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1 Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden, 2 Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami,

Florida, United States of America

Abstract

The identification of secreted factors that can selectively stimulate the generation of insulin producing b-cells from stem
and/or progenitor cells represent a significant step in the development of stem cell-based b-cell replacement therapy. By
elucidating the molecular mechanisms that regulate the generation of b-cells during normal pancreatic development such
putative factors may be identified. In the mouse, b-cells increase markedly in numbers from embryonic day (e) 14.5 and
onwards, but the extra-cellular signal(s) that promotes the selective generation of b-cells at these stages remains to be
identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and
human pancreas at stages when b-cells are generated. We also provide evidence that RA induces the generation of Ngn3+

endocrine progenitor cells and stimulates their further differentiation into b-cells by activating a program of cell
differentiation that recapitulates the normal temporal program of b-cell differentiation.
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Introduction

The identification of secreted signal(s) that promotes the

selective generation of b-cells from stem and/or progenitor cells

represent a significant step in the development of stem cell-based

b-cell replacement therapy for type 1 diabetes. Such signals may

be identified by studying how b-cells are normally generated

during pancreas development. Transcription factors with impor-

tant roles during pancreatic development and endocrine cell

differentiation have been identified, and Notch signaling has been

shown control pancreatic cell differentiation by regulating the

expression of the proendocrine gene Neurogenin 3 (Ngn3) [1–6]. In

contrast, no secreted signal has been identified that selectively

promotes the generation of b-cells during pancreas development.

Ngn3+ endocrine progenitor cells give rise to different endocrine

cell types at different stages of mouse embryonic development

[1,2,5]. Glucagon positive (Glu+) cells appear by embryonic day (e)

,9.5 whereas insulin positive (Ins+) cells appear predominantly

from ,e14.5 and onwards. Between e14.5 and neonatal stages

Ins+ cell numbers increase 4–10 fold more than other pancreatic

endocrine cell types [7,8]. Why Ngn3+ endocrine progenitor cells

preferentially start to differentiate into Ins+ cells at ,e14.5 remains

unknown. One possibility is that a cell intrinsic program in Ngn3+

progenitor cells regulates the temporal order of generation of

differentiated endocrine cell types. Alternatively, extra-cellular

signals may induce distinct classes of Ngn3+ endocrine progenitor

cells at different developmental stages.

The vertebrate ventral spinal cord is a well studied system with

respect to the mechanisms by which different classes of progenitor

cells and differentiated progeny, inter-neurons and motor neurons,

are generated [9–11]. Pancreatic endocrine cells and neurons

share many common features and in particular b-cells and spinal

cord motor neurons show striking similarities in patterns of gene

expression of several basic-helix-loop-helix (Bhlh) and homeodo-

main transcription factors [11–13]. The secreted signal retinoic

acid (RA) has been shown to control multiple, sequential steps of

motor neuron differentiation in the ventral spinal cord, including

initial patterning of progenitors cells and specification of motor

neuron subtype identity [11]. The similarities between b-cells and

motor neurons suggest that RA may also control specification

and/or differentiation of insulin-producing b-cells.

Here we show that RA receptor signalling is required in early

pancreatic progenitor cells for pancreatic development. We also

show that the RA-synthesizing enzyme Raldh1 is expressed at

stages when b-cells are normally generated in embryonic mouse

and human pancreas. Using an explant assay of pancreatic

endocrine cell differentiation, we provide evidence that RA

promotes both the generation of Ngn3+ endocrine progenitor

cells and their further differentiation into b-cells. The identifica-

tion of a secreted signal that induces the generation insulin
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producing b-cells will aid in the establishment of a stem cell-based

therapy for type 1 diabetes.

Results

Raldh1 expression coincides with b-cell differentiation in
both mouse and human fetal pancreas

To address a potential role for RA in generation of endocrine

progenitor and/or b-cells we first investigated expression of

Retinaldehyde dehydrogenase (Raldh) genes in the developing mouse

pancreas by in situ hybridization. Neither Raldh 3 nor 4 was

expressed in the developing pancreatic epithelium or mesenchyme

at any stage examined (data not shown). Although Raldh2 was

expressed in e8.0 somitic mesoderm and e10.5 duodenal

mesenchyme (Fig. S1a), it was not expressed within the developing

pancreas. Raldh1 was, however, expressed in the pancreatic

epithelium from ,e13.5 and onwards (Fig. 1a), coinciding with

the period of massive b-cell differentiation. Expression of Raldh1 in

embryonic mouse pancreas was restricted to the branching ductal

and acinar epithelium flanking the differentiating endocrine cells

(Fig. S1b). qRT-PCR revealed that RALDH1 expression over-

lapped temporally with that of INSULIN also in the developing

human pancreas, whereas expression of RALDH 2, 3, and 12 (the

homolog of mouse Raldh4) was distinctly lower and/or barely

detectable (Fig. 1b and data not shown). In situ hybridization

analyses confirmed expression of RALDH1 in fetal human

pancreas (Fig. 1c). Thus, the expression of the RA-synthesizing

enzyme Raldh1, coincides with the period of b-cell differentiation

in both mouse and human pancreatic development.

RA-signalling is required for pancreatic development
To address the role for RA-signalling in the developing pancreas

we next generated transgenic (tg) mice expressing a dominant-

negative (dn) form of the retinoic acid receptor (RAR) a, denoted

RAR403 [14,15], under the control of the Ipf1/Pdx1 promoter,

which is active both in pancreatic progenitor cells and in b-cells

[16]. The resulting Ipf1/RAR403 tg mice showed complete

pancreatic agenesis, lacking both dorsal and ventral pancreas, and

died at the neonatal stage (Fig. 1d). These data are consistent with

Raldh2 expression in lateral plate and somitic mesoderm of e8.0

mouse embryos (Fig. S1a) and provides support for an intrinsic role

for RA-signalling in specified Ipf1/Pdx1+ pancreatic progenitor

cells. The perturbation of both dorsal and ventral pancreatic

development in Ipf1/RAR403 tg mice contrasts with the Raldh22/2

mutant mice in which dorsal but not ventral pancreatic develop-

ment was affected [17,18]. Taken together, our data provide

evidence for a requirement for RA-signalling in early pancreatic

progenitor cells of both the dorsal and ventral pancreatic anlage and

suggest the existence of a Raldh2 independent source of RA that

signals to the ventral pancreatic anlage.

Retinoic acid promotes the generation b-cells
The impaired pancreatic development in Ipf1/RAR403 tg mice

precluded any analysis of a role for RA-signalling in b-cell

differentiation, and attempts to block RA signalling in b-cells by

expressing the dnRARa in b-cells of tg mice using the rat insulin 1

promoter19 failed to generate tg offspring, which may be due to

non-pancreatic expression of the transgene at embryonic stages

[20]. The elucidation of the roles of RA in motor neuron

generation benefited largely from the use of an ex vivo explant

system [9,21]. Thus, to assess a potential role for RA signalling in

b-cell generation we established an ex vivo explant system where

e10.5 dorsal pancreatic buds were cultured in serum-free, defined

media for six days in presence or absence of RA. Using these

culture conditions the explants survive but do not grow.

In explants cultured for six days in absence of RA, only a few

glucagon positive (Glu+) and insulin positive (Ins+) cells were

observed and the majority of cells were of non-endocrine identity

(Fig. 2a,b and data not shown). In explants cultured in presence of

25nM RA a .3-fold increase in the relative number and ,2,5 fold

increase in absolute numbers of Ins+ cells (67633 Ins+ cells in

control explants and 155623 Ins+ cells in RA treated explants,

presented as mean6S.E.M) was observed, whereas there was no

significant increase in the number of Glu+ cells (Fig. 2a,b and data

not shown). Higher concentrations of RA (50 and 100 nM), failed to

further stimulate the generation of Ins+ cells, and even showed an

inhibitory effect on endocrine cell differentiation (data not shown).

The expression of Raldh1 in the developing pancreatic

epithelium (Fig. 1a–c) suggests that the epithelial cells themselves

Figure 1. Raldh1 expression in mouse and human embryonic
pancreas. (A) In situ hybridization of an e13.5, e14.5 and e15.5 mouse
pancreas using a Raldh1 probe. (B) qRT-PCR using cDNA prepared from
human fetal pancreas (n = 3 for week 8, 9, 10, 11, 13, 14 and 18, n = 2 for
week 12, 15, 17 and 21, n = 1 for week 19 and 20) with RALDH1 and
INSULIN specific primers. (C) In situ hybridizations of week 12, week 14
and week 17 human fetal pancreas using a RALDH1 probe. (D) The
stomach-duodenal region from a wild-type and an Ipf1/RAR403
transgenic neonatal mouse.
doi:10.1371/journal.pone.0002841.g001
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synthesize retinoids that participate in the induction of Ins+ cells.

Previous studies have, however, shown that explants grown in

medium are deprived of both RA and the metabolic substrate

required for synthesis of RA by RA-synthesizing enzymes [21].

Thus, to test for RA-synthesizing activity in the pancreatic

explants the RA precursor retinol was added to the medium. In

explants cultured in presence of 5 mM retinol or 100 nM retinol a

,10-fold increase in Ins+ cells was observed as compared to that of

control explants (Fig. 2d and data not shown). Taken together,

these results support the existence of an endogenous RA

synthesizing system in the developing pancreas that promotes

the generation of ins+ cells from pancreatic progenitor cells.

Retinoic acid induces the expression of transcription
factors that control endocrine cell differentiation

In the ventral spinal cord RA induces a transcriptional program

that culminates in the generation of a distinct set of motor neurons

[9–11]. To begin to understand how RA promotes the generation

of Ins+ cells in our explant system, we analyzed expression of

transcription factors that regulate endocrine cell differentiation.

Pancreatic endocrine cell differentiation, including that of b-cells,

is preceded by and dependent on transient expression of the pro-

endocrine gene Ngn3 in progenitor cells [1–6]. Moreover, during

motor neuron differentiation RA has been shown to regulate the

expression of the pro-neural gene Ngn2 [9–11]. Thus, we

examined Ngn3 expression in explants harvested after 2 or 4

days of in vitro culture in presence or absence of RA. After 2 days of

culture, explants exposed to RA showed a ,4-fold increase in both

relative (Fig. 3a,b) and absolute number of Ngn3+ cells (2468

Ngn3+ cells in control explants and 94624 Ngn3+ cells in RA

treated explants, presented as mean6S.E.M) compared to

controls. Consistent with the transient role for Ngn3 in pancreatic

endocrine progenitor cell differentiation [1–6], the number of

Ngn3+ cell was not significantly greater than that in control

explants after an additional 2 days of RA exposure (Fig. 3b).

Ngn2 expression and thus motor neuron differentiation

critically depends on the transient expression of Olig2, a Bhlh

transcriptional repressor, induced by RA [9–11]. To elucidate

whether expression of Olig2 or related Bhlh factors [22,23]

correlated with Raldh1 expression in the pancreas we investigated

expression of Olig1-3, and Bhlhb2-5 in e13.5 and e15.5 pancreas by

qRT-PCR. Only Bhlhb2 was robustly expressed in the e13.5 and

e15.5 pancreas (Fig. S2 and data not shown) and its expression was

also increased by ,50% in RA-treated explants at day 2 of culture

(Fig. 3c). NeuroD is a Ngn3 target gene that is expressed in

differentiated endocrine but not pro-endocrine cells. In agreement

with the normal temporal order of expression of Ngn3 and NeuroD,

no increase in NeuroD expression was observed at day 2 of RA

exposure whereas an almost 3-fold increase in NeuroD expression

was evident at day 4 of RA exposure (Fig. 3c). Thus, RA triggers

the expected temporal sequence of events of transient Ngn3

expression followed by increased NeuroD expression.

During pancreatic and motor neuron development, activation

of Notch results in increased expression of Hes genes that repress

expression of the proendocrine gene Ngn3 and the pro-neural gene

Ngn2, respectively, thus maintaining cells as undifferentiated

progenitor cells [12,13]. Bhlhb2 has been shown to inhibit Notch

mediated activation of the Hes1 promoter by interacting with the

intracellular form of Notch [24]. In agreement with the increased

expression of Bhlhb2 in RA treated explants at day2, Hes1

expression was reduced by RA to only ,50% of that of untreated

controls at day 4 (Fig. 3c). Thus, sequential stimulation of Bhlhb2,

Ngn3, and NeuroD expression, paralleled by reduced Hes1

expression, precedes RA-stimulated differentiation of b-cells.

Sequential roles for RA in the generation of b-cells
The induction of Ngn3+ endocrine progenitor cells and the

preferential generation of b-cells by RA, suggests that RA may

promote the generation of a set of Ngn3+ cells that consequently

are destined to generate b-cells. Alternatively, similar to its role

Figure 2. RA stimulates b-cell differentiation in vitro. (A) Representative sections of control and RA-treated e10.5 dorsal pancreatic explants
cultured for 6 days and analyzed for insulin (green) and glucagon (red) expression. (B) Quantification of insulin and glucagon positive cells in control
pancreatic explants and pancreatic explants exposed to RA for 6 days (n = 6 for both) displayed as % positive cells/total number of cells. (C)
Representative sections of control and retinol-treated e10.5 pancreatic explants cultured for 6 days and stained with antibodies against insulin
(green). (D) Quantification of insulin expression in control and retinol-treated pancreatic buds (n = 2 for both). Scale bar = 40 mM in (A) and 30 mM in
(C). Data show mean6S.E.M, *p,0.05.
doi:10.1371/journal.pone.0002841.g002
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during motor neuron differentiation [9–11], RA may have distinct

sequential functions during the generation of b-cells, i.e. inducing

both Ngn3 expression and the further differentiation of Ngn3+

cells into b-cells. To distinguish between these two possibilities,

e10.5 pancreatic buds were cultured in presence of RA for only the

first 2 or 4 days of the total 6 day culture period. No significant

increase in the number of Ins+ cells was observed in explants

exposed to RA for only the first 2 of the total 6 day culture period

(Fig. 4a). In explants exposed to RA for the first 4 of the total 6

days, there was a significant increase in the number of Ins+ cells

(Fig. 4a), though smaller than that observed in explants exposed to

RA the entire 6 day culture period (Fig. 2b and data not shown).

Thus, RA needs to be added throughout the culture period to

ensure Ins+ cell differentiation.

Like the sequential expression of Bhlh genes (Fig. 3c),

homeobox genes linked to b-cell differentiation were expressed

in a sequential manner during RA-stimulated Ins+ cell differen-

tiation. The expression of Pax4, a critical factor in specification of

b-cell identity [25], was not significantly increased after 2 days of

RA exposure but a ,2.5 fold increase in Pax4 expression was

observed after 4 days of RA exposure (Fig. 4a). The Ins+ cells

induced by RA expressed the additional b-cell markers Ipf1/Pdx1,

Nkx6.1 and Hb9, as well as C-peptide and Glut2, after 6 days of

RA exposure (Fig. 4b and data not shown). RA therefore mediates

sequential induction of the Bhlh transcription factors Ngn3, Bhlhb2,

and NeuroD that promote the generation of endocrine cells,

followed by induction of the homeobox gene, Pax4, that

determines b-cell identity, and finally the generation of insulin

producing b-cells that express the homeodomain proteins Ipf1/

Pdx1, Nkx6.1 and Hb9 (Fig. 4c). Taken together these results

provide evidence that, in analogy with the generation of motor

neurons in the spinal cord, RA acts at multiple levels in the

generation of b-cells in the pancreas.

Discussion

In the developing mouse pancreas, b-cells increase in large

numbers from ,e14.5 onwards, suggesting that intrinsic and/or

extrinsic signals favour b-cell differentiation at these stages.

Transcription factors that control specification of pancreatic

endocrine progenitor cells and their further differentiation into

b-cells have been identified [13]. In contrast, secreted signals that

may promote the large increase in generation of b-cells remain to

be identified. In this study, we show that the RA synthesizing

enzyme Raldh1 is expressed in the developing mouse and human

pancreas at stages when b-cells are predominantly generated.

Moreover, using an explant assay of pancreatic endocrine cell

differentiation, we provide evidence that RA activates a program

of cell differentiation that recapitulates the normal temporal

program of b-cell differentiation.

In Raldh2 mutant mice, Ipf1/Pdx1 expression is lost in the

dorsal but not ventral pancreatic bud and mutant mice present

with dorsal but not ventral pancreatic agenesis [17,18]. However,

the dorsal but not ventral pancreatic mesenchyme fails to form in

Raldh2 mutants [17], suggesting that this phenotype is indirect.

Consistent with this possibility early pancreatic markers such as

Hb9 and Isl1 are expressed in e9.5 Raldh2 mutant dorsal

pancreatic endoderm [17]. Moreover, maternal RA administra-

tion restored the formation of dorsal pancreatic mesenchyme,

Ipf1/Pdx1 expression and thus pancreatic development in Raldh2

mutant embryos [17]. Loss of dorsal pancreatic mesenchyme and

Ipf1/Pdx1 expression are also observed in Isl1 [26] and N-cad [27]

mutant embryos, and dorsal pancreatic development could be

rescued in both mutants by co-culturing the pancreatic endoderm

with wild-type mesenchyme [26,27]. In Xenopus and zebrafish,

induction of pancreatic development is inhibited following

treatment of early, pre-pancreatic embryos, with the RA-

antagonist BMS493, and embryos treated with exogenous RA

prior to the initiation of the pancreatic development show ectopic

expression of pancreatic markers such as insulin [28–31].

Collectively, these data provide evidence that RA is required

during early (dorsal) pancreas development, at least in part by

promoting the development of dorsal pancreatic mesenchyme. In

addition, the apancreatic phenotype of Ipf1/RAR403 tg mice

suggests a direct role for RA signaling in both the early dorsal and

ventral pancreatic epithelium after the onset of Ipf1/Pdx1

expression. The lack of pancreas in these mice unfortunately

precluded the establishment of a transgenic line that would allow

detailed analysis of the pancreatic developmental defect.

Differentiation of all pancreatic endocrine cells requires the

transient activity of the proendocrine gene Ngn3 in progenitor cells

[1–6]. Different classes of endocrine cells are generated at different

Figure 3. RA induces Ngn3 expression in vitro. (A) Representative
sections of a control and RA-treated e10.5 dorsal pancreatic explants
cultured for 2 days and stained with antibodies specific for Ngn3. (B)
Quantification of Ngn3+ cells in control and RA-treated explants
cultured for 2 or 4 days (n = 4 for each condition) displayed as %
Ngn3 expressing cells/total number of cells. (C) qRT-PCR using Bhlhb2,
Hes1 and NeuroD specific primers on cDNA from control and RA treated
e10.5 pancreatic explants cultured for 2 (n = 13) or 4 days (n = 9). Data
represent the mean value6S.E.M. *p,0.05, **p,0.01, for RA treated
explants versus controls.
doi:10.1371/journal.pone.0002841.g003

RA Promotes b-Cells
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stages of embryonic development of the pancreas and forced

expression of Ngn3 in early pancreatic progenitor cells generates

predominantly glucagon-producing cells whereas later induction

generates b-cells and other endocrine cell types [1,2,5]. Our data

show that the temporal expression of the RA-synthesizing enzyme

Raldh1 in the developing pancreas coincides with the large increase

in b-cells from ,e14.5 and onwards. Using an explant assay, we

also show that RA and RA precursors selectively stimulate b-cell

differentiation, resulting in both a relative and absolute increase in

b-cell numbers. Raldh1 mutant mice have been generated and are

viable, suggesting that they are not devoid of b-cells [32]. Whether

this reflects increased expression of any of the other Raldhs in the

pancreas of Raldh1 mutant mice at the time of b-cell differentiation

will have to await future analyses of Raldh2-4 expression in

Raldh12/2 mice. An alternative, RALDH-independent mode of

RA synthesis mediated by Cyp1b1 was recently reported [33] and

qRT-PCR analyses detected low level expression of Cyp1b1 in

mouse e13 and e15 pancreas and in 8–19 weeks human fetal

pancreas (data not shown).

By using medium containing high levels of serum that favors

growth of explants, previous studies suggest that RA antagonizes

growth and exocrine cell differentiation leading to a relative but

not absolute increase of b-cells [34,35]. In the developing

pancreas, Fibroblast growth factor (FGF) signals provided by the

mesenchyme stimulate growth and differentiation of the exocrine

pancreas [30,36,37]. RA and FGFs are known to exert opponent

activities [38] and under culture conditions promoting growth, RA

is likely to primarily antagonize the stimulatory effect of FGFs on

growth and differentiation of the exocrine pancreas. In support of

this, FGF10 was shown to antagonize the negative effects of RA on

pancreatic growth, morphogenesis, and exocrine differentiation

[34]. b-cell differentiation in the mouse embryo becomes

prominent when the mesenchyme/epithelium ratio, and thus

growth decreases [7,8]. This phase, sometimes referred to as the

secondary transition [7], coincides temporally with Raldh1

expression in the pancreas. Our culture conditions were designed

to mimic this phase of b-cell differentiation by using defined,

minimal media without serum, which allows survival but not

growth of the pancreatic explants. Under these conditions, RA or

RA precursors selectively stimulate differentiation of pancreatic

progenitors into b-cells.

Together, our results provide strong evidence that RA promotes

both the generation of Ngn3+ endocrine progenitor cells and their

further differentiation into b-cells. The increase in Ngn3+ cells is

Figure 4. Temporal changes in the expression of Bhlh and homeobox genes in response to RA. (A) Quantification of Ins+ cells in control
pancreatic explants (n = 6) and pancreatic explants exposed to 25 nM RA for the first 2 (n = 3) or 4 days (n = 4) of the 6 day in vitro culture period
displayed as % positive cells/total number of cells. Data show mean6S.E.M, *p,0.05 **p,0.01. (B) qRT-PCR using Pax4 specific primers on cDNA
from control and RA treated e10.5 pancreatic explants cultured for two (n = 13) or four days (n = 9). Data represent the mean value6S.E.M. *p,0.05,
**p,0.01. (C) 6d RA treated explants double-stained for insulin (green) and Ipf1/Pdx1, Nkx6.1, Hb9 or C-peptide (all red). (D) Schematic model
summarizing the multiple proposed roles of RA during pancreatic development. Our data provides evidence that RA sequentially specifies: i)
proendocrine cells; ii) committed pre-b-cells; and finally iii) differentiated b-cells. Scale bar = 30 mM in (C) (7,5 mM for the enlarged inserts).
doi:10.1371/journal.pone.0002841.g004

RA Promotes b-Cells
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evident already after 2 days of RA exposure although Hes1

expression is significantly reduced first after 4 days of RA

exposure, leaving open the possibility that the increase in Ngn3+

cells is independent of Hes1 expression. Whether the early increase

in Bhlhb2 expression already at day 2 of RA exposure, directly or

indirectly, promotes a parallel increase in Ngn3 expression, similar

to the positive effects of Olig2 on Ngn2 expression [9.11], will

require further analyses. Nevertheless, the early increase in the

expression of Bhlhb2, which has Notch antagonizing activity [24],

is in agreement with the subsequent reduced expression of Hes1

observed at day 4 of RA exposure. The identification of RA as a

secreted signal that promotes the selective generation of b-cells,

and increased availability of human ES cell lines that respond to

experimental protocols that allow efficient and reproducible

generation of pancreatic endoderm, will help to develop stem

cell-based b-cell replacement therapy.

Materials and Methods

Human fetal pancreas isolation
The fetal pancreatic studies were approved by the Human

Subject Research Office, Miami, Florida, in compliance with US

legislation and the guidelines of our institution. Fetal pancreatic

tissue was obtained following written maternal consent. Elective

termination of pregnancy was performed by aspiration between 8

and 19 weeks of development. Warm ischemia lasted less than

30 minutes.

Animals and generation of transgenic mice
Animal studies were approved by the Institutional Animal Care

and Use Committee of Umeå University and conducted in

accordance with the Guidelines for the care and use of Laboratory

Animals. Human RARa403 was subcloned behind the Ipf1/Pdx1

promoter and the RIP promoter respectively. Transgenic mice

were generated as described16.

Immunohistochemistry and in situ hybridization
Immunohistochemical analyses were carried out as described

elsewhere16. Primary antibodies used were: rabbit anti-Ipf139

(Ohlsson et al., 1993), rabbit anti-Ngn340, guinea pig anti-Insulin

(Linco), rabbit anti C-peptide (Linco), rabbit anti-Glucagon

(Linco), rabbit anti-Nkx6.1 (raised against a GST-Nkx6.1 fusion

protein by AgriSera AB, Vännäs, Sweden) and rabbit anti-Hb9

(kindly provided by T. M. Jessell). Secondary antibodies were: Cy3

anti-rabbit (Jackson), Alexa Fluor 488 anti-guinea pig and Alexa

Fluor 594 anti-rabbit (Molecular Probes). In situ hybridizations

were performed as previously described16. Images were acquired

using a Zeiss Axioplan imaging microscope or a Nikon confocal

microscope C1 fitted with an Ar, He/Ne and a blue diode laser.

Digitalized confocal images were assigned red and green

pseudocolors for Cy3 and Alexa Fluor 488 respectively.

In vitro cultures
Isolated e10.5 dorsal pancreatic buds were cultured on filters

(Millipore) in 24-well plates (Costar) with 400 ml of medium

consisting of DMEM-glutamax1 (Gibco), 16N2-supplement

(Gibco) and pen/strep (Gibco), and different concentrations of

all trans retinoic acid or retinol (Sigma). Explants were cultured for

up to six days in 37uC and 5% CO2 and medium was changed

every other day. After culture, explants were washed twice in PBS,

fixated in 4% PFA at 4uC for 20 minutes followed by two more

washes in PBS. Explants were frozen in drops of Tissue Tek OCT

applied on glass slides (Menzel) and stored at 280uC until

sectioned (8 mm sections) and analyzed by immunohistochemistry.

Quantification of mRNA expression levels
cDNA was prepared from explants, fetal mouse and human

pancreas and qRT-PCR analysis of the cDNA was performed

essentially as described41. Expression of TATA box binding

protein (TBP) and human 18S ribosomal RNA (18S) was used to

normalize expression levels. Primer sequences are found in

Supplementary Table S1.

Statistical analysis
All data is presented as mean value6standard errors (S.E.M.).

All statistical analyses were performed using the two-tailed, two

sample Students t-test and P values ,0.05 were considered as

significant.

Supporting Information

Figure S1 RALDH1 and 2 expression in mouse embryos

Found at: doi:10.1371/journal.pone.0002841.s001 (1.37 MB TIF)

Figure S2 Bhlhb2 and Ngn3 expression in e13.5 mouse

pancreas.

Found at: doi:10.1371/journal.pone.0002841.s002 (6.05 MB TIF)

Table S1 Primer sequences.

Found at: doi:10.1371/journal.pone.0002841.s003 (0.04 MB

DOC)
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Transgene Core Facility, and Kevin Johnson, for technical assistance,

Karen Bookbinder and Dr. Gerald B. Applegate for assistance with human

tissue procurement.

Author Contributions

Conceived and designed the experiments: M KAL JD HE. Performed the

experiments: M KAL SE LS UD JJ MCM. Analyzed the data: M KAL SE

LS UD MCM JD HE. Contributed reagents/materials/analysis tools: CR.

Wrote the paper: M KAL HE.

References

1. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, Honjo T, et al. (1999)

Notch-signalling controls pancreatic cell differentiation. Nature 400: 877–

881.

2. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee J, et al. (2000)

Expression of neurogenin3 reveals an islet cell precursor population in the

pancreas. Development 127: 3533–3542.

3. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) Neurogenin3 is

required for the development of the four endocrine cell lineages of the pancreas.

Proc Natl Acad Sci U S A 97: 1607–1611.

4. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic

lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors.

Development 129: 2447–2457.

5. Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, et al. (2007) Temporal

control of neurogenin3 activity in pancreas progenitors reveals competence

windows for the generation of different endocrine cell types. Dev Cell 12:

457–465.

6. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, et al. (2000) Control of

endodermal endocrine development by Hes-1. Nat Genet 24: 36–44.

RA Promotes b-Cells

PLoS ONE | www.plosone.org 6 July 2008 | Volume 3 | Issue 7 | e2841



7. Pictet R, Rutter WJ (1972) Development of the embryonic endocrine pancreas.

In: Steiner DF, Frenkel N, eds (1972) Handbook of Physiology. Washington DC:
Williams and Wilkins. pp 25–66.

8. Herrera P, Huarte J, Sanvito F, Meda P, Orci L, et al. (1991) Embryogenesis of

the murine endocrine pancreas; early expression of pancreatic polypeptide gene.
Development 113: 1257–1265.

9. Novitch BG, Wichterle H, Jessell TM, Sockanathan S (2003) A requirement for
retinoic acid-mediated transcriptional activation in ventral neural patterning and

motor neuron specification. Neuron 40: 81–95.

10. Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the
vertebrate neural tube. Dev Biol 282: 1–13.

11. Briscoe J, Novitch BG (2007) Regulatory pathways linking progenitor
patterning, cell fates and neurogenesis in the ventral neural tube. Phil

Trans R Soc B Feb 5.
12. Edlund H (1999) Pancreas: how to get there from the gut? Curr Opin in Cell

Biol 11: 663–668.

13. Edlund H (2002) Pancreatic organogenesis–developmental mechanisms and
implications for therapy. Nat Rev Genet 3: 524–532.

14. Damm K, Heyman RA, Umesono K, Evans RM (1993) Functional inhibition of
retinoic acid response by dominant negative retinoic acid receptor mutants. Proc

Natl Acad Sci U S A 90: 2989–2993.

15. Sockanathan S, Perlmann T, Jessell TM (2003) Retinoid receptor signaling in
postmitotic motor neurons regulates rostrocaudal positional identity and axonal

projection pattern. Neuron 40: 97–111.
16. Apelqvist A, Ahlgren U, Edlund H (1997) Sonic hedgehog directs specialised

mesoderm differentiation in the intestine and pancreas. Curr Biol 7: 801–804.
17. Martin M, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, et al.

(2005) Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice.

Dev Biol 284: 399–411.
18. Molotkov A, Molotkova N, Duester G (2005) Retinoic acid generated by Raldh2

in mesoderm is required for mouse dorsal endodermal pancreas development.
Dev Dyn 232: 950–7.

19. Ahlgren U, Johnsson J, Johnsson L, Simu K, Edlund H (1998) Beta-cell-specific

inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell
phenotype and maturity onset diabetes. Genes Dev 12: 1763–1768.

20. Dumonteil E, Philippe J (1996) Insulin gene: organisation, expression and
regulation. Diabetes Metab 22: 164–173.

21. Sockanathan S, Jessell TM (1998) Motor neuron-derived signalling specifies the
subtype identity of spinal motor neurons. Cell 94: 503–514.

22. Bramblett DE, Copeland NG, Jenkins NA, Tsai MJ (2002) BHLHB4 is a bHLH

transcriptional regulator in pancreas and brain that marks the dimesencephalic
boundary. Genomics 79: 402–412.

23. Yamada K, Miyamoto K (2005) Basic helix-loop-helix transcription factors,
BHLHB2 and BHLHB3; their gene expressions are regulated by multiple

extracellular stimuli. Front Biosc 10: 3151–3171.

24. Sun H, Li L, Vercherat C, Gulbagci NT, Acharjee S, et al. (2007) Stra13
regulates satellite cell activation by antagonizing Notch signalling. J Cell Biol

177: 647–57.

25. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P (1997) The Pax4-

gene is essential for differentiation of insulin-producing beta cells in the
mammalian pancreas. Nature 386: 399–402.

26. Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H (1997) Independent

requirement for ISL1 in formation of pancreatic mesenchyme and islet cells.
Nature 385: 257–60.

27. Esni F, Johansson BR, Radice GL, Semb H (2001) Dorsal pancreas agenesis in
N-cadherin- deficient mice. Dev Biol 238: 202–212.

28. Stafford D, Prince VE (2002) Retinoic acid signaling is required for a critical

early step in zebrafish pancreatic development. Curr Biol 12: 1215–1220.
29. Chen Y, Pan FC, Brandes N, Afelik S, Sölter M, et al. (2004) Retinoic acid

signaling is essential for pancreas development and promotes endocrine at the
expense of exocrine cell differentiation in Xenopus. Dev Biol 271: 144–60.

30. Stafford D, Hornbruch A, Mueller PR, Prince VE (2004) A conserved role for
retinoid signaling in vertebrate pancreas development. Dev Genes Evol 214:

432–441.

31. Stafford D, White RJ, Kinkel MD, Linville A, Schilling TF, et al. (2006)
Retinoids signal directly to zebrafish endoderm to specify insulin-expressing b-

cells. Development 133: 949–956.
32. Fan X, Molotkov A, Manabe S, Donmoyer CM, Deltour L, et al. (2003)

Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex

mechanism of retinoic acid synthesis in the developing retina. Mol Cell Biol 23:
4637–48.

33. Chambers D, Wilson L, Maden M, Lumsden A (2007) RALDH-independent
generation of retinoic acid during vertebrate embryogenesis by CYP1B1.

Development 134: 1369–1383.
34. Shen CN, Marguerie A, Chien CY, Dickson C, Slack JM, et al. (2007) All-trans

retinoic acid suppresses exocrine differentiation and branching morphogenesis in

the embryonic pancreas. Differentiation 75: 62–74.
35. Tulachan SS, Doi R, Kawaguchi Y, Tsuji S, Nakajima S, et al. (2003) All-trans

retinoic acid induces differentiation of ducts and endocrine cells by mesenchy-
mal/epithelial interactions in embryonic pancreas. Diabetes 52: 76–84.

36. Miralles F, Czernichow P, Ozaki K, Itoh N, Scharfmann R (1999) Signalling

through fibroblast growth factor receptor 2b plays a key role in the development
of the exocrine pancreas. Proc Nat Acad Sci U S A 96: 6267–6272.

37. Li Z, Manna P, Kobayashi H, Spilde T, Bhatia A, et al. (2004) Multifaceted
pancreatic mesenchymal control of epithelial lineage selection. Dev Biol 269:

252–263.
38. Diez del Corral R, Storey KG (2003) Opposing FGF and retinoid pathways

control ventral neural pattern, neuronal differentiation, and segmentation during

body axis extension. Neuron 40: 65–79.
39. Ohlsson H, Karlsson K, Edlund T (1993) IPF1, a homeodomain-containing

transactivator of the insulin gene. EMBO J 12: 4251–4259.
40. Selander L, Edlund H (2002) Nestin is expressed in mesenchymal and not

epithelial cells of the developing mouse pancreas. Mech Dev 113: 189–192.

41. Steneberg P, Rubins N, Bartoov-Shifman R, Walker MD, Edlund H (2005) The
FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired

glucose homeostasis in mouse. Cell Metab 1: 245–258.

RA Promotes b-Cells

PLoS ONE | www.plosone.org 7 July 2008 | Volume 3 | Issue 7 | e2841


