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Abstract
Purpose The diagnosis of vitamin D deficiency is based on the determination of total plasma 25-hydroxyvitamin D (25-OHD) 
concentrations, but the regulation of vitamin D 25-hydroxylation is not a major consideration and very little information is 
available on this activity.
To check what factors could interfere with the activity of vitamin D-25-hydroxylase and thus alter the 25-OHD concentra-
tions, we looked for potential correlations between 25-OHD and results of liver function tests in healthy adults.
Methods This single-centre study was retrospective and consisted of evaluating the correlations between 25-OHD and the 
activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), 
alkaline phosphatase (ALP), and bone alkaline phosphatase (BALP) in 349 healthy subjects aged from 18 to 65 years. In 
particular, in Group 1 (n = 119), we looked for correlations between 25OHD and all liver function tests and in Group 2 
(n = 230) the correlation between 25OHD and BALP.
Results In Group 1, we found no correlation between 25OHD and AST (r =  − 0.03; p = 0.8), ALT (r =  − 0.02; p = 0.91), 
GGT (r =  − 0.08; p = 0.68), direct bilirubin (r =  − 0.02; p = 0.89), indirect bilirubin (r =  − 0.24; p = 0.21), and total bilirubin 
(r =  − 0.24; p = 0.21) but one between 25OHD and ALP (r =  − 0.2; p = 0.007); in Group 2, we found a significant negative 
correlation between 25-OHD and BALP (r =  − 0.2; p = 0.0008).
Conclusions The correlations that we found suggest that ALP and BALP might be involved in the regulation of vitamin 
D-25-hydroxylase activity, but further studies are mandatory to confirm our assumptions.
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Introduction

Vitamin D, historically associated with the regulation of 
calcium metabolism at the bone level, has been recently 
demonstrated to be strongly involved in many biological 
processes [1–9]. Vitamin D exerts its action at cellular levels 
by interacting with the nuclear vitamin D receptor (VDR), 
belonging to the superfamily of nuclear receptors modulat-
ing gene transcription.

Vitamin D is unique among hormones, because it can 
be made in the skin from exposure to sunlight. It comes 
in two forms: vitamin D2 (ergocalciferol) and vitamin D3 
(cholecalciferol). The former was the first to be isolated 
and is obtained from the UV irradiation of the plant sterol 
ergosterol. The latter is produced in the skin from 7-dehy-
drocholesterol by ultraviolet (UV) radiation and is present in 
oil-rich fish such as salmon, mackerel, and herring. Vitamin 
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D that comes from the skin or diet is biologically inert and 
requires first hydroxylation by vitamin D-25-hydroxylase 
(25-OHase, CYP2R1) to 25-hydroxyvitamin D (25-OHD), 
the main circulating form [6, 9]. In human adult and fetal 
tissues, CYP2R1 mRNA is ubiquitous; 25-OHase expres-
sion has been observed in dermal fibroblast and in prostate 
cancer LNCaP cells, but its expression is primarily in the 
liver and testes [10–12]. Our previous results of lower vita-
min D concentrations and higher prevalence of Vitamin D 
deficiency in diabetic patients with hypogonadism compared 
with patients without hypogonadism supported the role of 
25-OHase in the testis [13].

25-OHD is then further metabolized in the kidneys to 
1,25-dihydroxyvitamin D [1,25(OH)2D] by the enzyme 
CYP27B1. 1,25(OH)2D is the ligand for the vitamin D 
receptor (VDR), a transcription factor modulating the activ-
ity of many genes involved in the regulation of calcium, 
phosphate, and bone metabolism.

Vitamin D deficiency and insufficiency is a global health 
issue that afflicts more than 1 billion children and adults 
worldwide [14], and seems to be associated with increased 
prevalence of some diseases including neuropathy, malig-
nancy, infertility, cardiovascular diseases, kidney diseases, 
glucose metabolism, and immunological dysfunctions [1]. 
There is no agreement yet on “normal levels” of circulating 
25-OHD, but there is agreement to treat all subjects with 
serum 25-OHD levels < 20 ng/mL (50 nmol/L) with vitamin 
D [15]. The estimated prevalence of vitamin D deficiency in 
adult population depends on its cut-off definition [16, 17]. 
The National Health and Nutrition Examination Survey 
(NHANES, 2001–2006) showed that 25% of the population 
was at risk of insufficiency, as defined by serum 25-OHD 
levels of 12–20 ng/mL, and that 8% had very low 25-OHD 
levels (< 12 ng/mL) [18].

Since the diagnosis of vitamin D deficiency is based on 
the determination of total plasma 25-OHD concentrations, 
but the regulation of vitamin D 25-hydroxylation is not a 
major consideration, and very little information is avail-
able on this activity, we planned this study to investigate 
if some factors interfere with the activity of CYP2R1 and 
with 25-OHD concentrations. In particular, we focused our 
attention on the potential correlations between 25-OHD and 
results of liver function tests in healthy adults.

Patients and methods

The retrospective study was carried out at the University 
Hospital “L. Vanvitelli”, Naples, Italy. We searched in the 
database of Clinical and Molecular Pathology Unit for all 
healthy controls of previous studies [4, 13] who were also 
screened for vitamin D status and liver function (Group 1, 
n = 119); we also recruited other healthy people (University 

and Hospital staff and donors) who underwent the screening 
for vitamin D and bone alkaline phosphatase between Janu-
ary 2015 and December 2019 (Group 2, n = 230). On the 
basis of these criteria, we enrolled 349 subjects, including 
157 males and 192 females. All people had to be aged from 
18 to 65 years. Obesity, consumption of fish oil, vitamin D, 
mineral supplements or any drug interfering with vitamin D 
metabolism were considered exclusion criteria. The study 
was acknowledged by the Ethics Committee of the Univer-
sity of Campania and AORN Ospedali dei Colli.

Assays for aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), gamma-glutamyl transpeptidase 
(GGT), alkaline phosphatase (ALP), bone alkaline phos-
phatase (BALP), direct bilirubin, indirect bilirubin, total 
bilirubin, and 25-OHD were performed in the hospital’s 
chemistry laboratory.

25-OHD levels were measured with a chemiluminescence 
method (LIAISON®, DiaSorin, Stillwater, USA). The LIAI-
SON 25OHD total assay measures concentrations between 
4.0 and 150 ng/ml with 7.8% intra-assay coefficient of vari-
ation. Although deficiency and insufficiency cut-off points 
are still a topic of discussion, in this study, vitamin D defi-
ciency was diagnosed when serum 25-OHD was < 20 ng/ml. 
We measured the circulating serum 25-OHD level, which 
represents the major circulating vitamin D metabolite and 
is a reliable indicator of vitamin D status. Because of inter-
ference by seasonal variations, we enrolled subjects who 
underwent vitamin D screening in each season, to assess the 
correlations along all the year.

ALP and BALP assays were, respectively, assessed by 
Alkaline Phosphatese 7D55 Architect system (Abbott, 
Wiesbaden, Germany) and by LIAISON® BAP OSTASE® 
(DiaSorin, Stillwater, USA).

In the first group of 119 (69 F, 50 M) subjects, we looked 
for correlations between 25OHD and all liver test enzymes. 
Subsequently, we analysed the second group of 230 (123 F, 
107 M) subjects in which we evaluated only the correlation 
between 25-OHD and BALP.

Results are presented as mean ± standard deviation, 
median, and interquartile range or number and percentage. 
Correlations between 25-OHD levels and liver tests or BALP 
were evaluated by Pearson or Spearman Test. A value of 
p < 0.05 was considered statistically significant. All statisti-
cal analysis were performed using SPSS software (version 
10.05, SPSS, Chicago, IL, USA).

Results

The demographic and biochemical characteristics of 
the study population are reported in Table 1. The mean 
age was 46.7 ± 20.4 years. In the overall population, we 
found a mean 25OHD level of 24.4 ± 13.1 ng/ml. 146 
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out of 349 (41.8%) subjects had vitamin D deficiency 
with 60 (17%) subjects with very low 25OHD concen-
trations (< 12 ng/ml). 25OHD levels were significantly 
higher in the summer–autumn period (25.8 ng/ml; IR: 
18.8–33.5) than in the winter–spring period (20.4 ng/ml; 
IR: 13.4–30.3; p < 0.001). In Group 1 (n = 119), we found 
no correlation between 25OHD and AST (r =  − 0.03; 
p = 0.8), ALT (r =  − 0.02; p = 0.91), GGT (r =  − 0.08; 
p = 0.68), direct bilirubin (r =  − 0.02; p = 0.89), indi-
rect bilirubin (r =  − 0.24; p = 0.21), and total bilirubin 
(r =  − 0.24; p = 0.21) but a correlation between 25OHD 
and ALP (r =  − 0.2; p = 0.007) (Table 2a) (Fig. 1a); in 
Group 2 (n = 230), we found a significant negative corre-
lation between 25-OHD and BALP (r =  − 0.2; p = 0.0008) 
(Fig. 1b). In a subgroup analysis of Group 2, we assessed 
the correlation in people aged > 18 ≤ 40 and in peo-
ple > 40 ≤ 65, in males and females and on the basis of 
the season in which the sample was drawn: correlation 
between 25-OHD and BALP remained significant in all 
the subgroups (Table 2b).  

We also observed a seasonal variation of both ALP 
and BALP concentrations with higher levels in the sum-
mer–autumn (ALP 79 U/L; IR 67.2–92; BALP 12.4 U/L; IR 
9.5–16.2) than in winter–spring (ALP 77 U/L; IR 61.2–92.5, 
p = 0.81; BALP 12.4U/L; IR: 9.5–16.2, p = 0.04).

Discussion

To the best of our knowledge, this is the first study evaluat-
ing the correlations between 25OHD and liver function tests 
in healthy subjects. We found a significant negative correla-
tion between 25OHD concentrations, ALP and BALP but 
not with other liver enzymes.

Alkaline phosphatase (ALP) is an enzyme found in 
several tissues throughout the body. It can originate from 
the liver, bone, intestines, or kidneys, but bone ALP and 
liver ALP constitute about 95% of the total ALP activ-
ity in human serum. Elevated levels of ALP in the blood 
are most commonly caused by liver disease or bone dis-
orders. Bone alkaline phosphatase (BALP) is an ectoen-
zyme attached to the outer surface of the cell membrane 
of osteoblasts by glycosylphosphatidylinositol. It is a 
major regulator of bone mineralisation, hydrolysing inor-
ganic pyrophosphate, a natural inhibitor of mineralisa-
tion, and providing inorganic phosphate for the synthesis 
of hydroxyapatite. It is partially released into the circula-
tion. The BALP and ALP levels will rise in the serum 
following increased production by osteoblasts in a state 
of high bone turnover. Throughout life, bone continuously 
remodels itself through bone resorption and replacement. 
Remodelling results from the action of osteoblasts and 

Table 1  Demographic and biochemical characteristics of the study population

Study population
N = 349

Age (yr) 46.7 ± 20.4
Sex (% of men) 45
25(OH)D (ng/ml) 21.7 (14.6–31.4)
 Summer–autumn (ng/ml) 25.8 (18.8–33.5)
  Winter–spring (ng/ml) 20.4 (13.4–30.3)
   < 20 ng/ml, n (%) 146 (41.8%)
   < 12 ng/ml, n (%) 60 (17%)*

Group 1
N = 119

25(OH)D (ng/ml) 21.7 (15.8 to − 30)
AST (U/L) 18.0 (15–23)
ALT (U/L) 17.0 (13–27)
GGT (U/L) 20.0 (15–28)
ALP (U/L) 78.5 (61–94)
Total bilirubin (mg/dl) 0.73 (0.50–1.1)
Direct bilirubin (mg/dl) 0.31 (0.25–0.44)
Indirect bilirubin (mg/dl) 0.43 (0.25–0.63)

Group 2
N = 230

25(OH)D (ng/ml) 22 (15–32)
BALP (U/L) 11.9 (9.0–15.5)
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osteoclasts and each remodelling cycle consists of three 
consecutive phases: resorption, reversal, and formation. 
The resorption phase is characterised by the migration of 

partially differentiated mononuclear pre-osteoclasts to the 
bone surface where they form multinucleated osteoclasts. 
After the completion of osteoclastic resorption, there is a 

Fig. 1  Correlation between 
25-OHD and ALP (a) and 
25-OHD and BALP (b)
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reversal phase when mononuclear cells appear on the bone 
surface. Then, new osteoblasts begin bone formation and 
BALP is considered a good marker of this phase. Resorp-
tion probably continues for about 2 weeks, the reversal 
phase may last up to 4 or 5 weeks, while formation can 
continue for four months until the new bone structural unit 
is completely created [19].

On the basis of our results and the physiology of bone 
remodelling, we hypothesize a complex mechanism in which 
in the resorption phase, low osteoblast activity and low 
release of BALP stimulate 25-OHase activity; on the con-
trary, higher BALP levels of the formation phase inhibit the 
activity of CYP2R1. Although previous studies showed ALP 
concentrations significantly higher in individuals with vita-
min D deficiency [20] and a negative association between 
BALP and 25-OHD in 58 patients (median age: 62 years) 
with gastric cancer [21], no previous study has considered 
this issue in healthy subjects.

This study has the benefits of a large healthy population 
in a wide range of ages to assess the correlation between 
25-OHD and ALP and BALP. Moreover, the opportunity of 
considering samples drawn during all the year allowed to 
assess better the persistence of the correlation in different 
seasons. Indeed, our study confirms both the well known 
seasonal oscillations of vitamin D concentrations with sig-
nificantly higher levels in the summer–autumn period than 
in winter–spring and the persistence of correlation between 
25-OHD and BALP in different seasons. Moreover, we 
found that BALP also showed a seasonal variability, as does 
vitamin D, with higher levels in summer-autumn.

On the basis of our results, we speculate that assessing the 
real vitamin D status of subjects is important, considering 
not only the seasonality of vitamin D but also other mecha-
nisms of bone remodelling.

This study has certain limitations, including that all data 
were examined retrospectively and the correlation with ALP 
and BALP was assessed in two different groups. Moreover, 
we assessed only correlations, but we have not experiments 
showing that one factor interferes with another.

Further prospective longitudinal studies aimed at evaluat-
ing the vitamin D status of each subject from samples drawn 
at different times of the year and experiments to verify a 
causal relationship between 25-OHD and ALP/BALP are 
needed to confirm our assumptions and to study the oppor-
tunity of a cyclic replacement therapy in the case of vitamin 
D deficiency.
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Table 2  (a) Correlations between 25-OHD and liver function test results in Group 1. (b) Correlation between 25-OHD and BALP in subgroups 
of Group 2 (for seasons, sex and age)

The significant correlations are in bold
r correlation coefficient

(a)

Group 1 AST ALT GGT ALP Total bilirubin Direct bilirubin Indirect bili-
rubin

r p r P r p r p r p r p r p

25-OHD  − 0.03 0.8  − 0.02 0.91 0.08 0.68  − 0.2 0.007  − 0.24 0.21  − 0.02 0.89  − 0.24 0.21

(b)

Group 2 Summer–Autumn Winter–Spring Males Females  ≤ 40  > 40

r p r p r p r p r p R p

25-OHD–BALP  − 0.2 0.004  − 0.2 0.002  − 0.2 0.04  − 0.2 0.0003  − 0.3 0.03  − 0.27 0.02
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were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.
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