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Higher-order chromatin structures have functional impacts on gene regulation and cell identity determi-
nation. Using high-throughput sequencing (HTS)-based methods like Hi-C, active or inactive compart-
ments and open or closed topologically associating domain (TAD) structures can be identified on a cell
population level. Recently developed high-resolution three-dimensional (3D) molecular imaging tech-
niques such as 3D electron microscopy with in situ hybridization (3D-EMSIH) and 3D structured illumi-
nation microscopy (3D-SIM) enable direct detection of physical representations of chromatin structures
in a single cell. However, computational analysis of 3D image data with explainability and interpretability
on functional characteristics of chromatin structures is still challenging. We developed Extracting
Physical-Characteristics from Images of Chromatin Structures (EPICS), a machine-learning based compu-
tational method for processing high-resolution chromatin 3D image data. Using EPICS on images pro-
duced by 3D-EMISH or 3D-SIM techniques, we generated more direct 3D representations of higher-
order chromatin structures, identified major chromatin domains, and determined the open or closed sta-
tus of each domain. We identified several high-contributing features from the model as the major phys-
ical characteristics that define the open or closed chromatin domains, demonstrating the explainability
and interpretability of EPICS. EPICS can be applied to the analysis of other high-resolution 3D molecular
imaging data for spatial genomics studies. The R and Python codes of EPICS are available at https://
github.com/zang-lab/epics.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The genomic DNA is packaged into chromatin in a hierarchical
structure in the eukaryotic cell nucleus. The higher-order chro-
matin structure has major impacts on gene regulation, cell identity,
and human health [1,2]. The fundamental unit of these structures
are nucleosomes, DNA wrapped around a histone octamer core.
The string of nucleosomes form various dynamic structures that
can be characterized into domains such as topologically associating
domains (TADs) [3]. Higher in the hierarchy, TADs can be catego-
rized into compartment structures which can be defined as active
(open) or inactive (closed). Further on the hierarchy, efforts have
been made to use genome-scale imaging to map chromatin struc-
ture at a genome scale within a single cell while providing nuclear
speckles and nucleoli [4].
Open and closed chromatin have important biological roles. For
instance, there is evidence that subtypes of cancers have different
gene expression patterns associated with open and closed TADs
[5,6]. The structural properties of genome organization can be
measured using high-throughput sequencing (HTS)-based tech-
nologies, like Hi-C [7,8] and ChIA-PET [9], which primarily use
DNA sequences as a positioning and quantification tool to deter-
mine the average proximity between two regions in the genome
accumulated from a population of cells [7,10]. Although the 3D
configuration of chromatin can be inferred from Hi-C data using
statistical or computational models [11,12], direct measurement
for physical characteristics of 3D chromatin structure in a single
cell is still challenging [13].

Computer simulations of genetic structures have replicated and
advanced our understanding of chromatin structures [14]. For
example, MiChroM-based technologies are able to simulate chro-
matin structures and approximate Hi-C contact maps [15–17].
The resulting simulation pipelines have been compared to fluores-
cence in situ hybridization (FISH)-based approaches [18]. The
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Nucleome Data Bank is a resource that simulates chromatin struc-
tures using MiChroM [19]. However, obtaining spatial results
based on more direct imaging-based technologies is critical to
ensure that simulations match the true structures.

Recent development of spatial omics technologies enables high-
resolution detection of spatial distributions of molecular genomic
information such as gene expression and genome organization by
applying HTS techniques, such as 10X Visium [20] and Slide-seq
[21], or using super-resolution microscopy techniques, such as seq-
FISH [22] and MERFISH [23]. Super-resolution microscopy has also
been applied to measure chromatin structures directly, with
emerged techniques such as 3D assay for transposase-accessible
chromatin-photoactivated localization microscopy (ATAC-PALM)
[24], 3D electron microscopy with in situ hybridization (3D-
EMISH) [13], and 3D structured illumination microscopy (3D-
SIM) [25]. ATAC-PALM is able to image the accessible genome at
the nanometer scale and in conjunction with FISH-based tech-
niques. 3D-EMISH is able to extract structures of probed genomic
regions of interest and describe the domain structures at the
nanometer scale. 3D-SIM is able to visualize chromatin throughout
the cell with a 39.5 nm resolution. Furthermore, FISH-based chro-
matin imaging techniques such as ORCA [1], it’s predecessor [26],
and MINA [27] have generated higher-order chromatin structures
including TADs and A/B compartments consistent with what have
been inferred from Hi-C, suggesting that chromatin domains (CDs)
reconstructed from image data should reveal the same biological
functions [25]. Compared with Hi-C, imaging-based methods pro-
vide more direct measurements of physical representations of
higher-order chromatin structures directly in a single cell [13].
However, computational analysis of 3D chromatin image data
remains a challenge. Specifically, computational models to connect
active or inactive chromatin domains with the physical character-
istics from 3D images are essentially nonexistent. While others
have found statistically significant features (surface area, volume,
and sphercity) to discriminate between discovered clusters that
tend to associate with active and inactive chromatin [28], a formal-
ized model combining these and other terms has not been
reported. Additionally, these computational approaches need to
be developed while considering explainability and interpretability
[29], so that biological insights can be generated from computa-
tional studies. Creating a computational model where scientists
cannot ascertain the biological meaning is less useful than a com-
putational model which can provide these insights. Thus, utilizing
a machine learning (ML) approach which is easily interpretable
and explainable is key for understanding the complex nature of
3D image data of chromatin.

In recent years, complex computational systems and advanced
ML-based artificial intelligence (AI) have penetrated numerous
fields of study [30]. Explainable AI (XAI) aims to provide explain-
able and interpretable insights to scientific inquiries [29,31,32].
Using XAI in biology means that the models and parameters can
describe biological phenomena and characterize biological entities
of interest in an explainable and interpretable fashion. Ensuring
that the tenants of explainability and interpretability are met al-
lows for scientists to evaluate if a computational model is adding
to scientific knowledge. This work is built upon our previous model
development work for extracting shape features from 2D image
data such as blood cells [33] and satellite image classification
[34], which adheres to the concepts of explainability and inter-
pretability. Following the same principles, we extend our work
for modeling 3D image data focusing on chromatin structure and
to characterize 3D chromatin domains as open (active) and closed
(inactive). This method allows for scientists to provide clear biolog-
ical insights to various and dynamic structures of chromatin and
their physical characteristics.
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In this paper, we present Extracting Physical-Characteristics
from Images of Chromatin Structures (EPICS), a method able to
characterize different chromatin domains from 3D image data gen-
erated from two techniques: 3D-EMISH and 3D-SIM. We apply
EPICS to 3D-EMISH and 3D-SIM image data to characterize open
or closed chromatin domains from each data type. We then inter-
pret the results of EPICS by identifying the most important physical
characteristics as features that distinguish chromatin domains for
biological insights. Our work provides a spatial and physical per-
spective of 3D image data modeling for functional genomics.

2. Materials and methods

EPICS is a computational method we developed to characterize
chromatin domains as open or closed from 3D image data. In this
section, we first describe how EPICS reconstructs the chromatin
from the raw image data. We then discuss our computational algo-
rithm to determine if a chromatin domain is open or closed. This
involves the selection of candidate metrics which are useful for
determining if a chromatin domain is open or closed. It also
involves identifying those variables which are the most important
for classifying chromatin domains from one another. EPICS is sum-
marized in Fig. 1a.

2.1. Defining chromatin domain assignment for images

We describe our solution for reconstructing the chromatin
domain structure from the raw image data while adhering to the
concepts of explainability and interpretability herein. Using image
operator notation to represent the image processing operators
applied to the input data [35], we first smooth the image via

fs½~x�g ¼ Sft½~x�g ð1Þ
where S is the smoothing operator, ft½~x�g is the input image, and
fs½~x�g is the resulting smoothed image. We then isolate the relevant
signals using

fi½~x�g ¼ Lft½~x�g ð2Þ
where L identifies the relevant signals of interest and fi½~x�g is the set
of images containing the isolated signals of interest. We then apply

m½~x� ¼ IBi½~x� ð3Þ
where IB interpolates the object using the other slices to construct
the missing slices and m½~x� is the reconstructed object of interest
from the given target signal image, i½~x� (Fig. 1a, Step 1). Interpola-
tion is necessary to ensure that each voxel is approximately a cube
in physical space. We then determine the chromatin domains by

fd½~x�g ¼ Cm½~x�; ð4Þ
where C determines the chromatin domains from the input image
and fd½~x�g are the set of resulting chromatin domains. The number
of chromatin domains is then determined (Fig. 1a, Step 2). The chro-
matin domains are extracted from the 3D-EMISH and 3D-SIM data
using Eqs. A32–A35 and A39–A40 respectively in the Supplemen-
tary Data.

We then collect a variety of explainable and interpretable met-
rics using the shorthand operator of D (Fig. 1a, Step 3):

D ¼ Dfd½~x�g: ð5Þ
The equations for extract each metric are described in the Sup-

plementary Data in Eqs. A13–A27. From these extracted metrics in
our resulting matrix,D, we build a model that creates rules for pre-
dicting whether a particular chromatin domain is open or closed.
In other words,



Fig. 1. Schematic of EPICS with examples of images. (a) Schematic of EPICS. The gray circles represent the raw imaging data’s potential chromatin domains (CDs). The gray
spheres represent reconstructed CDs. Each colorized sphere represents a uniquely identified CD (three in this case). The blue dots and green open triangle represent the closed
and open CDs in the feature space. The line separating the points in the feature space represents the created model to classify the closed and open CDs from one another. The
steps in (a) are exemplified with 3D-EMISH data in b - d and the 3D-SIM data in e - g. (b) Example of the raw input image from 3D-EMISH. (c) The reconstructed structure of
the chromatin object of interest. (d) The resulting CDs. Each color represents a unique CD. In this case, there are two CDs with a larger cyan CD and a smaller pink CD. (e) The
DAPI and H3K27me3 3D-SIM raw image data for the 30 hour treatment. (f) The reconstructed structure of the chromatin object of interest. (g) All identified CDs from the 30
hour treatment image. Each shade of cyan represents a unique CD. In this case, there are hundreds of different CDs present. The animated .svg files of b - g are provided at our
GitHub link. (h) A color bar for each technologies raw pixel values. Examples of a cropped section of a slice from a 3D image is provided next to each graphical description.
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f ðDiÞ ¼
A Rule 1
B Rule 2

�
;8i; ð6Þ

where i is the ith chromatin domain such that i 2 f1; . . . ;Ng;N is the
total number of chromatin domains, and A and B are the two possi-
ble chromatin states, consistent with A/B compartments inferred
from Hi-C data. A is considered active or open, while B is inactive
or closed (Fig. 1a, Step 4).

This computational approach is similar in spirit to the computa-
tion required for A/B compartment assignment using data from Hi-
C. EPICS and the computation using Hi-C data both use a set of
rules to determine if a target is open (active) or closed (inactive).
While Hi-C is based on correlations, EPICS uses a logistic regression
model based on the physical characteristics of the objects. Supple-
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mentary Data A.3 provides an overview of the computation for A/B
compartment assignment using Hi-C data. We provided this over-
view to help compare and contrast EPICS and Hi-C in a theoretical
manner.
2.2. Defining open and closed domains for images

We need to identify potential candidate metrics that would
be useful for clustering the chromatin domains and classifying
the identified domains. To that end, we need to explicitly state
what characterizes open and closed domains. Open domains
have lots of space in between points and will be sparser. Closed
domains are compact and close to one another. Natural choices
for capturing these sparse and dense domains would be shape-
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based and intensity-based metrics. Shape metrics describe how
dense the domain is spatially as indicated by Fig. B1. The inten-
sity metrics describe the amount of the chromatin present in the
sample. For 3D-EMISH data, low values indicate more object of
interest, while larger values indicate that less object of interest
is present (Fig. 1). To this end, we select 8 shape and 11 inten-
sity metrics to describe our domains of interest, as summarized
in Table 1.

The first shape metrics are the SPs and EIs, which are collected
by extending shape proportion and encircled image-histogram
(SPEI) algorithm [36] to be applicable to 3D shapes. The EI is the
black and white pixel counts of the shape after the shape is placed
in the minimum encompassing sphere and then the minimum
encompassing cube. In other words, this is the volume and the sur-
rounding volume of the object of interest. The SP value is the pro-
portion of the volume of the shape relative to the sum of the EI. The
other shape metrics collected that are used in the model are the
eigenvalues of the shapes [35], sphericity [37], and surface area.
The eigenvalues measure the major and minor axes of the shape.
Sphericity measures how spherical a given shape is. Surface area
is the 3D perimeter of the object of interest. This results in a total
of 8 total shape metrics.

The intensity-based metrics are merely their respective statis-
tic for the object’s intensity based values. For example, the mean
of the intensity values measures the arithmetic mean of only the
object’s voxel values. This does not include the background of
the object. For the Mean, Median, Q1, Q3, Max, and Min Inten-
sity metrics, low values indicate more or less chromatin for
3D-EMISH or 3D-SIM, respectively. High values indicate less or
more chromatin for 3D-EMISH or 3D-SIM, respectively (Fig. 1).
The remaining statistics are interpreted and explained in the
typical manner. There are a total of 11 intensity-based metrics.

Extended explanations, interpretations, and image operators for
each shape and intensity metric are provided in the Supplementary
Data. In short, each of the metrics provided is explainable and
interpretable. This helps to make the results of describing the open
and closed chromatin domains explicitly understood and aid in
understanding their biological underpinnings.
Table 1
Metrics used in EPICS on a given chromatin domain, i. The first column is the qth metric, wh
the logistic regression (LR) models for each data sets. ”-” refers to features not included in
next to the coefficient value indicate different levels of significance: ***=0.001, **=0.01, *=

~mq;i Metric Type 3D-EMIS

- Intercept - 94:282� �

1 White EI Shape -
2 Black EI Shape -
3 SP Shape -
4 1st Eigen. Shape �0:001:

5 2nd Eigen. Shape -

6 3rd Eigen. Shape �1:184�

7 Sphericity Shape �8:906�

8 Surface Area Shape -

9 Mean Intensity -
10 SD Intensity -
11 Median Intensity -
12 Q1 Intensity -
13 Q3 Intensity �0:001� �

14 Max Intensity �0:001� �

15 Min Intensity -
16 Skewness Intensity -
17 Kurtosis Intensity -
18 % > 24000 Intensity -
19 % > 30000 Intensity -
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2.3. Determining rules for open-closed chromatin domains

Here we expand the notation from Eq. 6 to provide an explicit
description of the analysis done in EPICS. For notation purposes,
we have J batches such that j 2 f1;2; . . . ; Jg. For the 3D-EMISH data,
J ¼ 2. For the 3D-SIM experiments, J ¼ 1 since each experiment has
a different treatment. Further, we have 19 features such that
q 2 f1; . . . ;19g. Thus, 8q; j, we perform

jDq;jj ¼ Dq;j � l̂q;j

r̂q;j
; ð7Þ

where l̂q;j and r̂q;j are the sample mean and standard deviation of

the qth feature for the jth batch. We do this to normalize the data
and remove batch effects. We then perform the following to obtain
the estimated A/B chromatin states:

d
!
;j ¼ K2jDq;jj ð8Þ

where K is the k-means clustering operator. In this case, we perform
k-means clustering with a known number of clusters of 2. The out-
put is the estimated chromatin states saved in an associated vector,
~d;j. Next, the average Mean intensity metric was used to automati-
cally determine which cluster was open and closed. Specifically, we
applied

f ð~d;jÞ ¼
m1 M~m9;ð~d;j¼¼1Þ

m2 M~m9;ð~d;j¼¼2Þ

(
ð9Þ

This calculates the mean of of the Mean intensity metric for
each cluster obtained by k-means. If large intensity values indicate
more chromatin, then the rules are:

f ð~di;jjm1 > m2Þ ¼
Ai;j

~d;j ¼¼ 2

Bi;j
~d;j ¼¼ 1

(
ð10Þ

f ð~di;jjm1 6 m2Þ ¼
Ai;j

~d;j ¼¼ 1

Bi;j
~d;j ¼¼ 2

(
ð11Þ
ere q 2 f1;2; . . . ;19g. The last columns correspond to the final estimated parameter for
the model. ~m18 and ~m19 are not used for 3D-SIM data. The following symbol provided
0.05, .=0.1.

H 3D-SIM

Control 6 Hrs 30 Hrs

� 85:408� � � -6489 73:738� � �

- - -
- - -
- - -

0:094� 48.71 0:801��

- - -

- - 9:908:

� - - -
0:065� � � 45.26 0:364� � �

- - -
- 1.639 0:032��

- - -
- - -

� - - -
� 0:068� � � 1.487 0:018� � �

�0:015� - �0:012��

- 294.0 6:787� � �

- - -
- - -
- - -
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8i. This is the rule applied for 3D-SIM. However, is small intensity
values indicate more chromatin, then the rules are:

f ð~di;jjm1 < m2Þ ¼
Ai;j

~d;j ¼¼ 2

Bi;j
~d;j ¼¼ 1

(
ð12Þ

f ð~di;jjm1 P m2Þ ¼
Ai;j

~d;j ¼¼ 1

Bi;j
~d;j ¼¼ 2

(
ð13Þ

8i. This is the pair of rules applied for 3D-EMISH.
However, the k-means clustering model does not provide any

meaningful insight to which are the most important variables for
discriminating the open and closed chromatin domains from one
another. Thus, we select a logistic regression (LR) model to describe
open and closed chromatin domains [38]. However, there are too
many variables for this to be a truly interpretable and explainable
model [29]. Thus, we use the least absolute shrinkage and selection
operator (LASSO) algorithm to select the most important variables
for our model [39–41]. Thus, we first model:

min
b0 ;b

1
N

XN
i¼1

lðDi;di;a; bÞ; ð14Þ

subject to jjbjj1 6 k where jj � jj1 is the L1-norm and k is a tuning
parameter [41]. The data was split into the training and validation
data using a 70-30 split. We ensured that the proportions of the
open and closed chromatin domains were preserved in the training
and validation data using stratification [42]. We select the tuning
parameter, k, by using 10-fold cross validation on the training data.
While the optimal k is able to obtain a very high classification rate,
it retains a larger number of variables. Thus, we select the k value
within 1 standard error for the 3D-EMISH data since it also has a
very high classification rate, has less variables retained in the mod-
els, and is the more prudent choice (Supplementary Fig. B2). After
repeating this process for the 3D-SIM, we chose the same value
for the 3D-SIM’s choice of k as the 3D-EMISH’s k value to be more
conservative [39,40] (Supplementary Figs. B3–B5). Extended discus-
sions on the choice of k for the 3D-SIM data are provided in the Sup-
plementary Data.

After we obtain the non-zero coefficients, we use those vari-
ables to model the following:

log
PðC ¼ BjD ¼ xÞ
PðC ¼ AjD ¼ xÞ ¼ bTD: ð15Þ

The final estimates of the variables’ coefficients are found in the
third through sixth columns of Table 1.

The parameters of the LR model are typically described using
the log-odds ratio or the odds ratio [43,38]. Thus we are able to
interpret the log-odds ratio in the following manner for the qth

variable: assuming that all of the other variables are held constant,
for every one unit increase for the given variable, we expect the
log-odds of a being a closed chromatin domain to increase by b̂q

[43]. Positive values for estimated coefficients, b̂q, and an increase
in the associated variable corresponds to increasing the probability
of being closed. Conversely, negative values for the estimated coef-
ficient and an increase in the associated variable would indicate a
decrease in the probability of being closed. Further, we are able to
convert these to odds by taking the exponential of the estimated
coefficient value.

For example, if we assume that all other variables do not change
for the 3D-EMISH model, for every unit increase in the maximum
of the intensity value of the chromatin domain, we expect the
log-odds of being a closed chromatin domain to decrease by
0:001. The odds would be e�0:001 ¼ 0:999. Conversely, for the
3D-SIM image with the 6 hour treatment, we would expect the
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log-odds of a chromatin domain being closed to increase by
0:068. The odds would be e0:068 ¼ 1:070. This can be repeated for
each variable of interest for each model.

This allows analysts to compare and contrast different models.
Further, we are able to identify the similarities and differences
between different data and treatments. For example, the 3D-SIM
Control and 6 hours identify different parameters as being the
most important. This suggests that there are tangible differences
between the chromatin domains. In other words, we expect that
the 6 hour treatment is fundamentally changing the chromatin
structure. To quantify these difference, we can observe the param-
eter differences between the two models. For example, the max
intensity parameter value differs by a factor of 1:487

0:068 ¼ 21:87. Thus,
the 6 hour treatment impacts the max parameter value by about a
factor of 21. Thus, this provides additional evidence that the treat-
ment changes how chromatin domains exist in physical space.

Our EPICS method is considered XAI since they use features that
are both interpretable and explainable: the LR model is a highly
interpretable and explainable model to discriminate open and
closed chromatin domains [29], and each operation performed
during the entire process is clearly described while also being
interpretable and explainable. The reduction in complexity is
exemplified in Fig. B6.

2.4. Materials

Raw 3D-EMISH data was obtained from the Boettiger Lab’s
GitHub ( https://github.com/3DEMISH/3D-EMISH) [1]. Raw 3D-
SIM images were obtained from Cremer et. al.’s paper [25]. The
computation was performed on a Ubuntu 18.04.5 system with 64
GB of RAM and an Intel�Xeon(R) W-2245 CPU @ 3.90GHz with 8
cores and 16 threads. For the image processing and metric collec-
tion, we used Python 3.6.9 [44] alongside numpy [45], scipy [46],
skimage [47], sklearn [48], and kneed [49]. Determining the chro-
matin domain assignment was performed in R [50] using the
xtable [51], caret [52], glmnet [53], and clue [54] packages.
3. Results

We applied EPICS on 3D chromatin image data from two tech-
niques, 3D-EMISH (Fig. 1b–1d, Supplementary Figs. B7–B12) and
3D-SIM (Fig. 1e–1g, Supplementary Figs. B13–B16). We identified
open and closed chromatin domains from each data type, and
explained and interpreted the model and results by extracting
important physical characteristics from the image data. In addi-
tion, we identified batch effects from 3D-EMISH data and demon-
strated that EPICS is able to characterize open and closed
chromatin domains despite the batch effects.

3.1. Determination of open or closed chromatin domains from 3D-
EMISH data

The 3D-EMISH data for our analysis is from Trazaskoma et. al.
[13]. They analyzed human lymphoblastoid cells by probing a 1.7
mega-base (Mb) segment of the genome and extracted 229 image
stacks or z-stacks of potential targets. Each voxel intensity value
corresponds to a measured object as summarized in Fig. 1h. White
intensities indicate less material, while darker colors correspond to
more. Our computational analysis using EPICS determined out of
451 chromatin domains extracted from the 229 images, there exist
163 and 288 closed and open chromatin domains, respectively,
across the two experiments. 19 shape and intensity-based mea-
sures of chromatin domains were used to determine these classes
using k-means clustering. These initial clusters were verified using
bootstrapped samples and evaluating them using Jaccard’s index

https://github.com/3DEMISH/3D-EMISH
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(JI), accuracy, and balanced accuracy. All of the metrics indicated
that the initial cluster found was stable and consistent across the
replicates (Tables C1 and C2 and Figs. B17 and B18). We then used
LASSO to select the appropriate features that are able to discrimi-
nate between the open and closed chromatin domains across the
different batches (Fig. 2).

We then sorted these five variable from the most to least
important using Variable Importance (VI). VI is the absolute value
of each variables associated z-value from the LR model. Relative

VI is VI divided by the largest z-value. The 3rd quantile (Q3) is
the most important variable. The intensity-based metrics are
the two most important variables, while the shape-based metrics
are the three least important (Fig. 3a, Supplementary Table C3).
Fig. 2. The important features for discriminating between open and closed chromatin do
respectively. The top left cell provides the counts of closed and open CDs. The remaining
provides a histogram of the closed and open CDs for each feature. The remaining diagon
triangular portion and bottom triangular portion provide the 2D scatterplots and the 2D
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Using the top three variables provides a clear separation in 3D
space (Fig. 3b).

We identified five most important features to discriminate open
and closed chromatin domains. Closed chromatin domains tend to
have lower intensity values, as showcased by Q3. These lower
intensity values indicate that more chromatin is present. This
means that lower intensity values correspond to a denser object.
Conversely, higher intensity values indicate that less chromatin is
present. Thus, higher intensity values indicate that chromatin is
more sparse or spread out. The maximum of the intensity of closed
chromatin domains are smaller than those that are open. Thus,
closed domains have more chromatin and are more densely packed
than open domains. The sphericity of open domains tend to be
mains (CDs) from the 3D-EMISH data. Open and closed CDs are green and blue dots,
cells in the top row provides a boxplot of each feature. The remaining first column

al cells provide the density plots of each feature by each class. The remaining upper
contour plots, with corresponding axes labeled for each column and each row.



Fig. 3. EPICS identified important biological features of chromatin domains from
3D-EMISH images. (a) Relative variable importance (VI) of the 5 most important
features from the 19 candidate features. (b) The 3 most important variables in a 3D
scatterplot. (c) Value interpretation and distribution of each identified important
features for the 3D-EMISH data.

William Franz Lamberti and C. Zang Computational and Structural Biotechnology Journal 20 (2022) 3387–3398
closer to 1 than closed domains. Thus, open domains tend to be
closer to a sphere in shape compared to closed domains. There
are no obvious patterns for differentiating between open and
closed chromatin domains when using the relative major and
minor axis lengths (E1 and E3, respectively). However, alongside
other metrics, their impact becomes more apparent (Fig. 2). All of
these features have graphical representations provided in Fig. 3c.
Thus, open domains tend to have less chromatin material and tend
to be more spherical in shape, while closed domains tend to have
more chromatin material and are less spherical in shape.

The logistic regression (LR) model created to discriminate open
and closed chromatin domains using the 3D-EMISH data across
the experiments was able to achieve an overall classification rate
of about 95% (Table C4) and 96% (Table C5) on the training and
validation data, respectively. Their associated 95% confidence
intervals (CIs) for the overall classification rate were (92%, 97%)
and (91%, 98%), respectively. Thus, our classification model per-
forms well on data not used to build the model [29]. Further,
since we used a LR model, our solution is highly interpretable
and explainable [29].
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3.2. Batch effects exist in 3D-EMISH data

Our analysis shows that strong batch effects exist for 3D-EMISH
data. The first 3D-EMISH experiment published in Trazaskoma et.
al. [13] was 7� 7� 30 nm for each voxel, while the second exper-
iment was 5� 5� 30 nm. After correcting for the differences in
voxel resolutions during the reconstruction step, we observed that
chromatin domains identified from the two batches can be clearly
separated in the feature scatterplot matrix (Fig. 4a), indicating
strong evidence of a batch effect. We confirmed this by building
a LR model to predict the batch using the six variables identified
by LASSO. This model was able to achieve about 98% and 99% over-
all accuracy on the training and validation data, respectively. Note
that this accuracy was based off of the labels generated from k-
means clustering. Thus, future analyses should account for differ-
ent voxel resolutions.

To account for the batch effect, we used EPICS to first cluster per
each batch using batch removal and k-means independently before
combining the data for the LASSO. Batch removal was performed
by subtracting the sample mean and standard deviation of for each
respective feature by batch (Eq. 7). Typical batch removal requires
the analysis to remain in an abstract space. However, we found
that EPICS is still able to classify the open and closed chromatin
domains in the original feature space (Figs. 4b & 4c). For instance,
the blue solid dots are left of the green open triangles across
batches for Q3 against Sphericity, E1, or E3. While the two experi-
ments have different ranges for the features selected by LASSO
(Figs. 4b & 4c), EPICS is able to use the clusters found from the
independent batch removal step in the LR model using the original
physical space for the variables (Figs. 2 and 3b). Thus, EPICS is still
able to capture the important biological features across batches in
their original physical space and identify open or closed chromatin
domains.
3.3. EPICS identifies chromatin domains from 3D-SIM data

To test the general usability of EPICS, we applied EPICS to 3D
image data generated from other techniques. Specifically, we
applied EPICS to 3D-SIM generated immunostained images for
repressive histone modification H3K27me3 in human colon cancer
cell lines [25]. We identified open and closed chromatin domains of
the cell under three different conditions: control, treated for 6
hours in auxin, and treated for 30 hours in auxin (Fig. 5, Supple-
mentary Tables C6–C8). Each dataset was an image stack. Each
voxel intensity value corresponds to a biological object as summa-
rized in Fig. 1h. Large intensity values indicate more chromatin,
while smaller values correspond to less. We processed the 3D-
SIM data with the similar procedure for 3D-EMISH, as shown in
parallel in Fig. 1. For example, we identified the important vari-
ables and characterized the physical properties of the
H3K27me3-marked chromatin in these cancer cells under different
treatments (Supplementary Tables C6–C8), and provided overall
accuracy measures and confidence intervals (CIs) for each model’s
performance (Supplementary Tables C9–C15). The smallest accu-
racy on the validation data was about 0.990 with an associated
95% CI of (0.980, 0.995). Note that the accuracy of these models
was evaluated by using the clusters created by k-means. The
learned labels were verified to be consistent through bootstrap
sampling and obtaining similar cluster labels across the experi-
ments (Tables C16 and C17 and Figs. B19–B21). Furthermore, the
coefficient values are largely consistent across the bootstrapped
samples (Tables C18–C20). Deeper investigations on the 6 hour
model indicate that a more stable solution is viable using only
the top 3 variables found by the LASSO (Table C21). Thus, one’s
point of view of computational algorithms changes how one would
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utilize EPICS. If one wants an all-inclusive approach that requires
no human inputs, EPICS provides results that are computationally
valid and useful. However, if one wants to adhere to orthodox
tenants (i.e. statistical significance), then the user is also able to
investigate and fine-tune the final model produced by EPICS.

There are two primary biological insights obtained from these
results. The first is the nature of open and closed chromatin
domains at a coarser resolution using 3D-SIM relative to the finer
resolution of 3D-EMISH. When compared to open chromatin
domains, closed domains tend to have more chromatin material,
a larger surface area, and have very dense sections within the
domain. Thus, closed domains appear as large, dense, asymmetric
chromatin. When compared to closed chromatin domains, open
domains tend to have less chromatin material, less surface area,
and a smaller major axis. Thus, open domains tend to be small,
sparse, symmetric chromatin. The second biological insight is the
increase in complexity required to classify open and closed chro-
matin domains across treatment types. There is evidence that chro-
matin domains exist across different treatments [25]. However, our
models indicate that the chromatin domains are not static and
remain unchanged across treatments. In fact, our model shows that
the treatments might change the physical characteristics of the
chromatin. In particular, since the 3D-SIM data has three treat-
ments, we can quantify the differences between models for classi-
fying the open and closed chromatin domains. For example, each of
the 3D-SIM models retained surface area and the max intensity.
However, the parameter values in our models are drastically differ-
ent from one another. Such differences might be due to technical
variances on the data or the model, or could be real biological
results. Further investigation is needed on the EPICS results from
3D-SIM to provide insights to the biological nature of chromatin.
In summary, these models reflect biological differences between
the treatments. However, experimental validation in a wet lab is
still required.

4. Discussion

In this work, we present a computational method, EPICS, which
we developed to identify chromatin domains from 3D image data
and to determine if identified chromatin domains are open or
closed based on its physical representation from the images. We
used data generated from 3D-EMISH and 3D-SIM techniques as
two case studies to exemplify the workflow, functions, and results
of EPICS, as well as the ability to correct for batch effects for 3D-
EMISH data. More importantly, we demonstrated the ability of
EPICS to explain and interpret the model and results. This allows
researchers to learn the physical characteristics from super-
resolution imaging data to understand the morphological proper-
ties of higher-order chromatin structures such as open and closed
chromatin domains or active and inactive compartment structures.
From the 3D-SIM data in cells under different treatments, we pro-
vided evidence that open and closed chromatin domains’ physical
characteristics might dynamically change in time under treat-
ments. Furthermore, we incorporated the tenants of explainability
and interpretability into the development of EPICS to ensure the
MLmethods used are within the confines of XAI. To our knowledge,
3

Fig. 4. EPICS is able to account for batch effects in their original space. (a)
Scatterplot matrix showing the features from Fig. 2, but with colorizations
corresponding to the first and second experiments. The black and red open circles
correspond to the first and second experiment, respectively. (b, c) Scatterplot
matrices showing the chromatin domains from the first experiment (b) and from
the second experiment (c).



Fig. 5. EPICS identified open and closed chromatin domains (CDs) from 3D-SIM data for H3K27me3 and a human colon cancer line across different treatments. Open and
closed CDs are presented using green open triangles and blue closed circles, respectively. S.A., Surface Area. (a, d, g) Scatterplot showing the EPICS-identified important
variables. (b, e, h) The relative variable importance (VI). (c, f, i) A 3D scatterplot of the top 3 most important variables clearly separating open and closed CDs for a given
sample.
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EPICS is the first and so far the only XAI method for analyzing 3D
chromatin image data.

Specifically, we showed that EPICS is able to characterize open
and closed chromatin domains from 3D-EMISH images at resolu-
tions as small as 5� 5� 30 nm and 3D-SIM images at
39:5� 39:5� 125 nm. We identified the variables that were the
most important to discriminate open and closed chromatin
domains for each of our models and data sources. The LR model
was able to achieve an overall classification rate of about 94% on
the 3D-EMISH validation data, which were not used to build the
model. The 3D-SIMmodel was able to achieve accuracies of at least
98% on the validation data. These accuracy rates were based upon
using the k-means clustering labels. Thus, the models should gen-
eralize to outside data well. Therefore, we provide a computational
framework that is able to describe and classify open and closed
chromatin domains from these two different technologies.

Logistic regression (LR) is highly explainable since we can
describe the exact relationship modeled and how the parameters
of the model work. LR is interpretable since each parameter corre-
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sponds to a physical change in the probability of belonging to a
particular class, and the final LR parameter values are shown in
Table 1. Thus, LR is a prime example of a model which is able to
satisfy the conditions of an XAI model.

EPICS handles the batch correction by clustering the data by
batch before the model is built. This is vital as these chromatin
domains were collected over two different datasets, but EPICS is
able to classify the clusters using the LASSO and LR in their original
unchanged space. The final LR model enables future analysts the
ability to predict new observations without needing to do any
batch correction for 3D-EMISH data.

Lastly, EPICS reduces model complexity by identifying the
important features from the image data to consider as exemplified
in Fig. B6. By removing less important variables, biologists are able
to make more insightful and meaningful inferences. By using the
LASSO, we are able to identify the relevant features for understand-
ing the underlying biological properties of the chromatin domains.
Thus, EPICS allows analysts to interpret the results in the original
and physical units of the collected features.
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This is the first work to characterize higher-order chromatin
structures from image data in this manner. Chromatin structures
from 3D-SIM data across different treatment for cells using volume
were found to have statistically significant differences between the
treatments [25]. Others used sphericity, surface area, and volume
to find statistically significant differences between chromatin
structures that have different number of domains [13]. However,
statistical significance may not be sufficient to accurately classify
different groups from one another. Further, none of these
approaches use a large number of features to describe the physical
characteristics of chromatin structures, nor do they use these fea-
tures to identify clusters of open and closed chromatin domains.
Thus, EPICS is the first approach to identify open and closed
domains using the physical characteristics of chromatin.

The identification of open and closed chromatin domains from
3D chromatin image data using EPICS is analogous to the identifi-
cation of A/B compartments from Hi-C data. We speculate that
they refer to comparable structural information of chromatin
states. However, due to lack of orthogonal information such as
genomic coordinates for validation, the ground truth of what
open/closed chromatin domains actually mean remains unclear.
Further studies are needed for finding more biologically meaning-
ful interpretation of these computationally-determined chromatin
states.

There are three primary pitfalls of EPICS. The first is that some
steps in the image pre-processing differ between the two technolo-
gies. This is primarily due to the nature of the different types of raw
data. However, further improving the similarities in the algorithm
would help ensure that EPICS treats the different raw data from
different technologies as equitably as possible. The second is that
not all of the variables found using the LASSO in EPICS are guaran-
teed to be statistically significant. Future work for identifying con-
sistently statistically significant variables is an area of research. To
that end, future versions of EPICS could reduce the number of vari-
ables the top 3. The third is the lack of genomic coordinate infor-
mation in the two types of image data presented in this work.
3D-EMISH and 3D-SIM do not provide the genomic coordinates.
Thus, we cannot directly compare Hi-C to our method. Other meth-
ods utilize probes that capture information across a small number
of bases. These probes are then combined to obtain an entire trace.
These traces can then be compared against technologies like Hi-C
or ATAC-seq since they are approximately the same in terms of
genetic resolution. These two families of technologies are usually
compared visually or with a single metric like correlation (using
their respective distance matrices). 3D-EMISH and 3D-SIM’s lack
of genomic coordinates limits the possibility to further interpret
the chromatin domain classification result of EPICS for functional
association with the genome, and presents us from using orthogo-
nal information such as Hi-C data to validate our image-based
domain inference. However, if 3D-EMISH and 3D-SIM are devel-
oped to the point where we are able to identify probes at a higher
resolution. Potential application of EPICS to other FISH-based spa-
tial genomics data that barcode genomic information, such as seq-
FISH, ORCA, or MINA, can further improve the interpretability of
EPICS for functional genomics studies. Nevertheless, considering
that these pitfalls can be managed and improved in future work,
EPICS potentially has a broad application in image-based spatial
genomics data analysis.
5. Conclusion

EPICS allows us to understand the biological underpinnings of
cells at a new level for investigation. Using our model for classify-
ing chromatin domains from 3D-EMISH or 3D-SIM data would
allow for deep understandings of a variety of chromatin structures.
3396
Unlike Hi-C, 3D-EMISH and 3D-SIM are able to provide physical
representations of the chromatin. Further, 3D-EMISH and 3D-SIM
provide a more direct measurement of chromatin than Hi-C. Thus,
EPICS has the potential to yield new and meaningful biological
insights for chromatin structures captured using 3D image data.
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