, since it depends on many factors. The mechanical
behavior of the weathered wood depends on the size of wood cross-section, type of wood
species, and range and intensity of environmental parameters such as the temperature and
conditioning situations. Therefore, finding an NDE method for monitoring the mechanical
behavior of weathered wood becomes a crucial quality control task. The MOE and MOR
of defect-free wood subjected to UV radiation were recently estimated using the Lamb
wave propagation method [59,60]. Yet, the color parameters of wood have not been used
to make an intelligent monitoring model to predict the MOE and MOR of degraded wood
under weathering. The use of color parameters to monitor the mechanical properties of
photodegraded wood may offer a fast, cost-effective, and reliable complement to wave
propagation-based methods.

The aim of this research work was to link the color change of weathered wood to its
mechanical properties and develop a machine learning-based model for monitoring the
MOE and MOR of weathered wood. The weathering condition consisted of UV radiation
at 40 ◦C. This is a very common temperature in regions with hot climate, such as Iran.
The weathered samples were not conditioned after the weathering to better simulate the
practical conditions. Thus, the weathering impacted the samples not only due to UV
radiation, but also as a result of the temperature conditions. Since the objective of this
study was to develop an NDE tool for the in situ monitoring of weathered wood and the
evaluation of the combined effect of all parameters involved during the weathering on
its mechanical properties, finding the UV penetration depth or separating the share of
different playing factors on the mechanical degradation of wood was not within the scope
of this study.

2. Materials and Methods
2.1. Sample Preparation

In this study, twenty samples of poplar (Populus euroamerican), alder (Alnus glutinosa),
oak (Quercus spp.), and fir (Abies alba) were prepared, resulting in a total of eighty samples.
The samples were clear, with no types of defects such as knots. The dimensions of the flat-
sawn samples in the radial, tangential, and longitudinal directions were 20 mm × 20 mm
× 300 mm, respectively, according to ISO-13061-3 and -4 standard methods [61,62]. The
samples were divided into groups of four specimens from each wood species. One group
was considered as the control and was not exposed to artificial weathering. Other groups
were exposed to weathering for different time periods. Considerations were made to ensure
that there was no significant variation of wood initial properties between the different
groups according to the procedure explained in [60] based on guided wave propagation
method. Figure 1 illustrates the experimental procedure employed in this study.
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Figure 1. The experimental procedure employed in this study.

2.2. Weathering Test

In the present study, the wood samples were placed in a weathering chamber. Weath-
ering experiments were conducted immediately after the sample preparation. Samples of
each group from each wood species were exposed to UV radiation for 24, 100, 150, and
240 h, respectively. The chamber had two lamps (OSRAM HQE-40 Hg, Munich, Germany)
with a length, diameter, and a spectrum of 90 mm, 10 mm, and 240–570 nm, respectively,
with a radiated power in the wavelength range of 315–400 nm. The wood samples were
placed at a distance of 500 mm from the UV light source. Before the exposure to UV
radiation, the samples were placed in a conditioning room with a relative humidity of 65%
and a temperature of 20 ◦C to reach the equilibrium moisture content of 12% (standard de-
viation = 0.33). During the experiment, the humidity and temperature inside the chamber
were controlled to be 55–60% and 40 ◦C, respectively. One of the longitudinal-tangential
(L-T) surfaces of the wood samples was subjected to the UV radiation and then the color
measurements and mechanical bending tests were immediately conducted without any
further conditioning. As already explained in the Introduction section, such a method can
better simulate the practical conditions, especially during the in situ monitoring tasks. The
weathering conditions can degrade wood through both the UV effect and the temperature
condition resulting in a change in the MC. This study does not focus on the pure effect
of UV radiation on the degradation of wood samples. Mechanisms of degradation under
weathering, especially UV radiation, has been discussed in the literature [36,49,58,63–65].
Thus, instead of analyzing the role of different governing factors in wood degradation, this
study aims to evaluate the feasibility of developing monitoring models for predicting the
mechanical degradation of weathered wood.

2.3. Measurement of Color Parameters

The color of the wood samples was evaluated using the CIELAB color measuring
system. The color measurement was performed on all wood samples before and after
the weathering experiment. The color measurement was performed on three locations in
the center and close to the ends of the samples (30 mm away). The color measurement
was carried out on the degraded surface of the wood samples and performed using a
spectrophotometer (Model #CM-2600d, Konica Minolta Inc., Tokyo, Japan) with a D65
illuminant, a 10◦ standard observer, and a sensor head of 6-mm (ASTM D2244-16 stan-
dard [66]). Once the color coordinates (L, a, and b) were measured before and after the
weathering tests, the difference in the lightness (∆L) and the chromatic coordinates (∆b and
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∆a) were calculated. The total color change (∆E) was obtained for each wood sample using
the following equation:

∆E =
[
(∆L)2 + (∆a)2 + (∆b)2

]1/2
(1)

The color measurement was also performed on the samples that were not placed into
the weathering chamber.

2.4. Mechanical Properties

The three-point bending tests were performed using a STM-1 50 testing machine (San-
tam Engineering Desgin Co. Ltd., Tehran, Iran). The crosshead speed was set to 1 mm/min
(ISO 13061-3 and -4 [61,62]). The bending tests were performed on the longitudinal-
tangential surface of the samples where the degraded plane was placed under tension. The
MOE and MOR of the wood samples were calculated based on the ISO 13061-3 and -4 from
the mechanical bending tests.

2.5. MC Measurements

The measurement of MC and density after weathering was done based on the ISO-
13061-1 and -2 standard methods [67,68] from the cookie samples (50 mm × 20 mm ×
20 mm [L, T, R]) cut from the vicinity of the wood samples. The average MC of the samples
was about 12% before the weathering experiment. For this purpose, separate cookies with
the same size were prepared before the preparation of the final weathering samples (20 mm
× 20 mm × 300 mm). The samples prepared for MC measurements were weighed (m1)
and then placed in an oven at the temperature of 101 ◦C for 24 h. The oven-dried weights
(m2) of the samples were then measured and the MC was calculated via:

W (%) =
m1 − m2

m2
× 100 (2)

where W, m2, and m1 are the MC, the dry mass and the wet mass of the wood samples,
respectively.

2.6. Statistical Analysis

The data of color change were analyzed with a one-way ANOVA in Minitab 19
(AppOnFly s.r.o., Prague, Czech Republic). For each wood species, the significance between
the color changes of the samples weathered at different time periods was analyzed using
Tukey’s comparison test. Having a low number of replications is a limitation of such a
study. However, it should be noted that the main aim of this research was to monitor the
weathered wood samples through machine learning modeling, which does not necessarily
depend on the requirements for statistical analysis.

2.7. Machine Learning Analysis

Figure 2 illustrates the flowchart of the adopted methodology in this study to estimate
the mechanical properties of weathered wood through machine learning (ML) model-
ing. Different ML models and artificial neural networks (ANNs) have been employed
for damage/defect detection [69,70], prediction of the material’s properties [71,72], and
process condition monitoring [73–76]. Decision tree regression modeling was used in this
study for the prediction of the mechanical properties of wood samples. While ANNs
are challenging to interpret, the outputs of decision tree models can be comprehended
easier. Furthermore, the significance of predictor variable can be identified in the model,
which helps to study the relationships between the features and take care of the redun-
dant features with relatively lower importance [77]. The current study dealt with a small
dataset; however, decision tree modeling has been successfully employed in the literature
to analyze small datasets [15,59,78] when predicting the mechanical properties or checks
formation in weathered wood samples. The classification and regression trees (CART)
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algorithm [79] was used in this study. The decision tree development process included tree
growing and pruning phases. In the tree growing phase, the node splitting criteria were
based on the highest contribution to lowering the least squared error during the model
training. The optimal tree was chosen in the pruning phase as the smallest tree that has
an R2 within one standard error of the tree representing the highest R2 obtained during
the model validation. The 5-fold cross-validation method was employed in this study. The
details of the developed decision tree model were similar to those chosen in [59] and based
on the discussion provided in [80].

Figure 2. Flowchart of the proposed methodology to monitor the mechanical properties of the
weathered wood by color measurement.

The contribution of each feature (either as a primary splitters or surrogate one) in
improving the performance of the model was studied based on minimizing the least
squared error. The most important feature causes the highest improvement to the model
and the other features are relatively ranked, accordingly. Additionally, clustering analysis
was employed to observe the level of similarity and find the common characteristics
between the color parameters, MOE and MOR, using agglomerative hierarchical clustering
as explained by Fathi et al. [81].

3. Results
3.1. Mechanical Degradation under Artificial Weathering

The MC and density of the wood samples decreased under weathering. Following
240 h of exposure, fir, alder, oak, and poplar wood experienced a 4.9%, 3.2%, 4.7%, and
8.1% reduction in the density, respectively. The initial MC of fir (12.1%), alder (11.6%), oak
(12.4%), and poplar (12.1%) were also reduced to 6.3%, 5.3%, 5.8%, 5.3%, respectively, after
240 h of weathering. Ouadou et al. [49] reported that 120 h of weathering resulted in the
mass loss due to the reduction of the MC. Figure 3 shows the impact of weathering on the
MOE, MOR, and deflection to failure of different wood samples. It shows that the MOE and
MOR decreased with increasing weathering duration. Overall, alder was shown to be the
most resilient wood with an 11.5% and 11% reduction in its MOE and MOR after 240 h of
weathering. Fir also exhibited the highest degradation, with a 21.5% and 17.5% reduction
in its MOE and MOR after 240 h of weathering. The mechanical degradation under
ultraviolet conditions was discussed to affect the microstructure of wood and its effect on
the chemical composition and results in degradation of lignin [49]. Additionally, Persze and
Tolvaj [58] explained that the higher temperatures increase the wood degradation under
ultraviolet conditions. The mass loss of wood may also occur during the weathering [49].
Boonstra et al. [56] reported that wood specimens conditioned after weathering showed
lower reduction in the mechanical properties. Thus, the mechanical degradation observed
in Figure 3 is affected by the combined impact of the UV radiation and temperature
condition resulting in mass loss due to reduction in the MC.
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Figure 3. The variation of MOE (a), MOR (b), and deflection to failure (c) in weathered wood samples.

Despite the reduction in the MOE and MOR, weathering led to an increase in the
deflection to failure in all wood species. This increment was 13%, 23%, 21%, and 15% for fir,
poplar, alder, and oak wood after 240 h of exposure. This observation may be linked to the
impact of ultraviolet condition on enhancing the viscoelasticity of wood. Fathi et al. [60]
showed that the loss modulus and loss factor of the wood samples tested in this study
increased under ultraviolet condition, proving that wood exhibits more viscoelasticity
when exposed to UV degradation. This may result in an increase in the deflection to failure
in the degraded samples. Feist [64] reported the leaching and plasticizing effects of water
during the weathering process. This plasticizing effect can also facilitate the enlargement
of micro-checks. Figure 4 shows the load-deflection diagram of the wood samples after
different weathering time periods. It shows that the degradation resulted in having a larger
deflection at certain load levels. It was also indicated that after 150 h or 240 h of exposure,
the fir and poplar wood samples reached a deflection of 5 mm at a load level of around
1000 N. However, this deflection was achieved at a higher load level (~1500 N–1600 N)
for hardwoods such as alder and oak. Apart from its impact on the MOE, MOR, and
deflection to failure, the degradation affected the failure modes. Figure 5 shows the failure
modes after the static bending tests for the oak samples under weathering at three exposure
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time periods. It was observed that the failure mode was mainly governed by the tensile
failure perpendicular to the grain in the radial-longitudinal plane (fiber compression was
also observed in parallel). Consequently, increasing the exposure time resulted in having
a deeper brittle fracture and splinter in tension. This can be due to the destruction of
the middle lamella [65], which contains significant lignin content. Severe checking may
develop with longer exposure times in the cell wall components resulting in the loosening
and detaching of the fibrils and tracheids from the surface [65]. Feist [64] discussed that
the weathering condition can result in the destruction of the middle lamella and cell wall
layers. This can impact the cohesive strength of wood tissue [65] that may result in the
mechanical degradation of the wood as well.

Figure 4. The load–deflection diagram for (a) fir, (b) alder, (c) oak, and (d) poplar wood samples exposed to different times
of weathering.

3.2. Color Change

Tolvaj and Faix [82] stated that the light reflection decreased after UV radiation,
resulting in the wood seeming darker. The reduction in the lightness of the samples with
the exposure time can be linked to the negative ∆L, as shown in Figure 6. A similar
trend of darkening of the wood appearance after UV radiation has been reported in the
literature [35,82]. It can be seen in Figure 6 that after 24 h of exposure, there was a trivial
change in the lightness with a minor difference between different wood species. In this
time, poplar and oak showed more darkening (∆L = −2.5). By increasing the exposure
time, fir underwent a significant change in ∆L while alder showed a minimal change in ∆L.
After 240 h, alder accounted for the minimum change in the lightness (∆L = −4) followed
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by oak (∆L = −11.5) and poplar (∆L = −13.7), and the maximum change in the lightness
occurred in fir wood (∆L = −25).
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Variation in the yellowness (∆b) of the wood samples exposed to weathering is shown
in Figure 7. It can be seen that the yellowness increased with exposure time and reached
its maximum value after 150 h. After this time, fir poplar, and oak experienced a slight
reduction in the yellowness, while it stayed almost unchanged for alder. The increase
in the yellowness of the samples was discussed to be mainly due to the degradation of
lignin [35,36,46]. The continuous increase of the yellowness followed by a slight reduction
under artificial weathering was reported by Timar et al. [36] and Pandey [83]. Figure 7
indicates that lignin degradation occurred even after 24 h of exposure. The fir wood
accounted for the highest rate of increment in the yellowness following the exposure, with
the highest ∆b occurring after 150 h of exposure (∆b = 23.8). On the other hand, the smallest
change in the yellowness was observed in alder, suggesting a lower lignin degradation of
alder wood under ultraviolet conditions compared to other species. The variation in the
yellowness was almost similar in the first 100 h of the exposure for poplar and oak wood.
For longer exposure times (i.e., 150 h and 240 h), the yellowness of poplar was relatively
higher than that for oak.
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Figure 6. Variation in the lightness (∆L) of different wood species under artificial weathering.

Figure 7. Variation in the yellowness (∆b) of different wood species exposed to artificial weathering.

The variation in the redness (∆a) of the degraded wood samples is shown in Figure 8.
It can be seen that there was a reduction in the redness of all wood species during the first
100 h of exposure. However, there was an increasing trend in the redness of the samples
after 100 h. While Tolvaj and Faix [82] discussed that it is challenging to explain the wood
color change in a definite way, a correlation between the ∆a and the extractives content
in wood has been reported in the literature [41,84]. For example, Persze and Tolvaj [58]
showed that the extractives content has an important role in thermal decomposition during
photodegradation. They also reported that the ∆a is higher at elevated temperatures,
whereas the thermal effect does not alter yellowing. It is also indicated in Figure 8 that
after 240 h, fir and oak accounted for the highest increase in the redness (∆a = 1.9), while
alder experienced a reduction in it. The color change parameters and the total color change
for all wood species (∆E) are listed in Table 1. It was observed that the total color change
increased with the exposure time. A general trend for ∆E of fir > poplar > oak > alder
was observed at all exposure times. Interestingly, fir that experienced the maximum color
change showed the highest reduction in the mechanical properties, and the alder with the
smallest total color change showed the minimum mechanical degradation. This indicates
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that the color change may be correlated with the mechanical degradation of wood and be
used to predict MOE and MOR.

Figure 8. Variation in the redness (∆a) of different wood species exposed to artificial weathering.

Table 1. The mean value and standard deviation of the color change of wood species in different weathering time periods.

Wood Time (hrs)
∆L ∆a ∆b ∆E

Mean Std. Mean Std. Mean Std. Mean Std.

Fir

24 –1.39 a 0.18 –0.76 a 0.13 7.66 a 0.63 7.82 a 0.66
100 –11.51 b 1.83 –1.27 b 0.18 15.42 b 1.17 19.35 b 0.95
150 –18.80 c 2.74 –0.35 c 0.05 23.88 c 1.79 30.42 c 2.98
240 –25.01 d 2.58 1.89 d 0.14 19.26 d 1.49 31.69 c 1.72

Alder

24 –0.55 a 0.12 –0.31 a 0.05 1.01 a 0.17 1.19 a 0.17
100 –0.75 a 0.18 –1.35 b 0.04 4.60 b 1.00 4.86 b 0.92
150 –1.63 b 0.22 –1.09 c 0.07 5.52 b 1.46 5.89 bc 1.32
240 –4.19 c 0.34 –0.92 c 0.09 5.39 b 1.10 6.92 c 0.84

Oak

24 –2.55 a 0.39 –0.07 a 0.02 4.26 a 1.30 5.02 a 1.07
100 –6.81 b 1.06 –0.71 b 0.11 11.07 b 1.69 13.06 b 1.50
150 –9.20 bc 1.60 –0.03 a 0.01 13.32 b 2.16 16.22 b 2.43
240 –11.50 c 1.91 1.86 c 0.37 9.97 b 1.90 15.44 b 1.64

Poplar

24 –2.26 a 0.39 –0.99 a 0.15 3.67 a 0.51 4.45 a 0.31
100 –5.11 a 0.94 –1.41 b 0.19 11.66 b 0.98 12.81 b 1.26
150 –10.14 b 1.86 –0.27 c 0.04 15.62 c 1.42 18.72 c 0.78
240 –13.75 c 2.11 0.06 d 0.01 14.58 c 0.94 20.12 c 0.95

* Different letters (a–d) within a column for each wood species show the significant difference by Tukey’s comparison test (p < 0.05).

3.3. MOE and MOR Prediction

The wood color parameters and type of the wood species were used as the input of the
decision tree model to predict MOE and MOR. The results of machine learning modeling
are shown in Table 2. It was observed that when the wood species type was combined
with a, b, and L, the developed decision tree model predicted the mechanical properties of
wood with an R2 of 0.84 and 0.77, respectively (test data). Figure 9 illustrates the relative
importance of the selected input parameters used in the decision tree model and indicates
that all of them were significant in developing the predictive model. It was shown that
following the type of wood species, the level of redness and yellowness had the highest
relative importance.
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Table 2. The coefficient of determination obtained for the prediction of the wood mechanical
properties using different input features.

Model Inputs
R2

MOE MOR
Train Test Train Test

Wood species, a, b, L 0.92 0.84 0.81 0.77
Wood species, a, b, L, ∆E 0.92 0.87 0.93 0.88

Wood species, a, b, L, ∆E, ∆a, ∆b, ∆L 0.90 0.88 0.92 0.90

Figure 9. The relative importance of the wood species, a, b, and L for predicting the (a) MOE and (b) MOR.

Table 2 shows that adding the total color change ∆(E) parameter as an input to the
model improved the prediction accuracy. In this case, the MOE and MOR were predicted
with an R2 of 0.87 and 0.88, respectively (test data). Figure 10 shows the relative importance
of the parameters used in this model. It was indicated that all of the input parameters were
important in the performance of the model, while the total color change had relatively
a higher importance for the prediction of the MOR than MOE. It was also observed
in Figures 9 and 10 that the lightness parameter had higher relative importance when
predicting the MOR than MOE.

Figure 10. The relative importance of wood species, a, b, L, and ∆E for predicting the (a) MOE and (b) MOR.

The last model, which used the wood species, color parameters (a, b, L), total color
change (∆E), and variation in the color parameters ∆(a, ∆b, and ∆L), did not make a
noticeable improvement in the prediction accuracy of MOE (R2 = 0.88 for the test data) and
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MOR (R2 = 0.90 for the test data). Overall, adding the three parameters ∆a, ∆b, and ∆L
had a minor positive impact in the performance of the model. Figures 10 and 11 indicate
that the wood species type and redness were still the most important parameters for the
prediction of the MOE and MOR. However, in this model, ∆b had higher importance
than ∆a. Markedly, while the level of redness (a), described in the literature to be linked
to the extractives content, had relatively a high importance in the performance of the
model, its variation (∆a) exhibited less importance in the performance of the predictive
model. Overall, these findings indicate that all of the selected input parameters contributed
positively to the predictive accuracy of the ML model, albeit with different levels of relative
importance. These findings may suggest that there could be a dependency between the
mechanical properties of weathered wood and its color parameters. However, further
studies with a larger sample size could better clarify the details of these dependencies,
especially when combined with the chemical composition analysis.

Figure 11. The relative importance of wood species, a, b, L, ∆E, ∆a, ∆b, and ∆L for predicting the (a) MOE and (b) MOR.

The results of variable clustering analysis were in accordance with those of the decision
tree modeling. Figure 12 shows that the MOE and MOR had the highest similarity level
with the redness, and form a cluster together. This cluster has the highest similarity with
a cluster encompassing the total color change (∆E), yellowness (b), and variation in the
redness (∆a) and yellowness (∆b). The MOE and MOR had the lowest similarity with
the lightness (L) and variation in it (∆L), with a 28.44% similarity level. The general
observations of the variable clustering analysis prove that the selected input parameters
were correlated with the mechanical properties of degraded wood, which can be used for
MOE and MOR prediction. Further study can be performed to outline these dependencies
and similarities between the parameters when weathering conditions are changed.
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Figure 12. Variable clustering analysis on the color parameters, MOE and MOR (the blue, red and
green lines represent the components of the CIELAB three-dimensional color space).

4. Discussion and Remarks

The general trend of the mechanical degradation of the wood samples indicated the
better resistance of alder and the higher vulnerability of fir to weathering condition. While
it is not within the scope of a monitoring task, further research may be conducted to include
the change in the chemical composition of wood to explain the role of extractives and
degradation of lignin and how they can be linked to the mechanical properties of wood.
The machine learning analysis showed the high importance of change in redness that is
linked to the change in the extractives content in the literature. Future research considering
the chemical composition of wood could better explain these observed trends. More
research could also be performed to assess the relationship between the wood viscoelasticity
behavior under artificial weathering and its failure mode and fracture behavior when
subjected to loading. This study did not focus on evaluating the UV penetration depth, and
aimed only at developing a monitoring model that reflects the combined effects of different
parameters accountable for the mechanical degradation of wood under weathering. Future
research aiming to explain the mechanism of degradation, rather than in situ monitoring,
could be performed to separate the role of ultraviolet radiation, temperature condition,
and MC and mass loss on the mechanical behavior of weathered wood.

The performance was obtained on the basis of analyzing a small set of defect-free
wood samples. The scope of the experiment could be further expanded while performing
the proposed methodology on real-sized timber, including defects such as knots. One of
the main challenges associated with color measurement for the characterization of wood
properties is non-homogeneous surface color variation [33], especially in real-sized timber,
which necessitates multiple color measurements from different locations of the timber.
This is an important challenge associated with using color parameters for monitoring the
mechanical properties of timber. However, due to the simplicity of the color measurement,
the color features can be combined with the data acquisition from other NDE methods (such
as Lamb wave propagation) to result in a robust monitoring model. Nasir et al. [59] obtained
a similar range for R2 while using Lamb wave features for predicting the mechanical
properties of weathered wood. However, their model did not need to have the type of
wood species as an input parameter, as the model was able to understand the difference
between the wood species through the extracted Lamb wave features. Thus, if the type of
wood species to be monitored is not available, a machine learning model based on the wave
propagation features may be chosen. Both the color measurement and wave propagation
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method should be applied to real-sized timber to have a more reliable comparative study. It
should be mentioned that in real applications, other factors related to the environment (rain,
decay, etc.) or the timber (grain orientation, defects, annual ring width, etc.) may impact
the mechanical properties of degraded wood, and having a single monitoring method may
not address both the surface and internal damages to the timber. In this case, combining
color parameters that reflect the surface degradation with those of wave propagation that
are linked to the internal structure of the wood can better show the mechanical degradation
of large-size timber. Additionally, timber monitoring requires dataset of a larger size and
perhaps other types of data-driven modeling. The choice of data-driven method depends
on both the size and complexity of the data [85,86]. Different machine learning or deep
learning models could be studied to choose the one that better fits the dataset of a larger
size [87].

5. Conclusions

In this research, a machine learning model was developed based on the color parame-
ters for predicting the MOE and MOR values of weathered wood. Artificial weathering led
to a reduction in the wood mechanical properties. Wood species that experienced greater
color changes exhibited a more highlighted mechanical degradation. This indicates that
the color parameters may be linked to the MOE and MOR of weathered wood. Fir was
shown to be more susceptible to artificial weathering, while alder was more resilient and
experienced less reduction in its mechanical properties. The mechanical properties of the
samples could be predicted by the color parameters, although the developed machine
learning model needed the type of wood species as an input parameter for accurate pre-
diction. It was also observed that the deflection to failure of the wood samples increased
with the weathering and the failure mode under bending loading also changed. This may
be due to the increased viscoelasticity of weathered wood samples. Future studies should
be aimed at investigating the relation between the mechanical properties and the color
parameters on large-sized timber to evaluate the reliability of the developed model based
on the color parameters for NDE of timber structures. Furthermore, the chemical changes
caused by weathering and the correlation between the color, mechanical and chemical
properties of wood should be studied in future research. This study was performed on
small and defect-free wood samples. Additionally, the sample size was small, which is
a limitation of the statistical analysis. However, the decision tree modeling was able to
successfully handle the dataset. Focusing on large-sized timber containing defects may
require expanding the size of dataset in future studies.
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