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large datasets. Federated Learning (FL) is a paradigm addressing this dilemma, by allowing separate institutions to
collaborate in a training process while keeping each institution’s data private and exchanging model parameters
instead. In this study, we identify and review key developments of FL for CPATH applications. We consider 15
studies, thereby evaluating the current status of exploring and adapting this emerging technology for CPATH
applications. Proof-of-concept studies have been conducted across a wide range of CPATH use cases, showcasing
the performance equivalency of models trained in a federated compared to a centralized manner. Six studies
focus on model aggregation or model alignment methods reporting minor (0 ~ 3%) performance improvement
compared to conventional FL techniques, while four studies explore domain alignment methods, resulting in more
significant performance improvements (4 ~ 20%). To further reduce the privacy risk posed by sharing model
parameters, four studies investigated the use of privacy preservation methods, where all methods demonstrated
equivalent or slightly degraded performance (0.2 ~ 6% lower). To facilitate broader, real-world environment
adoption, it is imperative to establish guidelines for the setup and deployment of FL infrastructure, alongside
the promotion of standardized software frameworks. These steps are crucial to 1) further democratize CPATH
research by allowing smaller institutions to pool data and computational resources 2) investigating rare diseases,
3) conducting multi-institutional studies, and 4) allowing rapid prototyping on private data.

1. Introduction

The advancement of machine learning (ML), and particularly deep-
learning (DL) necessitates access to large-scale, multi-institutional data.
This is a non-trivial problem for development of Al solutions in health-
care, where data access is carefully restricted to preserve patient pri-
vacy. Federated Learning (FL) emerges as a paradigm addressing this
dilemma by enabling geographically separate institutions to collaborate
in a model training process, without requiring data to leave the institu-
tion of origin. Each institution utilizes their data and hardware resources
for training and iteratively shares their trained local model for aggre-
gation into a global model, combining insights from all participating
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institutions. Such a collaborative approach is particularly relevant to the
field of pathology, where an increasing digitization of tissue specimens
in the form of whole slide images (WSIs) is currently leading to a mas-
sive influx in available data, warranting the need for data-based, but also
privacy preserving, analysis methods [1,2]. Computational techniques
for the analysis of pathological data are referred to as computational
pathology (CPATH) algorithms, including cell-level tasks such as cell
detection and classification [3,4], mitosis detection [5,6], region-level
tasks such as tissue segmentation [7], as well as slide-level prediction of
cancer subtype or grade [8-10], molecular alterations [11,12], or recur-
rence risk [13,14]. In this paper we introduce core principles of FL and
provide an in-depth review of key developments of FL in CPATH. We
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Fig. 1. Operational FL workflow visualized for a horizontal FL use case for
pathology: (1) Initialization, (2) Local Training, (3) Model Update Transmis-
sion, (4) Aggregation, (5) Iteration: Repeat (1)-(4) until convergence criteria is
reached, (6): Deployment.

provide a perspective on the road ahead to stimulate further research
and discussion in the field, highlighting both opportunities and chal-
lenges to unlocking the potential of FL for computational pathology.

2. Basic principles of federated learning

This section introduces the basic principles of FL, from its operational
workflow to challenges and considerations when applying FL.

2.1. Operational workflow of FL

FL addresses data privacy and security concerns by enabling collab-
orative model training without the need for centralized data storage.
In FL, the training data remains distributed across multiple devices or
nodes, referred to as “clients”, which are commonly located at separate
institutions. Each client trains a local model on its data and only the
model updates, rather than the raw data, are sent to a central server.
The central server then aggregates these updates to form a global model.
This iterative process continues until the global model converges to an
optimal performance. FL can be differentiated into vertical and hor-
izontal FL, where vertical FL refers to clients having datasets of the
same modality and horizontal to differing data modalities across clients.
Fig. 1 demonstrates the operational workflow of FL, shown for a single-
modality, horizontal setup, which can be summarized in the following
steps (1) Initialization, (2) Local Training, (3) Model Update Transmis-
sion, (4) Aggregation, (5) Iteration and (6) Deployment. First, the central
server initializes a global model and distributes it to all participating
clients. This initial model can be pre-trained on a public dataset or ran-
domly initialized. Second, each client trains the received global model
on its local dataset. During this local training phase, the model learns
to adapt to the local data distribution, capturing unique patterns and
features. Third, after local training, each client computes and transmits
the updates of the model parameters to the server. These updates typi-
cally include gradients or weights that reflect the learning adjustments
made during the local training phase. Fourth, the central server collects
the model updates from all participating clients and aggregates them
to update the global model. Fifth, the updated global model is then
redistributed to the clients, and the process iterates. Each iteration is
referred to as a communication round. The process continues until the
global model achieves convergence. Lastly, once the global model has
converged, it is deployed for inference. The global model, now trained
on diverse and distributed data, is expected to generalize well to new
data. Please refer to [15] for further reading on Federated Learning prin-
ciples.
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2.2. Challenges and considerations

While FL offers significant advantages in terms of privacy and secu-
rity, there are also several intrinsic challenges that need to be addressed
[16,17]. First, data heterogeneity, as clients may have non-independent
and identically distributed (non-IID) data, which can lead to discrepan-
cies in the local models and affect the convergence of the global model.
Second, privacy leaks, while data is kept private and not shared dur-
ing FL, the shared model parameters contain information about the
data, making it vulnerable to privacy attacks, therefore requiring fur-
ther consideration of privacy. Privacy preservation techniques address
and prevent such attacks, but simultaneously introduce computational
overhead and affect model accuracy [18,19]. Finding an optimal trade-
off between privacy, efficiency and performance is an ongoing research
challenge. Third, communication overhead, FL involves frequent com-
munication between clients and the central server, leading to potential
network congestion and high communication costs. Fourth, system het-
erogeneity, clients may have varying computational capabilities and
network conditions; this leads to asynchronous updates and potential
delays. Lastly, scalability, as the management of communication and
computation becomes more complex with an increasing number of par-
ticipating clients. However, this is less critical in pathology applications,
where the number of clients is typically in the 2-100 range, in contrast
to consumer FL targeting millions of mobile devices as potential clients.

3. Study design

This systematic review aims to answer the research question: What
are the key developments and finding of FL applications in the field
of CPATH? Studies were identified in July 2024 by online search on
Google Scholar for publications containing the following keyword com-
binations in their title: “federated” + “pathology” (N=19), “federated
learning” + “histopathology” (N=10), “federated learning” + “histol-
ogy” (N=3), “federated learning” + “whole slide images” (N=6). We
further searched for publications in Nature journals containing the key-
words “federated learning” and “histopathology”, with restrictions to
research articles and the subjects cancer, computational biology and
bioinformatics, health care, medical research and oncology resulting
in N=5 matches. Leading to a total of N=43 publications (Fig. 2),
published within the timeframe of August 2021- July 2024, originat-
ing from. Before in-depth screening we removed 12 duplicate results,
after screening we further excluded 5 publications for which only an
abstract was available. On retrieval a report was excluded due to un-
availability, resulting in n= 25 reports assessed for eligibility. Based on
our research question, we solely consider records applying FL methods
for computational pathology and restrict the data type to mammal de-
rived pathology data. This lead to exclusion of 7 records, which did not
apply FL methods, 3 investigating plant pathologies, 2 considering ra-
diology data, and one further exclusion due to missing methodological
information, resulting in a total of 12 considered studies. During paper
review we identified 3 additional publications to be included in the re-
view, leading to a final number of 15 publications included within this
review.

4. Key techniques and developments of federated learning for
pathology

In this section, we will focus on the specific progress of FL within the
CPATH domain. We first introduce the unique challenges of CPATH to
enable a deeper understanding of the field. We then provide a survey of
studies, including proof of concepts (PoCs) demonstrating the applica-
bility of FL to various CPATH tasks, as well as technological advances of
FL methods tailored to meet the distinct challenges and needs of CPATH.
Based on the study selection, inclusion and exclusion criteria detailed
in the previous section, we consider 15 studies (Table 1) for in-depth
review.
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Fig. 2. Flowchart showing the literature search and systematic review process according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) recommendations [20].
4.1. Unique challenges of CPATH

Pathology encompasses the study and diagnosis of diseases through
the examination of tissues, cells, and bodily fluid. Digital pathology,
which involves the acquisition, management, sharing, and interpreta-
tion of pathology information in a digital environment, is the backbone
of clinical development and application of CPATH [21]. Understand-
ing the unique challenges of CPATH requires an understanding of how
routine tissue sections are prepared and digitized in the pathology labo-
ratory: Patient tissue samples are first fixed in formalin and embedded in
paraffin for preservation, sectioned at 3 — 5 pum, placed on glass slides,
and stained to highlight different cellular components. The slides are
then scanned to create high-resolution digital whole slide images (WSIs),
with a resolution commonly in the range of 0.25-1 microns per pixel
(MPP), e.g. a glass slide of size 75 mm x 25 mm results in an WSI of
150,000px x 50,000px for 0.5 MPP at 20x magnification. The first chal-
lenge arises due to such large image size, which necessitates tile-based
processing for high-resolution WSI analysis (Fig. 3).

Labels for tile-level tasks require expert annotations which are la-
bor intensive. To allow training a CPATH algorithm with less expensive
slide-level labels, techniques such as Multiple Instance Learning (MIL)
[22,23] employ tile-level feature extraction, followed by aggregation
into slide-level representations and then predictions. A second challenge
in CPATH arises due to the variation of pre-analytical conditions across
different labs. Different tissue sample preparation processes, staining
procedures and whole-slide scanners can result in varying color and in-
tensity of the digitized slides, leading to significant data heterogeneity.
This has been addressed by incorporating multi-institutional data in the
algorithm development [5], or through techniques such as stain normal-
ization (Fig. 3) [24,25], stain augmentation [26] or domain adversarial
training [27]; as well as utilizing models which have been pre-trained
using self-supervised learning (SSL) on large-scale, multi-institutional
datasets [28-30]. While the first challenge of large image size is inde-
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pendent of the training setting (centralized or federated), the second
challenge of data heterogeneity originates from the training data and
is therefore directly impacted by a federated setting where data is dis-
tributed across different clients.

4.2. Proof of concepts

Numerous studies have been conducted to demonstrate the PoCs of
FL in CPATH. These studies cover a wide range of cancer types and tis-
sue image analysis tasks, showing the applicability of FL in the CPATH
domain. Studies focusing on tile binary classification (benign vs. malig-
nant) tasks have been conducted for breast [31] and colorectal cancer
[32]. Tile multi-class classification has been investigated for kidney and
lung cancer subtyping [33]. Region segmentation is explored in [34]
to segment interstitial fibrosis and tubular atrophy (IFTA), as well as
glomeruli in renal tissue biopsy. To address the unique challenges of
stain variation in CPATH, generative adversarial network (GAN)-based
stain normalization [35-37] and pseudo-image generation [38] are in-
vestigated in the FL setting. At the slide-level, various clinical appli-
cations have been explored, which include prostate cancer diagnosis
and Gleason grading [39], melanoma diagnosis [40], cancer subtyping
[41-43], microsatellite instability (MSI) prediction [32], patient sur-
vival prediction [41], and treatment response prediction [44] (Table 1).
The majority of the slide-level tasks are tackled using the weakly su-
pervised MIL technique, while [40,32] are essentially tile classification
with simple slide-level aggregation such as average and max pooling.

For FL model evaluation, all studies report performance on a held-out
test set from the same source as the training data. Some further validate
the FL model on an external test set [40,42,34,32,44,39]. The compar-
ison baselines can be categorized into centralized models (trained on
all available data in the central location), local models (trained on data
from a single client), ensemble models (ensemble of all local models),
as well as FL models utilizing different aggregation settings (Table 1).
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Overview of studies applying FL to CPATH tasks. Novel aggregation methods are marked by “*”. BRCA: Breast Cancer Gene, CCRCC: Clear Cell Renal
Cell Carcinoma, CRC: Colorectal Cancer, IFTA: Interstitial Fibrosis and Tubular Atrophy, IDC: Invasive Ductal Carcinoma, MSI: Microsatellite Instability,
RCC: Renal Cell Carcinoma, SMC: Secure Multi-Party Computation, DP: Differential Privacy, TNBC: Triple-Negative Breast Cancer.

Ref. Novelty Label Task Aggregation Sf’tttlng, # Evaluation
type clients Test sets Baseline algorithms
[34] PoC: Real-world Pixel IFTA and glomeruli segmentation FedAvg Real-world, Held-out, Centralized, Local
deployment N=6 External
[44] PoC: Rare cancer Slide Treatment response prediction in FedAvg Real-world, Held-out, Local, FedAvg, Ensemble,
TNBC N=4 External SCAFFOLD [45]
[40] PoC: WSI Slide Melanoma-nevus classification FedAvg Simulation, Held-out, Centralised, Ensemble
classification N=5 External
[41] PoC: MIL Slide BRCA+RCC subtyping, CCRCC Weighted Simulation, Held-out Centralized, Local
survival prediction FedAvg N=2
[42] PoC: Differential Slide Lung cancer subtyping FedAvg Simulation, Held-out Centralised, Local,
privacy N=[4,8,16,32] FedAvg
[43] PoC: SMC Slide Lung cancer subtyping FedAvg Simulation, Held-out FedAvg+DP
N=6
[33] Aggregation Slide Lung and kidney cancer subtyping Prop-FFL* Simulation, Held-out FedSGD [46],
algorithm N=[4,6] q-FedSGD [47]
[32] Aggregation Tile, CRC detection, MSI prediction FedDropout- Simulation, Held-out, Local, FedAvg,
algorithm Slide Avg* N=11 External FedProx [48],
FedBN [49], PF L [50]
[31] Aggregation Tile Breast tumor detection SiloBN* Simulation, Held-out Centralized, Local,
algorithm N=[2,5] FedAvg
[36] Domain alignment Tile, Stain normalization, Colorectal FedAvg Simulation, Held-out LG-FedAvg [51],
Slide tissue classification, Breast cancer N=5-8 FedPer [52], FedBN [49]
subtyping
[371 Domain alignment Pixel Stain normalization, prostate FedAvg Simulation, Held-out FedAvgM [53][53]
tumor segmentation N=20
[35] Domain alignment None Stain normalization FedAvg Simulation, Held-out Stain normalization
N=8 methods
[38] Model and Domain Slide Breast IDC grading FedAvg Simulation, Held-out Local, FedAvg,
alignment N=3 FedProx [48],
FedBN [49], MOON [54]
[39] Model alignment Slide Prostate tumor detection, Gleason Weighted Simulation, Held-out, Centralized, Local,
grading FedAvg N=[6,7] External FedAvg
[55] Multi-modality, Slide Multi-modal lung and kidney FedAvg Simulation, Cross- Local, Multi FedAvg [55]
Model alignment cancer subtyping N=3 validation
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Fig. 3. Challenges in CPATH: 1) The gigapixel size of WSIs necessitates tiling and tile-wise application of DL models. To allow tasks based on slide-level labels, MIL
aggregates tile-level features into a slide-level feature embedding, on which a lightweight ML model can be trained. 2) Differing tissue preparation, staining and
scanners across institutions lead to data heterogeneity. One possible method of overcoming pre-analytical variability is stain normalization.

The following findings are noteworthy. First, FL. models are gener-
ally reported to perform on par (+2%) or slightly worse (2 ~ 6% lower)
than centralized models across all studies, demonstrating the feasibility
of achieving performance equivalency, yet also highlighting the more
challenging optimization space in FL. Second, in [44,41,32,34,39] FL
models are shown to generalize better across all client’s held-out test sets
than each client’s local model. Similar observations are made in stud-
ies considering local and/or centralized model performance on external
test sets [44,40,42,34,39], where the FL. model performs better (> +2%)

than or similar (+2%) to all local models. This indicates an overall
improved domain generalizability of the FL model compared to local
models. Third, most ensemble models surprisingly show similar (+2%)
or better (> +2%) performance compared to FL models on both held-
out and external datasets in [40,44]. Ensemble models can be viewed as
an extreme case of FL, where only a one-time model aggregation step is
performed at the inference phase. This requires deploying all local mod-
els and entails a higher inference computational cost proportional to the
number of clients. Nonetheless, the comparable performance of the en-
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Technological advancements proposed for FL application in pathology to achieve a better consid-
eration of data heterogeneity and improved data privacy through novel aggregation methods, do-
main alignment methods and privacy preservation techniques. N/A indicates no specific method

was applied or the method is unknown.

Ref. Aggregation Model Privacy Domain alignment Addressed
alignment preservation challenge(s)
[31] SiloBN N/A N/A N/A Data heterogeneity,
Privacy preservation
[32] FedDropout- N/A N/A N/A Data heterogeneity,
Avg Privacy preservation
[33] Prop-FFL N/A N/A N/A cell
[39] Weighted FACL DP N/A Data heterogeneity
FedAvg
[41] Weighted N/A DP N/A Data heterogeneity,
FedAvg Privacy preservation
[55] FedAvg FedMM N/A N/A Data heterogeneity,
Multi-modality
[43] FedAvg N/A SMC N/A Privacy preservation
[42] N/A N/A DP N/A Privacy preservation
[35] FedAvgM N/A N/A Stain normalization Data heterogeneity
GAN
[36] FedAvg N/A N/A Stain normalization =~ Data heterogeneity
GAN
[37] FedAvg N/A N/A Stain normalization Data heterogeneity
with BottleGAN
[38] FedAvg FL-BT N/A SSL on Data heterogeneity,

GAN-generated
pseudo-images

Privacy preservation

semble and FL models motivates further investigations. Lastly, we note
that the majority of studies, excluding [34] and [44], were conducted in
a simulated environment, where clients are not located at physically sep-
arate institutions, showing the challenges of implementing real-world FL
systems.

4.3. Technological advances

We consider technological advances in applying FL to CPATH by
examining the challenges they aim to address. As previously identified,
data heterogeneity and privacy preservation are the main challenges
in both CPATH and FL. Several methodologies have been proposed to
address and mitigate these challenges (Table 2). These methodologies
can be categorized into model aggregation, model alignment, domain
alignment, and privacy preservation methods.

4.3.1. Model aggregation methods

Model aggregation refers to the combination of multiple client up-
dates into a global model update. One of the first proposed methods
is Federated Stochastic Gradient Descent (FedSGD) [46], where clients
compute gradients based on their local data and send these gradients
to the server for aggregation at each iteration. Federated Averaging (Fe-
dAvg) [56] extends FedSGD by allowing clients to perform multiple local
gradient updates before communicating the updated model weights with
the central server. The averaging process can be weighted based on the
size of each client’s dataset, which ensures that clients with more data
have a proportionally greater impact on the global model. FedAvg has
become the standard algorithm for aggregating model updates in FL.
However, as FedAvg does not address data heterogeneity (non-IID data),
several advanced model aggregation techniques have been developed.
Federated Proximal (FedProx) [48] adds a “proximal term” to the lo-
cal objective function, which acts as a regularizer that penalizes large
deviations from the global model. In simpler terms, it constrains the
local updates, making them stay closer to the global model. In an alter-
native method, Stochastic Controlled Averaging in Federated Learning
(SCAFFOLD) [45] uses local control variates at each client that estimate
the global update direction and adjusts local updates to reduce the bias
introduced by heterogeneous data. Another strategy for handling non-
IID data is Personalized FL (PFL) [50], where each client keeps its own
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model version, by not updating a subset of private or “personal” layers.
Notable PFL examples are FedBN [49], with personalized batch nor-
malization (BN) layers, Local-Global FedAvg (LG-FedAvg) [51], which
personalizes the base layers and keeps the top layers shared, conversely,
FedPer [52] personalizes the top layers and keeps the base layers shared.

Further, three novel aggregation methods have been proposed tar-
geting CPATH applications: Proportionally fair FL (Prop-FFL) [33] aims
to overcome bias in client consideration by introducing a second loss ob-
jective that rewards a similar training loss across all clients, while also
accounting for the proportion of training samples at each client. Clients
with fewer samples receive a lower weight. Prop-FFL has been shown to
reduce the standard deviation in accuracy across clients’ held-out test
sets by 5% for kidney and 11% for lung cancer subtyping compared
to FedSGD. However, like FedSGD, Prop-FFL operates on gradients, re-
quiring client-server communication after every batch. When extended
to epoch-level communication, Prop-FFL is outperformed by FedAvg.
Inspired by dropout in neural network training, Federated Dropout Av-
eraging (FedDropoutAvg) [32] randomly drops a subset of model pa-
rameters from each client, or even completely drops client submissions,
before aggregation. This approach serves as a regularization, enhancing
model generalization while simultaneously preserving privacy, as not
all model parameters are shared. In the pilot study [32] FedDropoutAvg
outperformed FedAvg by 3% and 1% in F1-Score for colorectal tumor
detection on a held-out test set and an external test set, respectively.
SiloBN [31] is a PFL method that keeps the batch normalization (BN)
parameters private for each client, excluding them from the model ag-
gregation. This allows the global model to adapt to each local dataset,
but requires computation of BN statistics for any unseen datasets dur-
ing inference. In a held-out test set for breast tumor detection, SiloBN
outperformed FedAvg by 1-2% in AUC.

4.3.2. Model alignment methods

Three methods [38,55,39] introduce additional loss objectives dur-
ing local training to align the global and client models: FL Barlow
Twins [38] employs contrastive learning techniques by comparing tile-
level representations learned by local and global models, ensuring that
the cross-correlation matrix approximates the identity matrix. In [55],
the feature embeddings from all clients are averaged for each class to
create a “global prototype.” Local models are then trained to reduce
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the L2 distance between their embeddings and the global prototypes.
For slide-level representation, [39] uses a Swin transformer for fea-
ture extraction and Attention MIL for feature aggregation, where an
attention-consistency is imposed by adding Kullback-Leibler (KL) diver-
gence between client and server model attention distributions to the
loss function. This is to ensure that the regions of interest identified by
the attention mechanism are consistent across different models, thus im-
proving the image feature representation generation at the slide level.
Both [38] and [39] enhance FedAvg by a modest improvement of 0 ~ 3%
in accuracy on held-out and external test sets for breast IDC grading and
prostate tumor detection, respectively, indicating the limitation of rely-
ing solely on model alignment for improvement. A higher performance
gain is notable in [55] with +2 —4% accuracy in a monte-carlo cross val-
idation for lung and +11% for kidney cancer subtyping. However, the
missing validation on a held-out or external test set restricts the inter-
pretability of the results with regards to model generalization. Beyond
model alignment, we note that FedMM is the only method that enables
clients without multi-modal data to participate in training and thereby
provides them access to a multi-modal model.

4.3.3. Domain alignment methods

We consider four studies [35-38] that address specific CPATH data
heterogeneity challenges, such as staining and scanning variations,
through data domain alignment. In [35-37], a GAN is trained for fed-
erated stain normalization and applied to each client’s data to generate
more uniform stain appearance for downstream tasks. [35] proposes a
cGAN with one global generator and multiple client-specific discrimina-
tors. Only the generator is shared and aggregated at the FL server after it
is locally trained together with each client’s discriminator. [36] extends
the method by adding a temporal self-distillation objective to stabilize
training, using an exponential moving average of successive global gen-
erator weights as the teacher model. [37] introduces a novel BottleGAN
architecture which is first locally trained to perform two-way transform
between a reference staining style and the client specific staining style.
The client BottleGANSs are then sent back to the server and applied to a
reference dataset to generate images in multiple client staining styles.
Finally, using the generated images, a global BottleGAN is trained on the
server to normalize staining styles across all clients. [38] takes a differ-
ent domain alignment approach by integrating self-supervised learning
(SSL) as a pre-training step before FL. In this approach, pseudo images
are generated by a multi-scale gradient GAN (MSG-GAN) [57] from each
client, and these images are used to pre-train the backbone network us-
ing multi-task SSL. The pre-trained weights then serve as the parameter
initialization for the downstream task. Overall, GAN-based stain normal-
ization showed strong performance improvement (> 10%) on tile- and
pixel-level tasks, as well as slide-level tasks (4%) compared to no nor-
malization. This highlights the need for sophisticated domain alignment
methods in CPATH FL applications.

4.3.4. Privacy preservation methods

Privacy preservation is a critical aspect of FL, as it ensures that
sensitive data remains secure and confidential throughout the learning
process. Several techniques have been developed to enhance privacy in
FL. Here, we focus on Differential Privacy (DP) and Secure Multi-party
Computation (SMC) as key CPATH use cases, which were investigated
in four studies. DP [19] adds noise to the data or model updates to pre-
vent the exposure of individual data points. A Gaussian noise generator
is utilized with N ~ ((n - n)?), where z indicates the noise level and is
the standard deviation of the respective model weight. SMC [58] en-
sures that the central server can only see aggregated updates from a
cluster of N clients instead of individual updates, as they are masked by
cryptographic techniques. A crucial aspect to this approach in FL is the
security-performance trade-off, as a restriction in shared information of-
ten results in performance degradation. [39] implements DP with a noise
factor of z=0.1 in FedAvg and FACL, resulting in equal performance
with and without DP (+1% AUC) for tumor detection and grading.
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[41] investigates different noise factors (z € {0,0.001,0.01,0.1,1.0}) on
three different tasks, where z < 0.1 shows slight performance degrada-
tion (—2% AUC) for BRCA subtyping, RCC subtyping (+0.2% AUC) and
CCRCC survival prediction (—4% c-Index), while z = 1 results in signifi-
cantly worse performance across all tasks (> 15% reduction in AUC and
c-index). Lastly, [42] explore differential private SGD, where gradient
norms are clipped and noise is added to prevent information leakage.
A norm clipping of 1.0 and a noise factor z = 4 result in similar mean
accuracy for lung cancer subtyping on a held-out test set, but a 4% ac-
curacy drop on an external test set. [43] compares DP (z = 0.03) to SMC
(2 clusters of size N=23), showing SMC has less accuracy degradation (-
0.5%) compared to DP (-6%) for FedAvg. In summary, all the proposed
privacy methods show equal or slightly worse performance on CPATH
tasks. The privacy loss is not measured by the majority of studies, only
[42] quantifies the privacy loss with a privacy budget.

5. Editorial perspective: the road ahead

Utilizing FL enables us to capitalize on real-world hospital data,
and develop algorithms that can potentially make better diagnostic
decisions without divulging sensitive patient data. While FL is highly
beneficial, it has noteworthy drawbacks compared to conventional cen-
tralized training methods. As in FL the data is distributed across clients,
the optimization space is non-identically distributed which can result in
slower convergence or reduced performance of the model. In [34], the
FL training time was reported as twice as centralized training time. In ad-
dition, there is a cost associated with development and maintenance of
communications in FL implementations. Considering both advantages
and limitations of FL, we highlight the following CPATH use cases as
particularly interesting for FL application. First, developing algorithms
for rare cancers or cancer subtypes where the public dataset is sparse
or non-existent. Although the data at each individual institution may
not be sufficient for developing a robust model locally, through FL a
model could be trained on the pool of data without the need for in-
stitutions to share sensitive patient data [44]. Second, FL can enable
multi-institutional studies, such as large-scale epidemiological studies
and multi-center clinical trials, which could strongly benefit from col-
laboration but under the restriction of protecting sensitive patient data.
[59] demonstrates the feasibility of FL-enabled medical studies. Third,
weakly-supervised learning and self-supervised learning (SSL). Given
the fact that ground truth annotations in digital pathology are very ex-
pensive to obtain, and prone to variations across different annotators,
weakly and self-supervised learning approaches are becoming increas-
ingly popular in CPATH. These approaches are closer to real clinical
applications, as slide level labels are generated more routinely than re-
gion or cell level labels during real clinical practice. On the other hand,
training MIL and SSL based models usually requires huge datasets, im-
mense computational power, and AI/ML expertise. Not all institutions
have access to these resources, and as a result research exchange and val-
idation of new methodology are limited to particular institutions with
those capabilities. Combining FL and weakly or self-supervised learn-
ing approaches can empower all institutions, small or large, to combine
their weakly labeled or unlabelled data, and computational resources to
develop CPATH models. In [38], SSL and FL were successfully integrated
for classification of histopathological images in a simulated environ-
ment. Lastly, FL systems allow rapid prototyping and evaluating for new
algorithms on decentralized, private data. These systems are often eas-
ier to adapt to data privacy laws compared to conventional training and
validation approaches that rely on centralized data and thereby enable
algorithms to be more rigorously evaluated on otherwise inaccessible
data.

The highlighted use cases demonstrate the potential of FL in CPATH,
but as FL is still a relatively new concept, particularly in the field of
medical imaging and CPATH, its implementation necessitates the de-
velopment of additional guidelines and the promotion of standardized
software frameworks. Most existing FL studies primarily focus on ad-
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dressing data heterogeneity and privacy in simulated environments,
while challenges related to establishing a real-world FL ecosystem, in-
cluding system and hardware heterogeneity and the absence of a unified
FL framework remain underexplored. This involves selecting from var-
ious open-source FL frameworks, such as NVFlare [60], Flower [61],
PySyft [62], Tensorflow Federated [63], Substra [64] or FLAg [65],
and requires network design expertise to establish a global server ac-
cessible to all clients, including opening ports inside restrictive hospital
networks to enable client-server communication. Additionally, technical
and programming expertise is necessary to adapt the chosen framework
to specific applications. Unlike non-medical FL applications, the pathol-
ogy setting typically involves fewer clients and larger datasets. Hence,
it is critical to ensure that all clients contribute to the training process,
even if they are slower than other clients or introduce heterogenous
data. In summary, a practical guide for setting up real-world medical
FL, including strategies to address common challenges such as data and
system heterogeneity and privacy preservation, as well as advancements
toward the standardization and unification of FL frameworks, is critical
for transforming FL from a niche technology into a powerful tool for
collaborative development in CPATH.

6. Conclusion

In this survey, we reviewed the technological advancements of feder-
ated learning (FL) in the context of computational pathology, addressing
the unique challenges of this domain. Computational pathology deals
with large image sizes requiring tiling of whole slide images and han-
dling significant variations due to different tissue preparation, stain-
ing, and scanning processes. FL. must address its inherent challenges
— privacy, data heterogeneity, and system heterogeneity — while also
managing the unique demands of computational pathology, with data
heterogeneity being the most critical shared issue. Our review focused
on advancements in four categories: model aggregation, model align-
ment, domain alignment, and privacy preservation. We found that while
most technical advancements focus on aggregation and model alignment
methods, their overall impact on test performance is relatively minor
(0—3%). In contrast, domain alignment methods, though less prevalent,
demonstrate a substantially higher impact (4 — 20%), underscoring the
effectiveness of data-centric approaches. Privacy-preserving techniques
maintain comparable performance while reducing the amount of shared
information, although the quantification of privacy loss remains partial.
Despite these advancements, considerable challenges persist, particu-
larly regarding real-world implementation and scalability. The lack of
standardized guidelines and frameworks complicates the development
of large-scale FL solutions. Additionally, motivating clients to partici-
pate in FL and securing the necessary investment for FL infrastructure
are unresolved issues. Addressing these concerns is vital for the broader
adoption and success of federated learning in computational pathology.

CRediT authorship contribution statement

Lydia A. Schoenpflug: Writing — review & editing, Writing — original
draft, Visualization, Methodology, Conceptualization. Yao Nie: Writing
- review & editing, Writing — original draft, Supervision, Project admin-
istration, Conceptualization. Fahime Sheikhzadeh: Writing — review &
editing, Writing — original draft. Viktor H. Koelzer: Writing — review &
editing, Supervision, Project administration.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Yao Nie reports a relationship with F Hoffmann-La Roche Ltd that in-
cludes: employment and equity or stocks. Fahime Sheikhzadeh reports
a relationship with F Hoffmann-La Roche Ltd that includes: employ-
ment and equity or stocks. Viktor H. Koelzer reports a relationship

3944

Computational and Structural Biotechnology Journal 23 (2024) 3938-3945

with F. Hoffmann-La Roche Ltd that includes: funding grants. Viktor H.
Koelzer reports a relationship with SPCC that includes: speaking and lec-
ture fees. Viktor H. Koelzer reports a relationship with Indica Labs that
includes: speaking and lecture fees. Viktor H. Koelzer reports a relation-
ship with Takeda that includes: board membership. Viktor H. Koelzer
reports a relationship with Swiss Digital Pathology Initiative that in-
cludes: board membership. Viktor H. Koelzer reports a relationship with
IAG (Image Analysis Group) that includes: consulting or advisory. Ly-
dia A. Schoenpflug reports a relationship with Indica Labs that includes:
travel reimbursement. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to express our gratitude to Ruben Bagan Bena-
vides, Arash Moayyedi, Marta Nowak, Kamil Wasag, Fariba Damband-
khameneh, Lena Zeller, Norbert Wey, Lukas Loeffler, Mark Rominski,
Jakob Reimers, Michael Zhou, Yasmin Koller, Michael Rivers, Ragha-
van Venugopal and Holger Moch for their excellent collaboration within
the USZ-UZH-Roche Public-private partnership. The whole slide images
shown in the Graphical Abstract, Fig. 1 and 3 are data generated by the
TCGA Research Network: https://www.cancer.gov/tcga.

References

[1] Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A, Absar SF, et al. A practical
guide to whole slide imaging: a white paper from the digital pathology association.
Arch Pathol Lab Med 2019;143(2):222-34.

Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial intelli-
gence. Lancet Oncol 2019;20(5):e253-61. https://doi.org/10.1016/51470-2045(19)
30154-8.

Graham S, Vu QD, Raza SEA, Azam A, Tsang YW, Kwak JT, et al. Hover-net: simul-
taneous segmentation and classification of nuclei in multi-tissue histology images.
Med Image Anal 2019;58:101563. https://doi.org/10.1016/j.media.2019.101563.
Horst F, Rempe M, Heine L, Seibold C, Keyl J, Baldini G, et al. Cellvit:
vision transformers for precise cell segmentation and classification. Med Im-
age Anal 2024;94:103143. https://doi.org/10.1016/j.media.2024.103143. https://
www.sciencedirect.com/science/article/pii/S1361841524000689.

Aubreville M, Stathonikos N, Bertram CA, Klopfleisch R, ter Hoeve N, Ciompi F, et
al. Mitosis domain generalization in histopathology images — the midog challenge.
Med Image Anal 2023;84:102699. https://doi.org/10.1016/j.media.2022.102699.
Jahanifar M, Shephard A, Zamanitajeddin N, Graham S, Raza SEA, Minhas F, et al.
Mitosis detection, fast and slow: robust and efficient detection of mitotic figures.
Med Image Anal 2024;94:103132. https://doi.org/10.1016/j.media.2024.103132.
https://www.sciencedirect.com/science/article/pii/S1361841524000574.

Chan L, Hosseini MS, Rowsell C, Plataniotis KN, Damaskinos S. Histosegnet: semantic
segmentation of histological tissue type in whole slide images. In: Proceedings of the
IEEE/CVF international conference on computer vision (ICCV); 2019. p. 10662-71.
Lafarge MW, Domingo E, Sirinukunwattana K, Wood R, Samuel L, Murray G, et al.
Image-based consensus molecular subtyping in rectal cancer biopsies and response
to neoadjuvant chemoradiotherapy. npj Precision Oncology Apr. 2024;8(1). https://
doi.org/10.1038/541698-024-00580-3.

Marletta S, Eccher A, Martelli FM, Santonicco N, Girolami I, Scarpa A, et al. Ar-
tificial intelligence-based algorithms for the diagnosis of prostate cancer: a sys-
tematic review. Am J Clin Pathol 2024;161(6):526-34. https://doi.org/10.1093/
ajcp/aqad182. https://academic.oup.com/ajcp/article-pdf/161/6/526/57526325/
aqad182.pdf.

Couture HD, Williams LA, Geradts J, Nyante SJ, Butler EN, Marron J, et al. Image
analysis with deep learning to predict breast cancer grade, er status, histologic sub-
type, and intrinsic subtype. npj Breast Cancer 2018;4(1):30.

Cifci D, Foersch S, Kather JN. Artificial intelligence to identify genetic alterations
in conventional histopathology. J Pathol 2022;257(4):430-44. https://doi.org/10.
1002/path.5898.

Couture HD. Deep learning-based prediction of molecular tumor biomarkers from
h&e: a practical review. Journal of Personalized Medicine 2022;12(12). https://doi.
org/10.3390/jpm12122022. https://www.mdpi.com/2075-4426/12/12/2022.
Volinsky-Fremond S, Horeweg N, Andani S, Barkey Wolf J, Lafarge MW, de
Kroon CD, et al. Prediction of recurrence risk in endometrial cancer with multimodal
deep learning. Nat Med 2024;30(7):1962-73. https://doi.org/10.1038/541591-024-
02993-w.

Kulkarni PM, Robinson EJ, Sarin Pradhan J, Gartrell-Corrado RD, Rohr BR,
Trager MH, et al. Deep learning based on standard h&e images of primary melanoma
tumors identifies patients at risk for visceral recurrence and death. Clin Cancer Res
2020;26(5):1126-34.

[2]

[3]

[4]

[5

—

[6

—

71

[8

—

[9

[}

[10]

[11]

[12]

[13]

[14]


https://www.cancer.gov/tcga
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE3B4B295ACE4475376E23A6D61C93729s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE3B4B295ACE4475376E23A6D61C93729s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE3B4B295ACE4475376E23A6D61C93729s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBFACF0F6C8BD791865BDD976FF88FD33s1
https://doi.org/10.1016/S1470-2045(19)30154-8
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBFACF0F6C8BD791865BDD976FF88FD33s1
https://doi.org/10.1016/S1470-2045(19)30154-8
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBFACF0F6C8BD791865BDD976FF88FD33s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib90ED6E721F06454140CB4C679FBCE072s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib90ED6E721F06454140CB4C679FBCE072s1
https://doi.org/10.1016/j.media.2019.101563
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib90ED6E721F06454140CB4C679FBCE072s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib9EA3F0806ACE085FA2FB329DB5D54484s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib9EA3F0806ACE085FA2FB329DB5D54484s1
https://doi.org/10.1016/j.media.2024.103143
https://www.sciencedirect.com/science/article/pii/S1361841524000689
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib9EA3F0806ACE085FA2FB329DB5D54484s1
https://www.sciencedirect.com/science/article/pii/S1361841524000689
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib9EA3F0806ACE085FA2FB329DB5D54484s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA143DE26448FEA974FD3B2F897F571EEs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA143DE26448FEA974FD3B2F897F571EEs1
https://doi.org/10.1016/j.media.2022.102699
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA143DE26448FEA974FD3B2F897F571EEs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib126D587E5AA6B7AB879A7AD18292E9F3s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib126D587E5AA6B7AB879A7AD18292E9F3s1
https://doi.org/10.1016/j.media.2024.103132
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib126D587E5AA6B7AB879A7AD18292E9F3s1
https://www.sciencedirect.com/science/article/pii/S1361841524000574
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib126D587E5AA6B7AB879A7AD18292E9F3s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib2A16AECCE5201599B92F1F53E1309D21s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib2A16AECCE5201599B92F1F53E1309D21s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib2A16AECCE5201599B92F1F53E1309D21s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib23EBD220F152715C857BD22B23435541s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib23EBD220F152715C857BD22B23435541s1
https://doi.org/10.1038/s41698-024-00580-3
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib23EBD220F152715C857BD22B23435541s1
https://doi.org/10.1038/s41698-024-00580-3
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib23EBD220F152715C857BD22B23435541s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib0946037B271693C5F367439DCC0A00B8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib0946037B271693C5F367439DCC0A00B8s1
https://doi.org/10.1093/ajcp/aqad182
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib0946037B271693C5F367439DCC0A00B8s1
https://doi.org/10.1093/ajcp/aqad182
https://academic.oup.com/ajcp/article-pdf/161/6/526/57526325/aqad182.pdf
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib0946037B271693C5F367439DCC0A00B8s1
https://academic.oup.com/ajcp/article-pdf/161/6/526/57526325/aqad182.pdf
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib0946037B271693C5F367439DCC0A00B8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBBF446BA98DBB722F3E66435A36BC8A7s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBBF446BA98DBB722F3E66435A36BC8A7s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBBF446BA98DBB722F3E66435A36BC8A7s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib6D2FF851B88D59224BD46B316F56D78Ds1
https://doi.org/10.1002/path.5898
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib6D2FF851B88D59224BD46B316F56D78Ds1
https://doi.org/10.1002/path.5898
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib6D2FF851B88D59224BD46B316F56D78Ds1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib4BBEF119FC84EBB18F5F120D241363D5s1
https://doi.org/10.3390/jpm12122022
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib4BBEF119FC84EBB18F5F120D241363D5s1
https://doi.org/10.3390/jpm12122022
https://www.mdpi.com/2075-4426/12/12/2022
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib4BBEF119FC84EBB18F5F120D241363D5s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibF5A207B8EC69D2E325169B9322E8AC77s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibF5A207B8EC69D2E325169B9322E8AC77s1
https://doi.org/10.1038/s41591-024-02993-w
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibF5A207B8EC69D2E325169B9322E8AC77s1
https://doi.org/10.1038/s41591-024-02993-w
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibF5A207B8EC69D2E325169B9322E8AC77s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3F50EEE2144D81A554F1198A0477AAE6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3F50EEE2144D81A554F1198A0477AAE6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3F50EEE2144D81A554F1198A0477AAE6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3F50EEE2144D81A554F1198A0477AAE6s1

L.A. Schoenpflug, Y. Nie, F. Sheikhzadeh et al.

[15] Ludwig H, Baracaldo N, editors. Federated learning - a comprehensive overview of
methods and applications. Springer; 2022.

[16] Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and
future directions. IEEE Signal Process Mag 2020;37(3):50-60. https://doi.org/10.
1109/MSP.2020.2975749.

[17] Rauniyar A, Hagos D, Jha D, Hakegard J, Bagci U, Rawat D, et al. Federated learning
for medical applications: a taxonomy, current trends, challenges, and future research
directions. IEEE Int Things J 2024;11(5):7374-98. https://doi.org/10.1109/JI0T.
2023.3329061.

[18] Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y. BatchCrypt: efficient homomorphic
encryption for Cross-Silo federated learning. In: 2020 USENIX annual technical con-
ference (USENIX ATC 20). USENIX Association; 2020. p. 493-506.

[19] Wei K, Li J, Ding M, Ma C, Yang HH, Farokhi F, et al. Federated learning with
differential privacy: algorithms and performance analysis. IEEE Trans Inf Forensics
Secur 2020;15:3454-69. https://doi.org/10.1109/TIFS.2020.2988575.

[20] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The
prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ
2021;372.

[21] Hosseini MS, Bejnordi BE, Trinh VQ-H, Chan L, Hasan D, Li X, et al. Computational
pathology: a survey review and the way forward. J Pathol Inform 2024;15:100357.
https://doi.org/10.1016/j.jpi.2023.100357.

[22] Lu MY, Williamson DF, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient

and weakly supervised computational pathology on whole-slide images. Nature

Biomedical Engineering 2021;5(6):555-70.

Shao Z, Bian H, Chen Y, Wang Y, Zhang J, Ji X, et al. Transmil: transformer based cor-

related multiple instance learning for whole slide image classification. In: Proceed-

ings of the 35th international conference on neural information processing systems,

NIPS ’21. Hook, NY, USA: Curran Associates Inc., Red; 2024. p. 2136-47.

Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT, Guan X, et al. A

method for normalizing histology slides for quantitative analysis. In: 2009 IEEE inter-

national symposium on biomedical imaging: from nano to macro; 2009. p. 1107-10.

[25] Cho H, Lim S, Choi G, Min H. Neural stain-style transfer learning using GAN for
histopathological images. CoRR. arXiv:1710.08543, 2017.

[26] Tellez D, Litjens G, Bandi P, Bulten W, Bokhorst J-M, Ciompi F, et al. Quantifying the

effects of data augmentation and stain color normalization in convolutional neural

networks for computational pathology. Med Image Anal 2019;58:101544. https://
doi.org/10.1016/j.media.2019.101544.

Lafarge MW, Pluim JPW, Eppenhof KAJ, Moeskops P, Veta M. Domain-adversarial

neural networks to address the appearance variability of histopathology images. In:

Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMR, Moradi M, et

al., editors. Deep learning in medical image analysis and multimodal learning for

clinical decision support. Cham: Springer International Publishing; 2017. p. 83-91.

Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, et al. To-

wards a general-purpose foundation model for computational pathology. Nat Med

2024;30(3):850-62. https://doi.org/10.1038/s41591-024-02857-3.

Xu H, Usuyama N, Bagga J, Zhang S, Rao R, Naumann T, et al. A whole-

slide foundation model for digital pathology from real-world data. Nature

2024;630(8015):181-8. https://doi.org/10.1038/541586-024-07441-w.

Vorontsov E, Bozkurt A, Casson A, Shaikovski G, Zelechowski M, Severson K, et

al. A foundation model for clinical-grade computational pathology and rare cancers

detection. Nat Med Jul. 2024. https://doi.org/10.1038/5s41591-024-03141-0.

Andreux M, du Terrail JO, Beguier C, Tramel EW. Siloed federated learning for multi-

centric histopathology datasets. In: Albarqouni S, Bakas S, Kamnitsas K, Cardoso MJ,

Landman B, Li W, et al., editors. Domain adaptation and representation transfer,

and distributed and collaborative learning. Cham: Springer International Publishing;

2020. p. 129-39.

Gunesli GN, Bilal M, Raza SEA, Rajpoot NM. A federated learning approach to tumor

detection in colon histology images. J Med Syst Sep. 2023;47(1). https://doi.org/10.

1007/510916-023-01994-5.

Hosseini SM, Sikaroudi M, Babaie M, Tizhoosh HR. Proportionally fair hospital col-

laborations in federated learning of histopathology images. IEEE Trans Med Imaging

2023;42(7):1982-95. https://doi.org/10.1109/TMI.2023.3234450.

[34] Lutnick B, Manthey D, Becker JU, Zuckerman JE, Rodrigues L, Jen K-Y, et al. A tool
for federated training of segmentation models on whole slide images. J Pathol Inform
2022;13:100101. https://doi.org/10.1016/].jpi.2022.100101.

[35] KeJ, ShenY, Lu Y. Style normalization in histology with federated learning. In: 2021
IEEE 18th international symposium on biomedical imaging (ISBI); 2021. p. 953-6.

[36] Shen Y, Sowmya A, Luo Y, Liang X, Shen D, Ke J. A federated learning sys-

tem for histopathology image analysis with an orchestral stain-normalization gan.

IEEE Trans Med Imaging 2023;42(7):1969-81. https://doi.org/10.1109/tmi.2022.

3221724.

Wagner N, Fuchs M, Tolkach Y, Mukhopadhyay A. Federated stain normalization

for computational pathology. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, edi-

tors. Medical image computing and computer assisted intervention — MICCAI 2022.

Switzerland, Cham: Springer Nature; 2022. p. 14-23.

Zhang Y, Li Z, Han X, Ding S, Li J, Wang J, et al. Pseudo-data based self-supervised

federated learning for classification of histopathological images. IEEE Trans Med

Imaging 2024;43(3):902-15. https://doi.org/10.1109/TMI.2023.3323540.

[23]

[24]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[37]

[38]

3945

Computational and Structural Biotechnology Journal 23 (2024) 3938-3945

[39] Kong F, Wang X, Xiang J, Yang S, Wang X, Yue M, et al. Federated attention con-
sistent learning models for prostate cancer diagnosis and Gleason grading. Comput
Struct Biotechnol J 2024;23:1439-49. https://doi.org/10.1016/j.csbj.2024.03.028.

[40] Haggenmiiller S, Schmitt M, Krieghoff-Henning E, Hekler A, Maron RC, Wies C, et
al. Federated learning for decentralized artificial intelligence in melanoma diagnos-
tics. JAMA Dermatol 2024;160(3):303-11. https://doi.org/10.1001/jamadermatol.
2023.5550.

[41] Lu MY, Chen RJ, Kong D, Lipkova J, Singh R, Williamson DF, et al. Federated learn-
ing for computational pathology on gigapixel whole slide images. Med Image Anal
2022;76:102298. https://doi.org/10.1016/j.media.2021.102298.

[42] Adnan M, Kalra S, Cresswell JC, Taylor GW, Tizhoosh HR. Federated learning and

differential privacy for medical image analysis. Sci Rep Feb. 2022;12(1). https://

doi.org/10.1038/541598-022-05539-7.

Hosseini SM, Sikaroudi M, Babaei M, Tizhoosh HR. Cluster based secure multi-

party computation in federated learning for histopathology images. In: Albarqouni S,

Bakas S, Bano S, Cardoso MJ, Khanal B, Landman B, et al., editors. Distributed, col-

laborative, and federated learning, and affordable Al and healthcare for resource

diverse global health. Switzerland, Cham: Springer Nature; 2022. p. 110-8.

Ogier du Terrail J, Leopold A, Joly C, Béguier C, Andreux M, Maussion C, et al.

Federated learning for predicting histological response to neoadjuvant chemother-

apy in triple-negative breast cancer. Nat Med 2023;29(1):135-46. https://doi.org/

10.1038/5s41591-022-02155-w.

Karimireddy SP, Kale S, Mohri M, Reddi S, Stich S, Suresh AT. SCAFFOLD: stochastic

controlled averaging for federated learning. In: D H III, Singh A, editors. Proceedings

of the 37th international conference on machine learning. Proceedings of machine

learning research, PMLR, vol. 119. 2020. p. 5132-43.

Shokri R, Shmatikov V. Privacy-preserving deep learning. In: Proceedings of the 22nd

ACM SIGSAC conference on computer and communications security, CCS '15. New

York, NY, USA: Association for Computing Machinery; 2015. p. 1310-21.

[47] Li T, Sanjabi M, Beirami A, Smith V. Fair resource allocation in federated learning.
arXiv:1905.10497, 2020.

[48] LiT, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in
heterogeneous networks. In: Dhillon I, Papailiopoulos D, Sze V, editors. Proceedings
of machine learning and systems, vol. 2. 2020. p. 429-50.

[49] Li X, Jiang M, Zhang X, Kamp M, Dou Q. Fedbn: federated learning on non-iid fea-
tures via local batch normalization. arXiv:2102.07623, 2021.

[50] Tan AZ, Yu H, Cui L, Yang Q. Towards personalized federated learning. IEEE Trans
Neural Netw Learn Syst 2023;34(12):9587-603. https://doi.org/10.1109/TNNLS.
2022.3160699.

[51] Liang PP, Liu T, Ziyin L, Allen NB, Auerbach RP, Brent D, et al. Think locally, act glob-
ally: federated learning with local and global representations. arXiv:2001.01523,
2020.

[52] Arivazhagan MG, Aggarwal V, Singh AK, Choudhary S. Federated learning with per-
sonalization layers. arXiv:1912.00818, 2019.

[53] Hsu T-MH, Qi H, Brown M. Measuring the effects of non-identical data distribution
for federated visual classification. arXiv:1909.06335, 2019.

[54] Li Q, He B, Song D. Model-contrastive federated learning. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (CVPR); 2021.
p. 10713-22.

[55] Peng Y, Bian J, Xu J. Fedmm: federated multi-modal learning with modality hetero-
geneity in computational pathology. arXiv:2402.15858, 2024.

[56] McMahan B, Moore E, Ramage D, Hampson S, Arcas BAy. Communication-efficient
learning of deep networks from decentralized data. In: Singh A, Zhu J, editors. Pro-
ceedings of the 20th international conference on artificial intelligence and statistics.
Proceedings of machine learning research, PMLR, vol. 54. 2017. p. 1273-82.

[57] Karnewar A, Wang O. Msg-gan: multi-scale gradients for generative adversarial net-

[43]

[44]

[45]

[46]

works. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (CVPR); 2020. p. 7799-808.

[58] Cramer R, Damgérd IB, et al. Secure multiparty computation. Cambridge University
Press; 2015.

[59] Hanif A, Lu C, Chang K, Singh P, Coyner AS, Brown JM, et al. Federated learning for
multicenter collaboration in ophthalmology: implications for clinical diagnosis and
disease epidemiology. Ophthalmology Retina 2022;6(8):650-6. https://doi.org/10.
1016/j.oret.2022.03.005.

[60] Roth HR, Cheng Y, Wen Y, Yang I, Xu Z, Hsieh Y-T, et al. NVIDIA FLARE: federated
learning from simulation to real-world. IEEE Data Eng Bull Mar. 2023;46(1). https://
doi.org/10.48550/arXiv.2210.13291.

[61] Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, et al. Flower: a
friendly federated learning research framework. arXiv:2007.14390, 2022.

[62] Ziller A, Trask A, Lopardo A, Szymkow B, Wagner B, Bluemke E, et al. Pysyft: a library
for easy federated learning. Federated Learning Systems: Towards Next-Generation
AT 2021:111-39.

[63] Authors TTF. TensorFlow Federated, Dec. 2018.

[64] Galtier MN, Marini C. Substra: a framework for privacy-preserving, traceable and
collaborative machine learning. arXiv:1910.11567, 2019.

[65] Chiu Y-J, Chuang C-C, Wang Y-T, Yeh L-C, Edwardo Rudon R, Lin K-W, et al. Flag: an
automated client-independent federated learning system on hpc for digital pathol-
ogy slice training. In: 2023 IEEE conference on artificial intelligence (CAI); 2023.
p. 314-5.


http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD27BD9BFABA7646B69AD9BD3636427A1s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD27BD9BFABA7646B69AD9BD3636427A1s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib142EF5F58B6ECC9A97CA1ED06DA73597s1
https://doi.org/10.1109/MSP.2020.2975749
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib142EF5F58B6ECC9A97CA1ED06DA73597s1
https://doi.org/10.1109/MSP.2020.2975749
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib142EF5F58B6ECC9A97CA1ED06DA73597s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB5E8A32711AD6D4511B25BC74D43B412s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB5E8A32711AD6D4511B25BC74D43B412s1
https://doi.org/10.1109/JIOT.2023.3329061
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB5E8A32711AD6D4511B25BC74D43B412s1
https://doi.org/10.1109/JIOT.2023.3329061
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB5E8A32711AD6D4511B25BC74D43B412s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib1C8645FC35898265A7425B18735F43B9s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib1C8645FC35898265A7425B18735F43B9s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib1C8645FC35898265A7425B18735F43B9s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F8D7EBEC896FEC5C2395046401A2A5s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F8D7EBEC896FEC5C2395046401A2A5s1
https://doi.org/10.1109/TIFS.2020.2988575
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F8D7EBEC896FEC5C2395046401A2A5s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibC636499E580A2D1C4D96AF7AACB67EC3s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibC636499E580A2D1C4D96AF7AACB67EC3s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibC636499E580A2D1C4D96AF7AACB67EC3s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib73F8B7FFC602F30E1ED0CB734281B148s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib73F8B7FFC602F30E1ED0CB734281B148s1
https://doi.org/10.1016/j.jpi.2023.100357
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib73F8B7FFC602F30E1ED0CB734281B148s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE5A16F7CD6C3990303E3583F82080CD8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE5A16F7CD6C3990303E3583F82080CD8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE5A16F7CD6C3990303E3583F82080CD8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB2AAA1BD17886BF8793E1BC2B59F6B85s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB2AAA1BD17886BF8793E1BC2B59F6B85s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB2AAA1BD17886BF8793E1BC2B59F6B85s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB2AAA1BD17886BF8793E1BC2B59F6B85s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8CF95B671F91A5A6E96107E45F39A30Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8CF95B671F91A5A6E96107E45F39A30Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8CF95B671F91A5A6E96107E45F39A30Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBBA877380FA06C56AD9DACDBF3746807s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibBBA877380FA06C56AD9DACDBF3746807s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib122CFB15BD58EA7DBECD731A0D617A62s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib122CFB15BD58EA7DBECD731A0D617A62s1
https://doi.org/10.1016/j.media.2019.101544
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib122CFB15BD58EA7DBECD731A0D617A62s1
https://doi.org/10.1016/j.media.2019.101544
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib122CFB15BD58EA7DBECD731A0D617A62s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD3B4D05A8E4DA494B80BEB66D45AE138s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD3B4D05A8E4DA494B80BEB66D45AE138s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD3B4D05A8E4DA494B80BEB66D45AE138s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD3B4D05A8E4DA494B80BEB66D45AE138s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD3B4D05A8E4DA494B80BEB66D45AE138s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib94030D57154F1133D934DF07C99DC09Bs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib94030D57154F1133D934DF07C99DC09Bs1
https://doi.org/10.1038/s41591-024-02857-3
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib94030D57154F1133D934DF07C99DC09Bs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib2C382D0F48FD0EEEA7FAC522BEBF8E7As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib2C382D0F48FD0EEEA7FAC522BEBF8E7As1
https://doi.org/10.1038/s41586-024-07441-w
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib2C382D0F48FD0EEEA7FAC522BEBF8E7As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib95B00EB6283777533EB1E8272ACF893Ds1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib95B00EB6283777533EB1E8272ACF893Ds1
https://doi.org/10.1038/s41591-024-03141-0
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib95B00EB6283777533EB1E8272ACF893Ds1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibFF4534D7E5D015B67F981AE0EE706AFAs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibFF4534D7E5D015B67F981AE0EE706AFAs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibFF4534D7E5D015B67F981AE0EE706AFAs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibFF4534D7E5D015B67F981AE0EE706AFAs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibFF4534D7E5D015B67F981AE0EE706AFAs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA67C3F90CA53E1DDEE490E67ADE21D9Fs1
https://doi.org/10.1007/s10916-023-01994-5
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA67C3F90CA53E1DDEE490E67ADE21D9Fs1
https://doi.org/10.1007/s10916-023-01994-5
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA67C3F90CA53E1DDEE490E67ADE21D9Fs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib188B97C7E406C09255168D5025A76D86s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib188B97C7E406C09255168D5025A76D86s1
https://doi.org/10.1109/TMI.2023.3234450
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib188B97C7E406C09255168D5025A76D86s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib5CDC9674C1F3951B05A9562050D91980s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib5CDC9674C1F3951B05A9562050D91980s1
https://doi.org/10.1016/j.jpi.2022.100101
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib5CDC9674C1F3951B05A9562050D91980s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8EE97A98EC1853CE0A09D37EF3212765s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8EE97A98EC1853CE0A09D37EF3212765s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8F7A7D4A2F92EFB00ABB0E929EE2F2E0s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8F7A7D4A2F92EFB00ABB0E929EE2F2E0s1
https://doi.org/10.1109/tmi.2022.3221724
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8F7A7D4A2F92EFB00ABB0E929EE2F2E0s1
https://doi.org/10.1109/tmi.2022.3221724
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8F7A7D4A2F92EFB00ABB0E929EE2F2E0s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE43AC7F1B2DA3309992F248F3B03141As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE43AC7F1B2DA3309992F248F3B03141As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE43AC7F1B2DA3309992F248F3B03141As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE43AC7F1B2DA3309992F248F3B03141As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3A9DBC1DA6211B4F37228146499916F0s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3A9DBC1DA6211B4F37228146499916F0s1
https://doi.org/10.1109/TMI.2023.3323540
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3A9DBC1DA6211B4F37228146499916F0s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD297A88D3507A3616082F2B662732361s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD297A88D3507A3616082F2B662732361s1
https://doi.org/10.1016/j.csbj.2024.03.028
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibD297A88D3507A3616082F2B662732361s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F60DBB873010862CB976284D0B6323s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F60DBB873010862CB976284D0B6323s1
https://doi.org/10.1001/jamadermatol.2023.5550
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F60DBB873010862CB976284D0B6323s1
https://doi.org/10.1001/jamadermatol.2023.5550
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib65F60DBB873010862CB976284D0B6323s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib6CEA021D5F4E36B4FC14DEC1A318583As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib6CEA021D5F4E36B4FC14DEC1A318583As1
https://doi.org/10.1016/j.media.2021.102298
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib6CEA021D5F4E36B4FC14DEC1A318583As1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE96BF7006F4F06302A1A84DCC4E7C2ADs1
https://doi.org/10.1038/s41598-022-05539-7
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE96BF7006F4F06302A1A84DCC4E7C2ADs1
https://doi.org/10.1038/s41598-022-05539-7
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE96BF7006F4F06302A1A84DCC4E7C2ADs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79CD7BF69C022C1F689EACA81E860C3Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79CD7BF69C022C1F689EACA81E860C3Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79CD7BF69C022C1F689EACA81E860C3Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79CD7BF69C022C1F689EACA81E860C3Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79CD7BF69C022C1F689EACA81E860C3Cs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib17A0A8C74C1EFB68F8F020D0BBAE3DACs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib17A0A8C74C1EFB68F8F020D0BBAE3DACs1
https://doi.org/10.1038/s41591-022-02155-w
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib17A0A8C74C1EFB68F8F020D0BBAE3DACs1
https://doi.org/10.1038/s41591-022-02155-w
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib17A0A8C74C1EFB68F8F020D0BBAE3DACs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib51BEF7D3E9034AACC642D5DCF359DB86s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib51BEF7D3E9034AACC642D5DCF359DB86s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib51BEF7D3E9034AACC642D5DCF359DB86s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib51BEF7D3E9034AACC642D5DCF359DB86s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib4DD1252B9290D8700D7A670E76A4159Fs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib4DD1252B9290D8700D7A670E76A4159Fs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib4DD1252B9290D8700D7A670E76A4159Fs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib12536225153605073B4C5B444A7913B8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib12536225153605073B4C5B444A7913B8s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8B02462D8AEFABE9208CD3A557F2D080s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8B02462D8AEFABE9208CD3A557F2D080s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib8B02462D8AEFABE9208CD3A557F2D080s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib51056B78A058369C05470D6A5C188D26s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib51056B78A058369C05470D6A5C188D26s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibAF9EC98EA50AFD6D9BCE1440601BC500s1
https://doi.org/10.1109/TNNLS.2022.3160699
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibAF9EC98EA50AFD6D9BCE1440601BC500s1
https://doi.org/10.1109/TNNLS.2022.3160699
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibAF9EC98EA50AFD6D9BCE1440601BC500s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE437696BCBDEC3DBFC5F7DC3695095B4s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE437696BCBDEC3DBFC5F7DC3695095B4s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibE437696BCBDEC3DBFC5F7DC3695095B4s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib97B3ED32A96BD1AC0CE97470D4C8AA53s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib97B3ED32A96BD1AC0CE97470D4C8AA53s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib30F2A97FEB66842D569BEA08B620D649s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib30F2A97FEB66842D569BEA08B620D649s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibCE1FD186D59D80609F430B2769E7C3D6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibCE1FD186D59D80609F430B2769E7C3D6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibCE1FD186D59D80609F430B2769E7C3D6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib166728981E831B76160D9281D2B618F1s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib166728981E831B76160D9281D2B618F1s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA4199F19E80E565D9C4B8FE9ACA11F61s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA4199F19E80E565D9C4B8FE9ACA11F61s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA4199F19E80E565D9C4B8FE9ACA11F61s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibA4199F19E80E565D9C4B8FE9ACA11F61s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibCFF0E81DD1284F20049C12E26972E2FEs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibCFF0E81DD1284F20049C12E26972E2FEs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibCFF0E81DD1284F20049C12E26972E2FEs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib381F153A0E6E6DC7D3BF5DBEF251B370s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib381F153A0E6E6DC7D3BF5DBEF251B370s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79F2560E5540DBFCB6FB5DAE4C5E1990s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79F2560E5540DBFCB6FB5DAE4C5E1990s1
https://doi.org/10.1016/j.oret.2022.03.005
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79F2560E5540DBFCB6FB5DAE4C5E1990s1
https://doi.org/10.1016/j.oret.2022.03.005
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib79F2560E5540DBFCB6FB5DAE4C5E1990s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib40BC0DA26FF606027390D4AA25DE13EDs1
https://doi.org/10.48550/arXiv.2210.13291
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib40BC0DA26FF606027390D4AA25DE13EDs1
https://doi.org/10.48550/arXiv.2210.13291
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib40BC0DA26FF606027390D4AA25DE13EDs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib338D1F8007F0C84287D9963D5EA36AEBs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib338D1F8007F0C84287D9963D5EA36AEBs1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3B4CB24C5594C8D950251EAEEEDF4AD6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3B4CB24C5594C8D950251EAEEEDF4AD6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib3B4CB24C5594C8D950251EAEEEDF4AD6s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB28CFF72A988649F9A53F142F7787037s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bibB28CFF72A988649F9A53F142F7787037s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib22FDCAB9FE98ED8109C66BA39FD12B95s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib22FDCAB9FE98ED8109C66BA39FD12B95s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib22FDCAB9FE98ED8109C66BA39FD12B95s1
http://refhub.elsevier.com/S2001-0370(24)00357-X/bib22FDCAB9FE98ED8109C66BA39FD12B95s1

	A review on federated learning in computational pathology
	1 Introduction
	2 Basic principles of federated learning
	2.1 Operational workflow of FL
	2.2 Challenges and considerations

	3 Study design
	4 Key techniques and developments of federated learning for pathology
	4.1 Unique challenges of CPATH
	4.2 Proof of concepts
	4.3 Technological advances
	4.3.1 Model aggregation methods
	4.3.2 Model alignment methods
	4.3.3 Domain alignment methods
	4.3.4 Privacy preservation methods


	5 Editorial perspective: the road ahead
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


