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Abstract: Immune system dysfunction is associated with head and neck squamous cell carcinoma
(HNSCC) development and progression and immune checkpoint inhibitors have demonstrated
substantial survival benefits in platinum-refractory HNSCC; therefore, we examined the prognostic
value of immune-related gene (IRG) expression in HNSCC. We analyzed the expression of 82 IRGs in
71 patients with HNSCC enrolled in a feasibility study for a prospective HNSCC biomarker-driven
umbrella trial (Korean Cancer Study Group TRIUMPH study, NCT03292250). CD200R1 was identified
as an independent prognostic factor and validated in GEO and TCGA database. CD2000RT mRNA
expression was found to be an independent favorable prognostic factor in patients with HNSCC.
Moreover, CD200R1 was found to affect genes and pathways associated with the immune response,
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while seven differentially expressed genes (CD8A, DOK2, CX3CR1, TYROBP, CXCL9, CD300LF, IFNG)
were associated with CD200R1 expression. Samples with higher CD200R1 expression displayed
higher tumor-infiltrating immune cell counts both in silico and in histological analysis. These findings
will help in the development of more accurate prognostic tools and suggest CD200R1 modulation as
a HNSCC immunotherapy.

Keywords: CD2000R1; mRNA expression; prognosis; immune cell; head and neck cancer

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide,
with more than 350,000 related deaths per year [1,2]. Despite the presence of established combined and
multidisciplinary therapies against HNSCC, treatment outcomes remain poor and have improved little
in recent decades [3]. Major prognostic factors associated with HNSCC, include invasive depth, cervical
lymph node metastasis, and distant metastasis; however, the identification of clinical prognostic factors
remains challenging despite increasing knowledge of cancer genomics [4]. Thus, new prognostic
biomarkers for HNSCC are urgently needed to enable clinicians to select appropriate treatments.

The immune system is known to be significantly involved in HNSCC progression [5-7],
and anti-programmed cell death protein 1 (PD-1) immune checkpoint inhibitors have been approved
to treat recurrent and/or metastatic HNSCCs that are refractory to platinum therapy [8,9]. Several
immune-biomarkers have been highlighted as useful prognostic indicators for HNSCC [10-13];
for instance, circulating CD8" T cell levels prior to treatment have been found to be associated with
improved survival in patients with advanced oropharyngeal cancer [10], while high tumor-infiltrating
lymphocyte levels are related with increased overall survival (OS) [11], and increased CD68*
macrophage counts in oral squamous cell carcinoma are known to be significantly correlated with
mortality [12]. However, the molecular characteristics of tumor-immune interactions remain largely
unclear, and few studies have evaluated the prognostic value of immune-related genes (IRGs) in a
large HNSCC database.

In this study, we explored the prognostic value of IRGs in patients with HNSCC from a retrospective
Korean cohort, and validated their prognostic significance using data from the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, we investigated the
potential mechanism of action of the IRGs, and quantified immune cell infiltration which was stratified
based on IRG expression.

2. Results

2.1. Patient Characteristics

The clinicopathological characteristics and CD200R1 mRNA expression status of the 71 patient
tumors included in this study are shown in Table 1. The cohort included 58 (82%) men and 13 (18%)
women between the ages of 28 and 81, and almost 29% of the patients had never smoked. Most of
the tumors were human papillomavirus (HPV)-negative and more than 66% had reached advanced
clinical stages (Il or IV). The most common sites of tumor origin were the oral cavity (37%) and the
oropharynx (24%).
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Table 1. Clinical and pathological characteristics and CD200R1 mRNA expression in the Korean

HNSCC cohort.
Patient Characteristics No. % nglll\lg?szgglgzoi;r):;ismn

Total 71 100 43/71 (60.5)
Sex Male 58 81.6 35/58 (60.3)
Female 13 18.4 8/13 (61.5)
Age <58 years 31 43.6 19/31 (61.2)
>58 years 40 56.3 24/40 (60.0)
Smoking Never 20 28.1 10/20 (50.0)
Yes 51 71.8 33/51 (64.7)
Oral cavity 26 36.6 15/26 (57.6)
Oropharynx 17 23.9 11/17 (64.7)

Tumor location Hypopharynx 10 14 7/10 (70.0)
Larynx 12 16.9 8/12 (66.7)

Other 6 8.5 2/6 (33.3)

I 11 15.5 8/11 (72.7)

I 13 18.3 8/13 (61.5)

Stage I 17 23.9 8/17 (47.0)
v 30 423 19/30 (63.3)
Negative 47 66.2 26/47 (55.3)
Human papilloma virus Positive 12 16.9 10/12 (83.3)
Unknown 12 16.9 7/12 (58.3)

2.2. IRG Expression and Survival of Patients with HNSCC

To determine the relationship between gene expression and prognosis, IRG expression was
analyzed using a Nanostring assay and log-rank tests were conducted to evaluate the prognostic effect
of IRG mRNA expression on OS (Table S1). Among the 82 IRGs, 47 were significantly correlated with
OS (p < 0.05) and underwent regularized Cox regression which identified 12 IRGs as being significantly
associated with OS (Coxnet beta # 0). To confirm the prognostic reproducibility and stability of the
selected genes, we conducted external validation using TCGA and GEO (GSE65858) HNSCC data.
CD200R1 was identified as a significant OS-related factor in the Korean cohort, TCGA, and GEO data
(Figure 1).
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Figure 1. Kaplan-Meier survival curve for changes in OS according to CD200R1 mRNA expression
in the Korean cohort (A), the GEO (GSE65858) (B), and TCGA HNSCC (C) data. Patients with high
expression of CD200R1 (yellow solid line) showed longer OS compared with those with low expression
(blue dotted line). The p-values were calculated using the log-rank test.

Next, a Cox proportional-hazard model was used to verify the independent prognostic value
of CD200R1 mRNA levels and well-known clinical factors. CD200R1 mRNA expression was found
to be an independent predictor of OS in the Korean cohort and TCGA and GEO data after adjusting
for clinical features (Table 2). High CD200R1 expression was correlated with longer median survival
than low CD200R1 expression in the Korean cohort [median survival 75.5 vs. 23.4 months, hazard
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ratio (HR): 0.18, (95% confidence interval (CI): 0.05-0.54; p < 0.01), TCGA data (median survival: 60.4
vs. 47.0 months, HR: 0.72, 95% CI: 0.53-0.98; p < 0.05), and GEO data (median survival: 64.6 vs. 42.3
months, HR: 0.52, 95% CI: 0.28-0.94; p < 0.05; Figure 1). These findings demonstrated that CD200R1
expression was an independent prognostic IRG in all three HNSCC cohorts.

Table 2. Multivariate analysis of the overall survival in the Korean cohort and the GEO (GSE65858)

and TCGA HNSCC data.
Korean Cohort GEO (GSE65858) TCGA HNSCC
Factors Value Hazard Ratio Value Hazard Ratio Value Hazard Ratio
b (95% CI) P (95% CI) P (95% CI)
CD200R1 . . .
(high vs. low) <0.01 0.19 (0.06-0.58) <0.05 0.54 (0.29-0.99) <0.05 0.72 (0.53-0.98)
Smoking >0.1 1.67 (0.37-7.48) >0.1 0.97 (0.55-1.70) - -
(Yes vs. never)
T stage " "
(T3 + T4 vs. T1+T2) >0.1 1.12 (0.95-1.31) 0.001 2.81 (1.49-5.30) <0.001 1.74 (1.25-2.43)
N stage . . N .
(N+ vs. NO) >0.1 3.06 (0.53-17.7) >0.1 1.14 (0.63-2.03) <0.0001 2.00 (1.43-2.78)
M stage
(M1 v, M0) >0.1 6.27 (0.36-115.9) >0.1 1.91 (0.76-4.75) >0.1 1.01 (0.98-1.05)
Stage >0.1 0.52 (0.09-3.01) >0.1 0.93 (0.33-2.59) - -

(I, IV vs. 1, II)

Tumor grade >0.1 0.94 (0.81-1.09) - - - -

(2,3vs.0,1)
(F EEXM) >0.1 2.89 (0.84-9.90) >0.1 1.00 (0.58-1.73) >0.1 0.81 (0.58-1.12)
Age >0.1 1.00 (0.95-1.06) >0.1 1.18 (0.76-1.84) >0.1 1.33 (0.97-1.80)

* p value < 0.05. CI: confidence interval.

2.3. Performance of CD200R1 mRNA Expression as a Biomarker

To assess the prognostic performance of CD200R1, we compared its ability to predict OS with that
of other clinical factors using Uno’s C-index and AUC values (Table 3). Compared to the other clinical
factors, CD200R1 mRNA expression yielded a higher C-index value for five-year survival in the Korean
cohort alongside a higher AUC value, but exhibited similar performance for the GEO and TCGA data.
These means that the performance of CD200R1 was compatible with known clinical prognostic factors.

Table 3. C-index and AUC values for the prediction of five-year survival by CD200R1 and clinical
factors in the Korean cohort and the GEO (GSE65858) and TCGA HNSCC data.

Korean Cohort GEO Data TCGA HNSCC Data

Factors
C-index 95% CI AUC C-index 95% CI AUC C-index 95% CI AUC
CD200R1 0.59 0.41-0.77 0.63 0.58 0.53-0.63 0.58 0.53 0.49-0.57 0.54
T stage 0.55 0.42-0.69 0.50 0.58 0.51-0.65 0.58 0.55 0.52-0.59 0.58
N stage 0.55 0.41-0.70 0.59 0.53 0.45-0.60 0.55 0.56 0.52-0.59  0.58
Age 0.52 0.39-0.66 0.50 0.64 0.43-0.81 0.62 0.52 0.47-0.56 0.53
Sex 0.54 0.44-0.64 0.59 0.58 0.42-0.74 0.58 0.59 0.49-0.57 0.54

CI: confidence interval.

2.4. Differentially Expressed Genes (DEGs) and Gene set Enrichment Analysis

To explore the role of CD200R1 in HNSCC, we determined CD200R1 mRNA expression in normal
and tumor tissues in TCGA datasets from the University of California, Santa Cruz Xena platform [14].
Significantly lower CD200R1 expression (Welch's t-test, p < 0.001) was observed in the tumor tissue
than that in normal tissue (Figure 2).
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Figure 2. CD200R1 mRNA expression in tumors (blue box) and normal tissues (purple box) in TCGA
HNSCC (n = 602) using the Xena platform (Welch’s t-test, p < 0.001).

To further elucidate the biological function of CD200R1, we performed differential expression (DE)
analysis between tumors with high and low CD200R1 expression from the GEO and TCGA datasets,
respectively. A total of 130 genes were identified in the GEO data with a fold change > 1.5 and adjusted
p-values of <0.05 using the Benjamini-Hochberg method (Figure 3a).

201
1001
157 '
757 e __
aQ 0y
g b . e ®
2 r
T 10 ’ 2
S ’ S 507
& . 3
5 ] '
I be
he
57 ke 1 .
25
L COBA .
o 2 ' %
0 01 1 1
_'1 (I) % é -1 (') 1 2
Log, fold change Log, fold change
(a) (b)

Figure 3. Volcano plots of all differentially expressed genes (DEGs) between tumors with high and low
CD200R1 expression. (a) DEGs in GEO dataset. Red points represent genes with a [fold change| of >1.5
and adjusted p-values of <0.05. Dotted horizontal line indicates an adjusted p-value of <0.05. Dotted
vertical line indicates a [fold change| of >1.5. (b) DEGs in TCGA dataset. Red points represent genes
with a |fold change| of >2.0 and a false discovery rate (FDR) of <0.01. Dotted horizontal line indicates
an FDR < 0.01. Dotted vertical line indicates a |fold change| of >2.0.

To better understand the different underlying biological processes associated with these genes,
we performed GO enrichment analysis on the DEGs that met our differential expression criteria in
tumors with high and low CD200R1 expression. We identified GO biological process terms, with a
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Benjamini-Hochberg corrected p-value of <0.05, which were summarized using a REVIGO tree map
(Figure 4a and Table S2). The enrichment of biological processes was mainly associated with the
immune response and the regulation of leucocyte apoptosis.
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Figure 4. REVIGO tree maps of gene ontology terms for enriched biological processes in differentially
expressed genes (DEGs) associated with CD200R1 expression in the GEO (GSE65858) (a) and TCGA
HNSCC (b) data. (c) Common DEGs associated with CD200R1 expression in the GEO (GSE65858) and
TCGA HNSCC data. Box color indicates the functional category and box size is proportional to its
corrected p-value.

In the TCGA data, 800 genes with a fold change > 2.0 and an FDR of <0.01 (Figure 3b) were
subjected to GO enrichment analysis. A REVIGO map of these DEGs revealed that the immune
response was an important enriched biological process (Figure 4b and Table S2), while REVIGO
analysis of 67 common DEGs between the GEO and TCGA data showed that the immune response and
negative regulation of leukocyte apoptosis were essential biological processes (Figure 4c and Table S2).

2.5. Interaction between CD200R1 and IRGs

We generated a set of genes known to interact with CD200R1 by searching the STRING database
and conducting a literature review [15-17]. Seven DEGs (CD8A, DOK2, CX3CR1, TYROBP, CXCLS9,
CD300LEF, IFNG) in the TCGA data and one DEG (CD8A) in GEO were likely to be functionally related
to CD200R1 (Figure 3). Of these, CD8A was significantly correlated with CD200R1 expression (Pearson
correlation coefficient () = 0.20, p < 0.1 for Korean cohort; » = 0.47, p < 0.001 for GEO data; and r = 0.33,
p < 0.001 for TCGA data). These suggest that CD200R1 had interactions with other IRGs including
CD8A.

2.6. Correlation of CD200R1 with Immune Cell Signatures

CD200R1 is strongly expressed in macrophages, neutrophils, and other leucocytes such as
monocytes and mast cells; therefore, we deconvoluted gene expression in the GEO and TCGA data to
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estimate microenvironmental composition by ConsensusTME analysis. Significant enrichment in CD8*
and CD4" T cells was observed in samples with high CD200RT mRNA expression compared to those
with low CD200R1 expression in both the GEO and TCGA datasets (Figure 5). Furthermore, M1 and
M2 macrophage scores were significantly higher in samples with high CD200R1 mRNA expression
and higher immune scores were observed in tumors with high CD200R1 expression. These indicated
that tumors with high CD200R1 expression have a ‘immune-rich’ microenvironment.
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Figure 5. Boxplots of immune cell gene scores (normalized enrichment scores) stratified based on
CD200R1 mRNA expression in the GEO (A) and TCGA (B) datasets using ConsensusTME analysis.
(A)*p < 0.001,** p < 1x 10e7>; (B) ** p < 2 x 10e~1°.

2.7. Association between CD200R1 and Lymphocyte Infiltration

To confirm the association between CD200R1 expression and lymphocyte infiltration in tumor
tissue, we examined TCGA patient cohorts with matched histology-based lymphocytes infiltration
scores and gene expression data. A clear positive association was found between CD200R1 expression
and tissue-based quantitation of lymphocyte infiltrates (r = 0.16; p = 0.003) (Figure 6A), and significantly
higher lymphocyte infiltration was detected in samples with high CD200R1 expression than in those
with low CD200R1 expression (Welch t-test, p <1 X 10e73) (Figure 6B). These demonstrated that HNSCC
with high CD200R1 expression were characterized by a microenvironment rich in lymphocytes.
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Figure 6. CD200R1 mRNA expression and tumor lymphocyte infiltration in the TCGA HNSCC. A plot
for correlation analysis (A). Pearson correlation calculation was performed for linear correlation. A plot
for mean comparison stratified based on CD200R1 mRNA expression (B) ***p <1 X 10e73.

3. Discussion

In this study, we aimed to identify IRG markers to predict the prognosis of patients with HNSCC.
CD200R1 was found to be an immune prognostic biomarker in the Korean HNSCC cohort and
its predictive significance was systematically validated using the large GEO and TCGA databases.
In particular, we demonstrated that patients with HNSCC and high tumor tissue CD200RT mRNA
expression displayed significantly better OS than those with low CD200R1 expression. Multivariate
analysis with clinical factors further confirmed that CD200R1 expression was an independent prognostic
indicator in all three HNSCC cohorts. To explore the mechanisms of action of CD200R1 in HNSCC,
we systematically investigated the GEO and TCGA datasets and found that CD200R1 was positively
associated with an enhanced immune response. In silico and histological analyses revealed that samples
with high CD200R1 expression contained more tumor-infiltrating immune cells, while cyto-chemokine
networks (CX3CR1, CXCL9, IFNG) and immuno-receptor and adaptor proteins (DOK2, TYROBP,
CD300LF) were likely to contribute to antitumor cell immunity in tumors with high CD200R1 expression.

Cox regression analysis of CD200R1 expression could improve our understanding of the biological
role of CD200R1 in cancer [18,19] as CD200R1 signaling is associated with tumor growth and
metastasis [17,20]. CD200R1 deficiency was found to alter the tumor microenvironment (TME), leading
to accelerated tumor growth and reduced T cell infiltration and/or effector function, while CD200R1
expression was significantly lower in HNSCC tumors than that in normal tissues. These findings are
consistent with a previous study on patients with gastric cancer, which found that the frequencies of
CD3*, CD3*/CD4", and CD3*/CD8" T cells expressing CD200R1 were lower in the peripheral blood
of patients with gastric cancer than that in the healthy control patients [21].

DAVID and REVIGO analyses revealed that DEGs were enriched for the immune response and
the negative regulation of leucocyte apoptosis. A previous study using B16 melanoma and J558
plasmacytoma mouse syngeneic models found that CD200 expression could inhibit tumor growth and
metastasis by shaping the TME [17,20], while another indicated that CD200R1-deficient mice display
accelerated CD200" B16 melanoma growth [16]. Indeed, the livers of these CD200R1-deficient mice
exhibited increased metastatic CD200* tumor growth which contained higher numbers of CD11b*Ly6C*
myeloid cells, displayed VEGF and HIF1a gene expression with increased angiogenesis, and showed
significantly reduced CD4* and CD8* T cell infiltration [16]. Together with our results, these studies
linking CD200R1 and immune cell infiltration suggest a positive association between CD200R1
expression and the immune response. Immune cell mRNA deconvolution using ConsensusTME
showed that tumors with high CD200R1 expression contained more tumor-infiltrating cells such
as macrophages and T cells, consistent with the significantly higher histology-based lymphocyte
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infiltration score observed in samples with high CD200R1 expression. These findings are particularly
noteworthy as they were derived from different data types (i.e., mRNA vs. microscopy-based images).

Several potential mechanisms have been associated with CD200R1 and immune
responses [17,20,22]. For instance, 4THM breast cancer cell growth and invasion were increased
in CR200R1KO mice and decreased in mice over-expressing CD200, with a lack of CD200R1 expression
related to decreased CD8* and CD3*CD25* T cells [23]. In contrast, CD200 overexpression in CD200
transgenic mice was found to increase tumor-induced IFN-y and decrease inflammatory cytokine,
TNF-«, and IL-6 expression. Moreover, CD200fc, which mimics the effect of CD200, significantly
decreased tumor growth and metastasis in a mouse model of breast cancer, increased IFN-y and
decreased IL-6 expression, and time-dependently altered IL-10 and IL-17 levels [22]. In this study,
we analyzed genes that are biologically related to CD200R1 using the STRING database and by
conducting a literature review. CDSA, DOK2, CX3CR1, TYROBP, CXCL9, CD300LF, and IFNG were
identified as significant DEGs between tumor samples with high and low CD200R1 expression.

CX3CR1 expression is observed in monocytes, macrophages, dendritic cells, T cells, and natural
killer cells, while CX3CR1 is known to bind to CXCL6 and CXCLS8 [24,25]. In addition, CX3CR1 levels
have been shown to correlate with the degree of effector CD8" T cell differentiation and CX3CR1*
cells are the predominant memory T cells in peripheral tissues [26]. CXCL9 is an IFN-y-inducible
chemokine that has been associated with the activation of T helper type 1 immunity in the TME
and favorable responses to chemotherapy and immunotherapy in melanoma [27]. Although IFN-y
signaling has diverse biological functions, it is primarily related to host defense and immune regulation,
including anti-viral and anti-bacterial defense, anti-tumor functions, cell cycle, apoptosis, inflammation,
and innate and acquired immunity [28]. DOK2 encodes docking protein 2 which is preferentially
expressed in hematopoietic cells and is involved in the negative regulation of signaling pathways
downstream of various immunoreceptors, such as B cell, T cell, Fc, and Toll-like receptors [29].
Moreover, DOK2 can bind to the intracellular domain of CD200R1 and recruit the Ras-GTPase activator
protein which is required for inhibition of myeloid cell activation by CD200R1 [30]. TYRO is a
protein tyrosine kinase-binding protein encoded by TYROBP that is an immunoreceptor tyrosine-based
activation motif (ITAM)-bearing transmembrane adaptor protein, which is expressed in NK cells,
granulocytes, monocytes, macrophages, dendritic cells, and mast cells [31]. TYRO signals via the ITAM
within its cytoplasmic domain and induces cellular activation characterized by cytokine production,
proliferation, and survival in macrophages and antigen presentation, maturation, and survival in
dendritic cells [32]. Finally, CMRF35-like molecule 1, encoded by CD300LF, acts as an inhibitory
receptor in myeloid cells and mast cells [33], with anti-human CMRF35-like molecule 1 antibodies
displaying complement- and antibody-dependent cell cytotoxicity against CMRF35-like molecule
1-expressing AML-derived cell lines and freshly isolated blasts from AML patients in vitro [34].

Collectively the associations between CD200R1 and these diverse immune-related proteins suggest
that CD200R1 is involved in a variety of immune mechanisms and may explain why HNSCC with
high CD200R1 expression is related to an ‘immune-rich” microenvironment with high immune cell
estimates. Thus, our findings suggest that modulation of the CD200R1 pathway could be used as an
immunotherapeutic strategy in patients with HNSCC [22,35,36].

4. Materials and Methods

4.1. Patients and Data Collection

We analyzed 71 patients with HNSCC enrolled in a feasibility study for a prospective HNSCC
biomarker-driven umbrella trial (Korean Cancer Study Group TRIUMPH study, NCT03292250).
The data collection methods have been described previously [37]. Briefly, pretreatment tumor tissues
and matched normal DNA were obtained from retrospectively recruited patients with HNSCC between
2016 and 2017 through the approval of the Institutional Review Boards of 19 institutions in the Republic
of Korea. Clinicopathological data were collected from the electrical medical records of the patients in
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accordance with an IRB-approved protocol (NCT03292250); these included age, sex, the anatomic site
of the tumor, tobacco and alcohol use, clinical stage based on the American Joint Committee on Cancer
(AJCC) 7th edition, treatment history, and survival data. All patients provided written informed
consent for the genomic testing conducted for this study.

4.2. Nanostring Assay

Briefly, total tumor RNA was isolated using an RNeasy kit (Qiagen, Valencia, CA, USA) [37].
NanoString nCounter assays were performed according to the manufacturer’s standard protocol and
raw data were normalized using nSolver Analysis Software version 4.0 (NanoString Technologies,
Seattle, WA, USA) and log2-transformed for further analysis. Twenty-two samples with normalization
flags were removed prior to final analysis. The remaining 71 samples were finally included in the
present analysis. The complete list of 82 IRGs is shown in Table S1.

4.3. TCGA and GEO Data Analysis

mRNA expression and clinical data were downloaded from TCGA HNSCC database in January
2019 [38,39] and analyzed using R statistical software with the cgdsr package. The comparison of
CD200R1 mRNA expression between tumor and normal tissues were analyzed by using the UCSC Xena
browser (http://xena.ucsc.edu/) [14]. The GSE65858 dataset analyzed using, Illumina HumanHT-12 V4.0
Expression Beadchips (Illumina, San Diego, CA, USA) included 270 HNSCC tumor samples with clinical
and prognostic variables and was downloaded from the GEO database (www.ncbi.nlm.nih.gov/geo/)
using the GEOquery R package in January 2019 [40,41].

4.4. Statistical Methods

Statistical evaluation is summarized in Figure S1. In the training phase with the Korean cohort,
the Kaplan-Meier method with log-rank test was used for OS analysis to elucidate IRG expression.
OS was measured from the date of diagnosis until the date of death from any cause, excluding patients
who were alive at their last follow-up. Patients were divided into low- and high-expression groups
using optimal cut-off points for IRG expression determined using R software with the MaxStat package,
which computes the maximal log-rank statistic to identify the cutoff that provides the best separation
(i.e., where standardized statistics are maximal) [42]. Kaplan-Meier analysis was performed to estimate
the survival curves of the low- and high-expression groups of each IRG and the log-rank test was used
to compare the two curves. To narrow down the candidate genes, IRGs with p-values of < 0.05 from
the log-rank test were selected for regularized Cox regression, which is a well-established method for
selecting the most predictive markers for time-to-event analysis [43].

During the validation phase, the IRGs selected by regularized Cox regression were analyzed
with GEO (GSE65858) and TCGA HNSCC data using the Kaplan-Meier method and log-rank test.
IRG cut-off points were calculated with maximally selected rank statistics using MaxStat, and the
significantly validated IRGs were evaluated by multivariate Cox regression analysis to compare the
effects of IRG expression and well-known clinical variables on prognosis.

Two methods were used to evaluate biomarker performance: Uno’s C-index in time-dependent
area under the curve (AUC) analysis; AUC values in receiver operating characteristic curves at the
five-year mark [44]. These values were obtained using the R packages survC1 and epiDisplay.

4.5. DEG Screening and Analysis

To identify DEGs associated with the selected IRGs, patients were divided into groups based on
CD200R1 mRNA expression (high and low). DEGs in the TCGA data were determined using the R
package TCGADbiolinks with the R/Bioconductor package edgeR [45,46]. DEGs were selected in the
GEO data using the R/Bioconductor limma package [47,48]. Adjusted p-values for multiple testing
were calculated using Benjamini-Hochberg correction.
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The GO term enrichment analysis of subnetwork genes was carried out using DAVID
Bioinformatics Resources 6.818 [49] along with the results of the GOTERM_BP_DIRECT approach with
a Benjamini adjusted p-value of 0.05 or less. GO terms were summarized using REVIGO (available at
http://revigo.irb.hr), excluding redundant GO terms and visualizing the remaining terms in a tree map.
The p-values of the enriched GO terms were used to determine the size of tree maps.

PPI network analysis was conducted using the STRING database (http://string-db.org/) to identify
proteins related to those encoded by the selected IRGs [15].

4.6. Immune Cell Analysis with In Silico Deconvolution and Microscopic Examination

The ConsensusTME method integrates cell type-specific gene markers from independent TME cell
estimation methods, and uses single sample Gene Set Enrichment Analysis (ssGSEA) to compute relative
TME cell type- and tumor-specific enrichment scores from bulk expression data [50]. This method
has previously been thoroughly benchmarked in a pan-cancer setting. Normalized enrichment scores
(NSE) for each cell type in each sample in the GEO (GSE65858) and TCGA HNSCC datasets were
calculated with gene sets specific for human head and neck carcinoma. Histology-based lymphocyte
infiltration scores were obtained as a percentage of the tumor from TCGA via the Genomic Data
Commons (https://gdc.cancer.gov/).

5. Conclusions

This study had some limitations. Firstly, the patient population was heterogeneous due to the
retrospective nature of this study. Secondly, training phase analysis was performed using a Nanostring
panel encompassing selected key genes expressed in the TME. As the TME contains various immune
system components, HNSCC prognosis cannot be absolutely defined by a single factor, resulting in the
relatively low performance (C-index) of CD200R1 and other clinical factors in our study. Nevertheless,
CD200R1 expression was confirmed to be a robust and independent prognostic factor by multivariate
analysis, alongside several other clinical characteristics in the Korean, GEO, and TCGA cohorts. Further
studies that analyze the prospectively-collected tissue samples with large patient numbers are required
to validate our results. In conclusion, our findings suggest that CD200RT mRNA expression is an
independent favorable prognostic factor in HNSCC. This information increases our understanding of
the molecular biology of HNSCC and may allow the development of tools to more accurately predict
patient prognosis. In addition, our study indicates that CD200R1 may be a potential immunotherapeutic
target for HNSCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1777/s1,
Figure S1: Study Scheme, Table S1: List of immune-related genes, Table S2: GO terms for GEO, TCGA, and
common terms in both datasets.
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