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Density functional theory (DFT) calculations have been performed to investigate the

mechanism of alkaline-earth-metal-catalyzed hydroboration of pyridines with borane.

In this reaction, the active catalytic species is considered to be an alkaline earth metal

hydride complex when the corresponding alkaline earth metal is used as the catalyst. The

theoretical results reveal that initiation of the catalytic cycle is hydride transfer to generate

a magnesium hydride complex when β-diimine alkylmagnesium is used as a pre-catalyst.

The magnesium hydride complex can undergo coordination of the pyridine reactant

followed by hydride transfer to form a dearomatized magnesium pyridine intermediate.

Coordination of borane and hydride transfer from borohydride to magnesium then give

the hydroboration product and regenerate the active magnesium hydride catalyst. The

rate-determining step of the catalytic cycle is hydride transfer to pyridine with a free

energy barrier of 29.7 kcal/mol. Other alkaline earth metal complexes, including calcium

and strontium complexes, were also considered. The DFT calculations show that the

corresponding activation free energies for the rate-determining step of this reaction with

calcium and strontium catalysts are much lower than with the magnesium catalyst.

Therefore, calcium and strontium complexes can be used as the catalyst for the reaction,

which could allow mild reaction conditions.

Keywords: alkaline-earth-metals catalyst, theoretical study, hydroboration, dihydropyridine, metal hydride

complex

INTRODUCTION

As an important derivative of pyridine, dihydropyridine is an important raw material to
synthesize natural products. For instance, dihydropyridine is extensively used to synthesize
nicotinamide adenine dinucleotide, antihypertensive drugs, and anti-inflammatory agents
(Karrer et al., 1937; Mauzerall and Westheimer, 1955; Bossert et al., 1981; Schramm
et al., 1983; Berg et al., 2002). In addition, because dihydropyridine can provide two
hydrogen atoms, it is often used as a mild and efficient reducing agent with high
selectivity in catalytic hydrogenation (Adolfsson, 2005; Connon, 2007). Dihydropyridine
can be prepared by dearomatization of pyridine and its derivatives. However, application
of this reaction is limited by its strict reaction conditions and unstable dearomatized

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2019.00149
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2019.00149&domain=pdf&date_stamp=2019-03-26
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ruopeng@cqu.edu.cn
mailto:lanyu@cqu.edu.cn
https://doi.org/10.3389/fchem.2019.00149
https://www.frontiersin.org/articles/10.3389/fchem.2019.00149/full
http://loop.frontiersin.org/people/701745/overview
http://loop.frontiersin.org/people/701751/overview
http://loop.frontiersin.org/people/701761/overview
http://loop.frontiersin.org/people/701778/overview
http://loop.frontiersin.org/people/78873/overview
http://loop.frontiersin.org/people/701784/overview
http://loop.frontiersin.org/people/701683/overview
http://loop.frontiersin.org/people/658910/overview


Li et al. Theoretical Study of Pyridines Hydroboration

intermediates (Hantzsch, 1881; Stout andMeyers, 1982; Seyferth,
2009; Li Y. Y. et al., 2018). Synthesis of these compounds by
homogeneous catalysis has seldom been reported (Harrod et al.,
2001; Oshima et al., 2012a,b). In 1998, Harrod’s research group
(Hao et al., 1998) realized pyridine hydrosilylation and obtained
the 1,2-dihydropyridine product with a titanocene derivative
as the catalyst. In 2011, Nikonov’s group (Gutsulyak et al.,
2011) realized hydrosilylation of pyridine with ruthenium as the
catalyst at room temperature and obtained a mixture of 1,2- and
1,4-borohydropyridine. However, application of these reactions
in synthetic chemistry is greatly limited by the expensive
transition metal catalyst (Yaroshevsky, 2006; Dobereiner and
Crabtree, 2010; Osakada, 2011; Huang and Xia, 2015; Li et al.,
2015; Qi et al., 2016, 2018; Yang et al., 2016; Yu et al., 2016; Xing
et al., 2017; Liu et al., 2018; Luo et al., 2018; Zhu et al., 2018).

Alkaline-earth (Ae) metals, which are located in group
IIA of the periodic table of elements, have attracted wide
attention because of their low cost, availability, and abundant
reserves in nature (Green et al., 2007). Ae metals, such as
magnesium, calcium, strontium, and barium, are commonly
used as homogeneous catalysts. Because the d0 valence electron
configuration at the center of the divalent cation (Ae2+) in the Ae
metal catalyst shows partial “lanthanide” characteristics, a similar
catalytic cycle can be constructed in homogeneous catalysis (Li
and Marks, 1996; Westerhausen, 2008; Krieck et al., 2009; Hill
et al., 2016; Ma et al., 2016; Rochat et al., 2016; Rossin and
Peruzzini, 2016; Xu et al., 2017a).

In the past few decades, many research groups have prepared
series of organic Ae metal compounds, which have wide
application prospects owing to their low cost and toxicity
(Arrowsmith et al., 2011; Liu et al., 2012; Intemann et al., 2014;
Schwamm et al., 2014; Hill et al., 2016; Rossin and Peruzzini,
2016). One of the most important applications is the hydrogen
transfer reaction, in which Ae metal hydrides are usually used to
transfer hydrogen atoms and they show unique catalytic activity
(Dunne et al., 2011; Harder et al., 2011; Praneeth et al., 2012;
Intemann et al., 2013; Liptrot et al., 2014; Anker et al., 2015;
Weetman et al., 2016). The high catalytic activity of Ae metal
hydrides can be ascribed to two factors. First, the hydrogen
atoms in the Ae metal hydride have high electron density, which
means that the hydrogen atoms can easily dissociate in the form
of free hydride anions that exhibit Brønsted basicity. Second,
Ae metal hydrides also exhibit Lewis acidity owing to the two
formal positive charges carried by the metal ions (Rokob et al.,
2013; Anker et al., 2014; Stepha, 2015; Hill et al., 2016). For
example, the magnesium catalyst can catalyze the hydroboration
reaction of borohydride compounds (pinacol—borane (HBpin),
9-borabicyclo [3.3.1]nonane (9-BBN), etc.) with various organic
compounds (esters, ketones, amines, pyridines, imines, nitriles,
and amides) to construct new C (hetero)–B bonds (Barrett et al.,
2007; Hill et al., 2010; Arrowsmith et al., 2012; Butera et al., 2014;
Schwamm et al., 2014; Lampland et al., 2015; Liptrot et al., 2015;
Liu et al., 2017; Zhao et al., 2017; Jiang et al., 2018).

Hill and co-workers (Arrowsmith et al., 2011) first reported
the magnesium-catalyzed hydroboration of Pyridines in 2011.
In 2014, Harder’s group (Intemann et al., 2014) reported
hydroboration of pyridine catalyzed by the Ae metal magnesium

and obtained the 1,2-selective addition compound 4 as the major
product (Scheme 1). Harder et al. suggested that magnesium
hydride species 6 acts as a catalyst in the catalytic cycle.
Based on the experimental observations and our previous
theoretical studies of Ae catalysis, there are two possible
reaction pathways. Raw material pyridine 1 coordinates with
magnesium in active catalytic species 6 to give intermediate 7

(Scheme 2). The C = N double bond in pyridine then inserts
into the Mg–H bond to give dearomatized magnesium amino
intermediate 8, which could coordinate with pinacolborane 2 to
give nitrogen–boron compound 9. Finally, magnesium hydride
species 6 is regenerated by hydride transfer with the release of
1,2-borohydropyridine derivative 4. Alternatively, intermediate
8 could be isomerized by 1,3-hydrogen migration to give
intermediate 10, which then coordinates to pinacolborane 2

to give nitrogen–boron complex 11. After the corresponding
hydride transfer, 1,4-borohydropyridine product 5 is obtained
and active magnesium hydride species 6 is regenerated.

Here, we performed a theoretical mechanistic study of Ae
catalysis and determined the trend of the reactivates of Ae-
catalyzed hydrogenation reactions. The pyridine hydroboration
reaction catalyzed by Ae metals reported by Harder’s group was
used as the template reaction for the theoretical calculations.
The calculations were performed based on density functional
theory (DFT) and the reaction mechanism is discussed to better
understand the reaction process and provide theoretical guidance
for subsequent organic reactions catalyzed by Ae metals.

COMPUTATIONAL METHODS

All of the DFT calculations were performed with the Gaussian
09 software package (Frisch et al., 2013). The B3-LYP (Lee
et al., 1988; Becke, 1993; Stephens et al., 1994; Adamo and
Barone, 1999) functional with the standard 6-31G(d) (Hehre
et al., 1972; Francl et al., 1982) basis set (SDD Dolg et al.,
1987 basis set for strontium atoms) was used for the geometry
optimizations. Harmonic vibrational frequency calculations were
performed for all of the stationary points to determine whether
they are local minima or transition structures and to derive the
thermochemical corrections for the enthalpies and free energies.
The M11 (Peverati and Truhlar, 2011) functional with the 6-
311+G(d) basis set (SDD for strontium atoms) was used to
calculate the single-point energies, because it is expected that
this strategy will provide more accuracy with regard to the
energetic information (Peverati and Truhlar, 2012; Zhao et al.,
2012; Yu and Lan, 2013; Cui et al., 2019). The solvent effect of
benzene was considered by single-point calculations of the gas-
phase stationary points with the solvation model based on the
density (SMD), which is a continuous model (Cances et al., 1997;
Marenich et al., 2009). The reported free energies are the M11-
calculatedGibbs free energies in benzene solvent based on the B3-
LYP-calculated geometries with thermodynamic corrections. The
geometric configurations of the key reaction intermediates and
transition states were generated with CYLview software (Legault,
2009). The total energies for all of the calculated structures are
listed in Supplementary Material.
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SCHEME 1 | Magnesium-catalyzed hydroboration of pyridines with borane.

SCHEME 2 | Plausible mechanism for magnesium-catalyzed hydroboration of pyridines with borane.

RESULTS AND DISCUSSION

Mechanism of Pyridine Hydroboration
Catalyzed by Magnesium-Hydrogen
Species
DFT calculations were performed for hydroboration of pyridines
catalyzed by magnesium (Scheme 2). We selected β-diimine
magnesium hydride 6 as the relative zero point of the Gibbs
free energy (Figure 1). Pyridine 12 coordinates with active
magnesium hydride species 6 to form intermediate 13. This

process is exergonic by 7.9 kcal/mol, indicating that the
magnesium hydride species can be stabilized as the Lewis acid
by the corresponding Lewis base. After pyridine is activated
by the magnesium hydride species, the C=N double bond in
pyridine 12 inserts into the Mg–H bond via transition state 14-
ts. the energy barrier of insertion step is 29.7 kcal/mol, indicating
that this step is the rate-determining step of the catalytic cycle.
The geometric structure of transition state 14-ts is shown in
Figure 2. The length of the C–H bond to be formed is 1.58 Å.
The length of the Mg–H bond to be ruptured is 1.91 Å. The
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FIGURE 1 | Free energy profile for magnesium-catalyzed hydroboration of pyridines and borane. The relative free energies (1G) in benzene are given in kcal/mol.

FIGURE 2 | Geometry of transition states 14-ts, 16-ts, and 18-ts. The bond lengths are given in ångstroms.

FIGURE 3 | The value of BDEs for corresponding Ae–H bonds given in kcal/mol. Free energies (1G) in benzene are given in kcal/mol.

length of the C–N bond in pyridine involved in the reaction is
1.40 Å. The above data of the geometrical structure show that
formation of the C–H bond and rupture of the Mg–H bond

simultaneously occur in this reaction. Intermediate 15 is obtained
when C=N double insertion occurs. Because the aromaticity of
pyridine in intermediate 15 is destroyed, its relative energy is
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9.9 kcal/mol higher than that of intermediate 13. In addition,
we also considered another route to obtain intermediate 15.
With pinacolborane 2 acts as a bridge, the hydrogen atom
migrates frommagnesium to boron via hexatomic ring transition
state 20-ts and then transfers from boron to the ortho carbon
of nitrogen to give intermediate 15. The activation energy
of this process is 33.5 kcal/mol, which indicates that it is a
possible alternative pathway to generate intermediate 15. In
intermediate 15, because the Mg–N covalent bond is formed

and there is a lone pair of electrons on the nitrogen atom, it
can coordinate with pinacolborane 2 to give boron–nitrogen
Lewis acid–base complex 17 via low-energy transition state 16-
ts. Interestingly, in intermediate 17, there are also two lone
pairs of electrons on each oxygen atom in pinacolborane 2, so
a coordination bond can form between oxygen and magnesium,
increasing the stability of intermediate 17. The pinacolborane
2 moiety of intermediate 17 is activated by the amino group,
so hydride can migrate from boron to magnesium. Theoretical

FIGURE 4 | Free energy profile for calcium-catalyzed (A) or strontium-catalyzed (B) hydroboration of pyridines and borane. The relative free energies (1G) in benzene

are given in kcal/mol.
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calculations show that this process proceeds via transition state
18-ts with an activation free energy of only 5.3 kcal/mol. After
this step, 1,2-borohydropyridine product 19 is released and
active catalytic species 6 is regenerated. The complete catalytic
cycle is only exothermic by 6.2 kcal/mol. This indicates a weak
thermodynamic driving force, which can be attributed to the
aromaticity of pyridine being destroyed. Nevertheless, a stable
N–B covalent bond is generated to drive the reaction.

Mechanism of Pyridine Hydroboration
Catalyzed by Other Ae Metals
Harder’s group only determined the catalytic activities of
magnesium species. Followed these results, Harder and
co-workers (Intemann et al., 2015) reported the calcium
catalyzed hydrosilylation of pyridine, demonstrating that a
beta-deketiminate calcium hydride is capable of faster selective
1,2-dearomatisation in 2015. According to the basic rule of the
periodic law of elements and our previous theoretical studies
(Gao et al., 2016; Qi et al., 2017; Xu et al., 2017a,b; Li, Y. et al.,
2018) elements of the same main group often have similar
chemical properties (Cotton et al., 1988). After investigating
the mechanism of pyridine hydroboration catalyzed by the
magnesium catalyst, we performed M11 calculations to predict
the catalytic activities of other Ae metals in the group. In the
pyridine hydroboration reaction, the rate-determining step is
considered to be pyridine C = N bond insertion with Mg–H

bond cleavage. Therefore, a weak metal–H covalent bond is
favorable for this reaction. The calculated bond dissociation
energies (BDEs) of Ae–H bonds are shown in Figure 3. The
BDEs of Be–H, Mg–H, Ca–H, and Sr–H are 96.3, 75.5, 64.6, and
62.2 kcal/mol, respectively. Therefore, beryllium, which is in
the same group as magnesium, has a small atomic radius, large
steric hindrance, low metallic property, and strong Be–H bond.
We believe that hydroboration cannot be catalyzed by beryllium
hydride species. Furthermore, calcium and strontium could have
higher catalytic activity than magnesium because of the weak
metal–H covalent bonds owing to their larger atomic radii and
lower electronegativities.

We also calculated the potential energy surfaces of the
pyridine hydroboration reaction catalyzed by calcium and
strontium hydride (Figure 4). In Figure 4A, active calcium
hydride catalyst 6a is selected as the relative zero of the
Gibbs free energy. First, calcium hydride species 6a coordinates
with pyridine 12 to give intermediate 13a with a relative
Gibbs free energy of 1.0 kcal/mol. The pyridine C=N bond
then inserts into the Ca–H covalent bond via transition state
14a-ts. The energy barrier of this process is 17.4 kcal/mol,
indicating that this step is the rate-determining step of the
catalytic cycle. Compared with the corresponding reaction
catalyzed by magnesium, the activation energy required for
the rate-determining step decreases by 12.3 kcal/mol. Thus,
we can conclude that the activity of the calcium catalyst is

FIGURE 5 | Geometry of transition states 14a-ts, 16a-ts, 18a-ts, 14b-ts, 16b-ts, and 18b-ts. The bond lengths are given in ångstroms.
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higher than that of the magnesium catalyst. Intermediate 15a

coordinates with pinacolborane 2 via the corresponding low-
energy transition state 16a-ts to give boron–nitrogen Lewis acid–
base complex 17a. Finally, 1,2-borohydropyridine product 19 is
released by hydride transfer with regeneration of active catalytic
species 6a. The geometric structures of 14a-ts, 16a-ts, and 18a-

ts are shown in Figure 5. The corresponding Ae metal transition
states have similar structures.

Strontium hydride species 6b can also coordinate with
pyridine 12 to give intermediate 13b, which is endergonic by
2.1 kcal/mol (Figure 4B). Intermediate 13b is unstable and
prone to react. The activation energy required for C=N bond
insertion into the Sr–H bond via transition state 14b-ts is 14.4
kcal/mol. However, intermediate 17b generated by coordination
to pinacolborane 2 is very stable, and its free energy is 9.5
kcal/mol lower than that of the 1,2-borohydropyridine product
19 and regenerated active catalyst 6b. Therefore, the complete
activation free energy for strontium catalysis of this reaction
is 23.9 kcal/mol, which is 5.8 kcal/mol lower than that for
magnesium catalysis, but 5.8 kcal/mol higher than that for
calcium catalysis. Therefore, our theoretical calculations predict
that the catalytic activities of the Ae metal complexes are calcium
> strontium > magnesium.

CONCLUSION

The mechanism of pyridine hydroboration catalyzed by a
series of Ae metals has been systematically investigated by
DFT calculations. When a magnesium complex is used as
the catalyst, the magnesium hydride intermediate is the active
catalytic species for this reaction. According to the theoretical
calculations, the reactionmechanism of this reaction is as follows.
Pyridine first coordinates with the magnesium atom in the
active catalyst, followed by the pyridine C=N double bond
inserting into the Mg–H bond, resulting in dearomatization. The
magnesium amino intermediate coordinates to pinacolborane
and the magnesium hydride intermediate is regenerated by
hydride transfer to release the product. The catalytic activities

of various Ae metals in the same group were predicted by DFT
calculations. The trend of the Ae–H BDEs is Mg–H > Ca–H >

Sr–H. The theoretical calculations indicate that when a calcium
catalyst is used, there is a much lower activation free energy for
C=N double bond insertion into the Ca–H bond, which is the
rate-determining step of the catalytic cycle. However, because
the boron–nitrogen Lewis acid–base complex with the strontium
catalyst is very stable, the apparent activation free energy for the
strontium catalyst is higher than that for the calcium catalyst,
but lower than that for the magnesium catalyst. Therefore, we
believe that milder reaction conditions could be used if a calcium
or strontium complex is used as the catalyst.
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