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Laminin-111 is a large trimeric basement membrane glycopro-
tein with many active sites. In particular, four peptides active in
tumor malignancy studies have been identified in laminin-111
using a systematic peptide screening method followed by
various assays. Two of the peptides (IKVAV and AG73) are
found on the a1 chain, one (YIGSR) of the b1 chain and one
(C16) on the c1 chain. The four peptides have distinct activities
and receptors. Since three of the peptides (IKVAV, AG73 and
C16) strongly promote tumor growth, this may explain the
potent effects laminin-111 has on malignant cells. The peptide,
YIGSR, decreases tumor growth and experimental metastasis
via a 32/67 kD receptor while IKVAV increases tumor growth,
angiogenesis and protease activity via integrin receptors.
AG73 increases tumor growth and metastases via syndecan
receptors. C16 increases tumor growth and angiogenesis via
integrins. Identification of such sites on laminin-111 will have
use in defining strategies to develop therapeutics for cancer.

Introduction

The basement membrane glycoprotein laminin-111 is a large
molecule found primarily in embryonic tissue-derived basement
membranes. Laminin-111 is the most well-studied of the some 15
laminin isoforms because it can be isolated in quantity from the
mouse Engelbreth-Holm-Swarm (EHS) tumor and is commer-
cially available. It consists of three chains, a1 (400 kD), β1 (210
kD) and c1 (200 kD), that associate to form a cruciform structure
(Fig. 1). These chains are homologous in structure and have N-
terminal globules separated by epidermal growth factor (EGF)-
like repeat sequences. The a1 chain has three such globules and
three EGF-like repeats while the other two chains are shorter with
two globules and two EGF-like repeat sequences. All three chains
have a coiled-coil structure of similar length that extends to the C-
terminus. The laminin a1 chain C-terminal globular domain (LG
domain) consists of LG1-LG5 tandems (100 kD) that play a
critical role in the biological function of laminin-111.

Laminin-111 binds to the other abundant basement membrane
components, which include collagen IV, perlecan, entactin/

nidogen and itself. Such interactions are specific and important in
the assembly of the basement membrane matrix. Laminin-111
also interacts with cells and has multiple biological activities,
including promoting cell adhesion, migration, neurite outgrowth
and tumor growth and metastasis (Box 1). Proteolytic fragments
as well as synthetic peptides have been used to localize and study
these activities and demonstrate that it is a multifunctional protein
with the potential for many active sites (Fig. 1). Furthermore,
many different types of cell surface receptors have been identified
that bind to these active sequences. Here, we describe four
laminin-111-derived synthetic peptides that are active in
malignancy (Fig. 1 and Table 1). One peptide (YIGSR) inhibits
tumor growth and angiogenesis while the other three (IKVAV,
RKRLQVQLSIR and KAFDITYVRLKF) promote tumor
growth. These peptides appear to use different cellular receptors
and mechanism to affect their activity.

Laminin-111 and Malignancy

Laminin-111 has been shown to promote the malignant
phenotype in many research laboratories using both in vitro and
in vivo approaches (Table 2). It increases tumor cell adhesion,
migration, growth and metastasis.1,2 Tumor cells selected for high
laminin-111 adhesion are more malignant in vivo than either the
non-adherent selected tumor cells, the parental cells, or those cells
selected for high fibronectin adhesion.3,4 Additionally, levels of the
Mr = 32/67 kD laminin receptor correlate positively with
malignancy. Furthermore, protease production (urokinase-type
plasminogen activator and matrix metalloproteases-2 and -9) is
induced by laminin-111 in tumor cells,5,6 which likely facilitates
metastatic spread by allowing tumor cells to penetrate tissues. The
activity of these proteases and also of other proteins that the
proteases release from the tissues and matrices, such as
endogenous growth and angiogenic factors and protein fragments,
further contributes to the metastatic spread and survival of tumor
cells.

The basement membrane is a barrier to tumor cell metastasis,
separating the epithelium from connective tissue and the vascular
endothelium. The anti-laminin-111 polyclonal antibody has been
often used to identify the presence of this molecule in the tumor
environment. Although the antibody cannot define the individual
laminin-111 subunits, immunohistological studies have shown
that laminin-111 is present in tumor tissues. Remodeling or loss
of the basement membrane is believed to be required for tumor
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cells to move through the extracellular matrix (ECM) and to
metastasize to distant sites.7 Collectively, active proteases can
degrade all components of the ECM in vitro,8-10 and their
expression is frequently found in vivo at sites where the ECM is
cleaved.9,11-15 In tissues such as breast tumors, the laminin-111
staining is often discontinuous.12-17 Proteolytic cleavage of
structural proteins may expose cryptic sites that have biological
activity. The existence of such cryptic sites with biological activity
within larger molecules is not unusual.10,18

When melanoma tumor cells were grown in culture in the
presence of laminin-111 and then intravenously injected into
mice more lung tumors formed over that observed with cells
cultured in the absence of laminin-111 or in the presence of
fibronectin.3,4 The reason for this increase in tumor metastasis is
unclear but suggests a preferential growth of the more malignant
subpopulations. Interestingly, laminin-111 also increased A375
human melanoma metastasis to bone in an intracardiac model.19

Finally, laminin-111 co-injected subcutaneously with tumor cells

Figure 1. Schematic model of laminin-111 showing the location of peptides that exhibit cell attachment activity for human fibrosarcoma cells. Laminin-
111 is composed of three subunits, a, b and c chains. Forty-five active peptides are localized in a1 chain, 14 active peptides in b1 chain and 12 active
peptides in c1 chain. The four highlighted peptides described here are active in tumor malignancy and are also listed in Table 1 . YIGSR and IKVAV were
previously identified as active sequences.27,54 YIGSR peptide does not exhibit cell adhesion activity for fibrocarcoma cells. IKVAV sequence is contained in
A208 peptides.
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in mice increases the growth rate of some tumors over that
observed with cells injected alone or with collagen I.3,4 Since
collagen I forms a gel and had no effect, the role of laminin-111 in
“holding the tumor cells in place” is not likely the mechanism for
laminin-111-enhanced tumor cell growth. A possible explanation
is that proteases degrade the lamnin-111 to active fragments that
promote growth, protease production and angiogenesis.

Screening for Active Sites to Identify Laminin-111-
Derived Peptides That Affect Malignancy

Several active sites on laminin-111 have been identified using
proteolytic fragments, recombinant proteins and synthetic
peptides.20,21 Some proteolytic fragments prepared from lami-
nin-111 exhibit biological activity but there are not many
enzymes that provide specific fragments. Thus, it is difficult to
obtain a complete set of proteolytic fragments for defining active
sites. Likewise, recombinant proteins provide another approach
for identifying active sites on laminin-111 and have the
advantage of providing specific desired sequences. However, it
can be difficult to express these proteins in either bacteria or
mammalian cells. Synthetic peptides are designed according to
the amino acid sequence. A disadvantage of synthetic peptide is
that it can be difficult to synthesize long peptides, mimic
structure and include glycosylation. However, synthetic peptides
do have major advantages over proteolytic fragments and
recombinant proteins for probing active sites. The peptides are
generally easier and more accurate in terms of sequence to obtain
as well as having higher purity. We have developed systematic
approaches for molecular dissection of laminin-111 functional
sites using synthetic peptides (Fig. 2). All peptides were manually
synthesized with a C-terminal amide and purified by HPLC.
Peptides were generally designed with a length of 12 amino acid
residues and overlapped with neighboring peptides by four
amino acids. Cysteine residues were omitted to prevent the
influence of disulfide bonds. Based on the amino acids sequence

of laminin-111, we produced 673 overlapping synthetic peptides
covering the entire protein.22-26

Cell adhesion is a major function of laminin-111. Therefore,
we first screened cell adhesion activity of synthetic peptides using
plastic plates or Sepharose beads (Fig. 3). In the cell adhesion
assay using plastic plates, synthetic peptides were added to each
well followed by drying overnight. After drying, peptide-coated
wells are blocked with BSA. As shown in Figure 3, a cell
suspension is added to the wells and incubated for 1 h at 37°C.
The cells adhering to the peptide-coated wells are stained with
crystal violet and then quantified. In the cell adhesion assay, using
Sepharose beads, synthetic peptides are coupled to CNBr-
Sepharose beads. Cell suspension and peptide-beads are mixed
and incubated for 1 h at 37°C. As described above, the cells
adhering to the peptide-coupled Sepharose beads are stained with
crystal violet and quantified by viewing with a phase-contrast
microscope. However, both assays have limitations. The coating
efficiency of a peptide depends on the property of the peptide.
Additionally, the peptides coated on the wells may not be in the
native conformation due to random binding to the dish which
may result in loss of the structure needed for cell binding.
Synthetic peptides coupled to Sepharose beads maintain their
conformation due to binding of the peptide at one end via a
peptide spacer with the remainder of the peptide in solution and
available for interaction with cells. The quantification of the cells
bound to the peptide-beads can be less accurate depending on the
cell density. We evaluated cell adhesion activities using the both
assays. Using this approach and additional assays with the
identified active peptides, several peptides were discovered as
having activity in malignancy (Table 1).23-26 The four peptides
that have been most widely studied in malignancy will be
reviewed here.

YIGSR

The first described and most studied laminin-111-derived active
peptide, YIGSR, from the β1 chain binds to the 32/67 kD cell
surface receptor and has many activities related to its inhibition of
malignancy.27-29 To date, more than 240 papers have been
published on this peptide documenting its biological activity and
importance in cell behavior. In vivo, YIGSR blocks xenograft
growth, experimental metastasis formation in the lungs (intra-
venous injection) and bones (intracardiac injection)19 and
angiogenesis.30,31 The activity of this rather short five amino
acid-containing peptide is enhanced with multimeric forms, such
as a tandem repeat form and a multimeric form using a lysine

Box 1. Biological activities of laminin-111
Adhesion

Migration

Differentiation

Protease secretion

Cell polarity

Angiogenesis

Tumor growth

Tumor metastasis

Table 1. Laminin-111-derived peptides active with tumor cells, sequence, location and activity

Peptide/location residues Activity Receptor

YIGSR/b1 929–933 q adhesion, q migration, Q tumor growth, Q metastasis, Q invasion 67 kD protein

IKVAV/a1 2097–2108 q metastasis, q tumor growth, q angiogenesis, q proteases integrins a3b1, a6b1

RKRLQVQLSIRT (AG73)/a2620–2631
q tumor growth, q metastasis to lung, bone and liver, q invasion,

q angiogenesis, q proteases
syndecans 1, 2 and 4

KAFDITYVRLKF (C16)/c1 139–150 q metastasis, q angiogenesis integrins avb3, a5b1
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branch, and when coupled to polyethylene glycol (PEG).33-36 The
multimeric form offers more binding sites and enhances cell
attachment activity while the PEG coupling may stabilize the
structure and reduce degradation.36 In the circulation, the PEG-
YIGSR would be expected to have a longer half-life.33 Cyclic
forms of YIGSR also have increased activity, suggesting possible
stabilization of the active conformation and/or reduced clearance
from the circulation. Finally, conjugating YIGSR to chitosan also
increased its antimetatatic activity as did conjugation to polyvinyl
pyrrolidone.37,38 With the conjugation of YIGSR to polyvinyl
pyrrolidone, there was a 15-fold increase in the plasma half-life
over free peptide and a 100-fold increase in the antimetastatic
effect.38 YIGSR also blocks angiogenesis in several assays,
including the in vitro tube formation, chick chorioallantoic
membrane (CAM) and rabbit eye pocket assays.31 Tumors grown
in vivo in the presence of YIGSR have reduced numbers of blood
vessels which is the likely mechanism for the smaller size of these
tumors. The mechanism for the reduced angiogenesis is not
known.

B16F10 melanoma cells which are adhesion-selected (adhesion-
selected up to 30 times in a sequential manner) are more
malignant in vivo with a relatively large increase in the number of
lung colonies over either the parental cells or the YIGSR non-
adherent cells.32 Additionally, the subcutaneous tumor growth is
also accelerated with these adhesion-selected cells, suggesting the
receptor for this peptide is important in tumor growth and
metastasis. This is likely due to a selection for the 32/67 kD
receptor-positive cells by adhesion. Levels of this receptor on
malignant cells correlate with malignancy in cell lines and in
patient-derived tumor tissue.39,40 The 32/67 kD receptor appears
to be somewhat specific for tumor cells and is a potential target for
cancer therapy. However, it should be noted that the nature of
this receptor is uncertain.

Various groups have used the YIGSR peptide to localize tumors
cells and to target tumor cells with drug delivery based on the

peptide binding to the 32/67 kD receptor. Approaches have
employed iodinated YIGSR, (99 min)Tc-YIGSR, YIGSR poly-
meric nanoparticles, nanospheres and micelles, liposomes and
PEG liposomes.41-47 For tumor imaging, 99mTc-YIGSR was
found to be an excellent radiotracer with rapid visualization
(15 min) and high sensitivity and specificity with mice bearing
Ehrlich ascites tumors.47 In related studies, YIGSR nanoparticles
had a 2-fold increase in uptake over scrambled peptide
nanoparticles in tumor cells, in vitro, and neither peptide was
taken up by normal lung cells.45 Furthermore, the YIGSR-
nanoparticles had a 5-fold increase over control scrambled peptide
nanoparticles in tumor cell uptake in the lung, in vivo. In
addition, no other tissues bound the nanoparticles. Similarly,
YIGSR-conjugated etoposide loaded micelles have increased
cellular uptake, significant reduction in colony formation in vitro

Figure 2. Design of synthetic peptides covering amino acid sequence of
laminin-111. A set of synthetic peptides in laminin-a1 LG domain is
shown. Arrows indicate the location of the peptides. Peptides were
basically designed with a length of 12 amino acid residues and
overlapped with neighboring peptides by four amino acids. Cysteine
residues were omitted to prevent the influence of disulfide bonds.

Table 2. Timeline of laminin-111 and laminin-111-derived peptide findings related to malignancy

1979 Laminin isolated from EHS tumor

1986 Laminin increased release of proteases from tumor cells

1987 Laminin b1 chain sequenced

1987 Laminin b1 peptide YIGSR promoted adhesion via a 67 kD receptor

1987 YIGSR inhibited tumor growth and metastasis

1992 Laminin a1 chain peptide IKVAV is angiogenic

1993 YIGSR adhesion-selected tumor cells have increased malignancy

1993 IKVAV promoted increased melanoma proteases

1996 YIGSR inhibited angiogenesis

1997 Laminin a1 chain peptide AG73 promoted liver metastasis

1999 Laminin c chain peptide C16 had angiogenic activity

2001 C16 bound to integrins avb3 and a5b1

2002 AG73 promoted metastasis via heparan-containing proteoglycan

2007 C16 increased melanoma extravascular migratory metastasis ex vivo

2011 AG73 used for liposome targeting to cancer cells

2011 AG73 and C16 regulated cancer cell invadopodia
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and a marked inhibition of lung colony formation in vivo.46 These
data demonstrate that enhanced cellular internalization of YIGSR-
conjugated micelles via laminin receptor-mediated endocytosis
resulted in higher cytotoxicity, specificity and enhanced anti-
metastatic activity of the peptide against B16F10 melanoma cells.
Finally, YIGSR peptide conjugated to liposomes has been used to
deliver cancer chemotherapeutics. For example, YIGSR-PEG
liposomes containing adriamycin have in vitro cytotoxicity with
HT080 cells over control peptide control-PEG-liposomes.44

Using YIGSR peptide anchored liposomes bearing 5-fluorouracil,
mice bearing B16F10 melanoma cells had a significantly greater
tumor regression than the free drug or empty liposomes.42 These
studies demonstrate that the YIGSR peptide when combined with
the appropriate ligand can be used to visualize tumors, have a
more effective and specific delivery of YIGSR for tumor
destruction/prevention and be used to deliver chemotherapeutic
agents. In addition, since YIGSR also affects angiogenesis, it can
be expected that some of this activity may also be targeted to the
vessels in the tumors.

Another novel approach with YIGSR has been to generate anti-
idiotype antibodies.48 Here high titer anti-YIGSR serum from
immunized rabbits was used to inoculate Lewis Lung Carcinoma-
bearing mice. Mice injected with either the anti-id YIGSR or control
rabbit serum developed anti-rabbit antibodies. However, only mice
vaccinated with the anti-YIGSR serum had reduced tumor growth
and metastasis compared with control serum-immunized mice.
These data suggest again that YIGSR has a potent effect via its
receptor on tumor growth and metastasis.

Little is known about the mechanisms by which YIGSR acts.
Some labs have reported increased phosphorylation when tumor

cells are treated with this peptide49 while others report increased
apoptosis.50 Still other groups have reported an effect of YIGSR
on epithelial mesenchymal transition (EMT): adenoid cystic
carcinoma cells (CAC2) had a fibroblast-like morphology with
decreased β catenin in the presence of YIGSR while untreated
cells were epitheloid.51 Finally, with prostate cancer cells (PC3),
YIGSR was found to inhibit growth and migration and decreased
mitochondrial membrane potential, inhibited ATP synthesis and
increased caspase-9 activity.52 These findings on the pathways
involved are preliminary and require further investigation with
multiple tumor cell types. It is possible that the tumor cellular
response is dependent not only on the tumor cell type but also on
the relative malignant potential of the tumor cells. Clearly,
defining the mechanism by which YIGSR inhibits tumor spread
and growth may lead to additional more potent therapeutics.

IKVAV

The IKVAV laminin-a1 chain peptide was initially described as
promoting cell adhesion, migration and neurite outgrowth but it
was soon found to be a potent stimulator of tumor growth,
metastasis, protease activation/secretion and angiogenesis.53,54

When co-injected via the tail vein with B16F10 melanoma cells,
a significant increase in the number of lung colonies is observed.
Similar increases in metastasis are observed with other cell lines
and this peptide. For example, colon cancer cells (HM7 and
LiM6) show an increase in liver colonization when co-injected
with IKVAV into the splenic portal vein in nude mice.55 This
peptide also increases the growth of these tumor cells in xenografts
when co-injected with the basement membrane extract BME/

Figure 3. Cell adhesion assay using plastic plates and beads. Peptide coating: synthetic peptides are coated on plastic plates or beads. Cell adhesion: a
cell suspension is added into the wells or mixed with peptide-beads. The cells are incubated for 1 h at 37°C. Cell staining: the cells adhering to the
peptides are stained with crystal violet and then evaluated.
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Matrigel (which is used to enhance tumor take and growth) over
those tumors injected without peptide. These xenografts also
showed a significant increase in vessel density.56 Further analysis
of the angiogenic activity of IKVAV demonstrated that it
increased vessel number and sprouting in an in vitro assay of
tube formation on BME/Matrigel, in vivo in the chick CAM assay
and in a subcutaneous BME/Matrigel plug assay.57 Thus, the
ability of IKVAV to promote tumor growth and metastasis may
be due in part to its role in promoting angiogenesis.

IKVAV also promotes protease activity based on several
studies. It was found to initiate the invasive phenotype of
melanoma K-1735 clones when added to cultures on BME/
Matrigel.58 Analysis of the conditioned medium of these cells
treated with IKVAV by zymography showed a dose-dependent
increase in matrix metalloproteinase-2 (MMP) activity. Likewise,
it increased protease activity in endothelial cells and adenoid
cystic carcinoma cells cultured in a similar manner.57,59 While
MMP-2 activity was increased by IKVAV in A-2058 melanoma
cells, no effect on tissue inhibitor of metalloproteinase (TIMP)
expression was found.60 In B16F10 melanoma cells, IKVAV
increased production and activity of metastasis-associated
proteases, such as tissue plasminogen activator (t-PA); however,
this peptide had no effect on t-PA expression in the B16F1 cells
(non-metastatic).61 This group also found that when the
conditioned medium of IKVAV-treated B16F10 cells was
incubated with plasminogen a significant increase in the direct
activation of the zymogen to plasmin was observed in the
absence of cells, suggesting that IKVAV stimulates B16F10 to
increase protease activation. Finally, a 20-fold increase in
urokinase-PA (u-PA) expression was observed with macrophages
exposed to SIKVAV.5 These data suggest a possible mechanism
involving protease increase and activation for the induced
metastatic behavior of this peptide compounding and possibly
contributing to the angiogenic affect. Therefore, IKVAV is a
potent peptide when considering its effects on promoting both
protease activity and angiogenic activity.

Preliminary studies suggest that the receptors for IKVAV
appear to be two integrins, a3β1 and a6β1.62 IKVAV acts also
through these integrins via extracellular signal-regulated kinase
(ERK) 1/2 signaling to increase protease activity. Some limited
studies have used the IKVAV for targeting and imaging tumors.
99mTc-IKVAV when injected intravenously in mice with lung
tumors, localized in greater amounts to the lung than to other
tissues.63 In addition, incorporating IKVAV on polymer-
modified adenovirus allowed entry of the virus into PC-3 cells
via integrin a6β164. Further study of various cancer cell lines
showed a correlation between IKVAV-viral entry and expression
of both integrin subunits. This suggests that IKVAV acts by a
receptor-based mechanism to localize in tumors. Additionally, an
enantiomer of IKVAV peptide also promoted cell adhesion and
tumor growth.65 Furthermore, there are a considerable amount
of studies focused on the use of this peptide with normal cells in
tissue engineering biomaterials for tissue regeneration in the
nervous system. Clearly more work needs to be done to
determine how this peptide interacts with cells and its signaling
mechanism.

RKRLQVQLSIRT (AG73)

The active sequence, RKRLQVQLSIRT, from the LG4 domain
of the laminin-a1 chain is designated AG73 (Fig. 1). This peptide
has been extensively studied in a variety of different cancer cell
lines, including melanoma, oral squamous and salivary gland,
breast and ovarian carcinoma cells.66-71 AG73 was first identified
by its ability to promote cell adhesion of HT1080 human
fibrosarcoma, B16F10 mouse melanoma and SW480 human
colon adenocarcinoma cells.24 A scrambled sequence of AG73,
called AG73T, (LQQRRSVLRTKI) does not promote cell
adhesion. AG73 also inhibited the ability of these cells to spread
on laminin-111, indicating it likely has physiological relevance.
Similar to the IKVAV peptide, AG73 increased subcutaneous
tumor growth and lung colonization of B16F10 melanoma cells.
In addition, this peptide induces B16F10 liver metastases.67,68

AG73 is the only peptide tested in the tail vein injection
experimental metastasis model that induces in addition to lung
colonies B16F10 liver metastases in mice, suggesting that this
peptide utilizes a different mechanism of action in promoting
metastases. In vitro, B16F10 melanoma cell adhesion, migration,
invasion and MMP-2 production are enhanced in the presence of
AG73 compared with a scrambled control peptide. Both
melanoma and breast cancer cell metastasis to the bone are
increased by AG73.72 The cellular organization of actin filaments
was examined in B16F10 and MDA-231 breast cancer cells
attached to AG73 to determine if AG73 affected the cell shape.
AG73 increased the formation of filament spikes, which resemble
filopodia, compared with cells treated with scrambled peptide.72

Additionally, these increased filopodia are seen in fibroblasts
bound to AG73.73 Filopodia are actin-rich structures associated
with increased cell migration.74 Indeed, AG73 increases migration
of several cells types, including breast and melanoma cells.
Additionally, ovarian cancer growth and spread are also promoted
and increased by AG73.69 AG73 may increase proliferation in
these cells through increased expression of Bcl-2 and Mdm2, both
survival genes. The increased tumor growth induced by AG73 in a
variety of different tumor types may also be due to increased
angiogenesis. AG73 promotes angiogenesis in the CAM and in
subcutaneously injected BME/Matrigel supplemented with
AG73, as well as in tube formation and sprouting of aortic rings
assays.75 Thus, AG73 may enhance tumor growth and metastasis
through increased tumor cell migration and invasion and
increased angiogenesis.

The receptors for AG73 may also play an important role in
tumor growth and metastasis. A subpopulation of B16F10 cells
that were adhesion-selected to AG73 over 30 times have increased
in vitro invasion, grow larger subcutaneously and form more lung
and liver metastatic colonies than the parental population.68 These
results were in the absence of added peptide, suggesting that
receptors for AG73 are induced/selected for and are important in
the growth and metastasis of cancer cells. This peptide sequence
binds to cell surface proteoglycans, including syndecan-1, -2 and
-4.70,76-78 Syndecans (Sdc) are a family consisting of four
transmembrane proteoglycans that interact with integrins, growth
factors and chemokine receptors. Although they are not the
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primary receptors for the ECM, growth factors, or chemokines,
they synergize with these molecules’ prototypic receptors through
simultaneous ligand engagement.79-81 These receptors play critical
regulatory roles in a variety of physiological and pathophysiolo-
gical functions, including wound healing, inflammation, neural
patterning, tumor growth and angiogenesis.82,83 Interestingly,
AG73 increases invadopodia of CAC2 adenoid cystic carcinoma
cells. This increase is inhibited by silencing of β1 integrin and
inhibition of RAC1 and ERK signaling,66 suggesting interactions
between Sdcs and integrins may play a role in the ability of AG73
to increase invasion of tumor cells. Indeed, AG73 induces the co-
localization of Sdc-1 and β1 integrin in oral squamous carcinoma
cells and malignant and benign salivary gland tumors.71,84 The
expression of these receptors is necessary for AG73-induced
migration, invasion and increased MMP-9 activity in the oral
squamous carcinoma cells.71 Similarly, these receptors are
necessary for AG73-induced matrix remodeling and MMP-9
activity in the malignant and benign salivary gland tumors.84

These results suggest that downstream signaling of AG73 through
interaction of Sdcs and integrin regulates adhesion and MMP
production of several tumor types.

Elastase digestion of laminin-111 releases the E8 fragment
containing LG1–3 and the E3 fragment containing LG4–5.
Intact laminin-111 is cleaved in vitro,85 and the LG4–5 domain
fragment has been found in the placenta cone in vivo.86 These
studies suggest that the AG73 sequence may represent a cryptic
epitope released by limited proteolytic modification of laminin-
111 in tumor tissues. Laminin-111 mediated adhesion and
migration in B16F10 cells is inhibited by this peptide,67

suggesting it is an active sequence in the laminin-111 molecule.
Hozumi et al.76 have shown that the AG73 sequence is essential
for binding of the proteoglycan receptors Sdcs-1, -2 and -4 to
recombinant-LG4. The LG4 domain is detected in basement
membrane extract (BME/Matrigel) and in laminin-111 isolated
from EHS tumors (Koblinski, unpublished data). Taken
together these results suggest that the AG73 sequence is likely
bioavailable in the tumor microenvironment, and interaction
with Sdcs can cause a variety of tumor promotion and metastatic
events.

AG73 may also have the potential to selectively deliver gene
therapy to target cancer cells overexpressing Sdcs.87 AG73-
peptide labeled liposome can successfully deliver genes in
syndecan-2 overexpressing cells.88 Furthermore, AG73 has
potential for cell and tissue engineering. AG73 can be
conjugated to polysaccharides, such as chitosan and alginate,
and mixed with agarose gel.89-91 Depending on the stiffness of
the agarose-AG73 matrix 3D functionality of cells was observed.
For example, neuronal cells extend neuritic processes, endothe-
lial cells formed capillary-like networks, and salivary gland cells
formed acinar-like structures.91 In addition, AG73-collagen,
AG73-laminin-111 and AG73-fibronectin matrices enhances
cell attachment and spreading, suggesting that integrin-
mediated activities are enhanced by this Sdc binding peptide,
AG73.92 These types of cell culture scaffolds have the potential
to be used for studying 3D tumor-stromal interactions and 3D
migration.

KAFDITYVRLKF (C16)

In a specific screen for laminin- 111-derived c1 chain peptide
regulators of angiogenesis, 7 active peptides were identified as
disrupting the formation of capillary-like endothelial structures
and C16 from the N-terminal globular domain had the strongest
activity at all concentrations tested. In additional assays, including
sprouting from aortic rings and the chick CAM, C16 showed the
most activity.93 C16 also promoted endothelial cell adhesion and
blocked adhesion to laminin-111 but not to plastic or to
fibronectin, suggesting that it is an important site for endothelial
cells on the c1 chain of laminin-111. Interestingly, an
homologous active site (A13:RQVFQVATIIIKA) on the a1
chain was identified with similar activity.94,95 In addition to
affecting angiogenesis, C16 peptide also promoted both B16F10
melanoma cell migration in vitro and lung metastases in vivo.96

Since C16 induced the production of MMP-9 by these cells, it is
clear that this site on the c1 chain is important in tumor cell
metastasis as well as angiogenesis. Interestingly, human melanoma
cells migrate to the vessel structures when added to the chick
CAM and then these cells migrate along the outside of the vessels,
which mimics one of the mechanisms by which melanoma cells
spread throughout the body.97 When C16 is added to this
extravascular migratory assay, the tumor cells were found to
migrate further along the vessels than with peptide control-treated
samples. Thus, C16 can promote tumor spread in extravascular
migratory metastasis.

Integrins avβ3 and a5β1 have been identified as the receptors
for C16.98 Since this peptide also blocked attachment to both
fibronectin and collagen I as well as to laminin-111, it was
expected that a receptor common to these proteins would be
found. The identification of the receptors was made based on
affinity chromatography and blocking antibodies in adhesion
assays. This peptide does not contain an RGD sequence which is
the usual ligand for these integrins nor does it signal through
MAP kinase, suggesting a different signaling pathway is involved.
Many tumor cells use invadopodia as described above to migrate
and degrade extracellular matrix barriers. Invadopodia are
membrane protrusions enrich in degradative enzymes. Similar to
AG73, C16 increased invadopodia in CAC2 cells (human
adenoid cystic carcinoma cell line) and silencing of integrin β1
blocked these C16-induced invadopodia.99 Inhibition of Rac1 and
ERK signaling pathways also blocked the ability of C16 to induce
invadopodia suggesting that C16 increases invadopodia via
integrin signaling through the Rac1 and ERK1/2 pathways.
These data demonstrate that specific integrin receptors are
involved in the malignant activity of C16.

Typically control peptides for the assays described above are
scrambled versions of the active peptide. In the case of C16, it
was found that a scrambled version, C16S (DFKLFAVTIKYR),
acted as an antagonist. A more potent version, C16Y
(DFKLFAVYIKYR) with a T to Y substitution was defined
and found to be 5-fold more active in blocking C16 induced
angiogenesis in the chick CAM than the original scrambled
peptide.100 This peptide also blocked tumor growth and
angiogenesis in vivo in animal models suggesting its potential
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as a therapeutic to treat cancer. Liposomes with C16Y for
targeting endothelial and cancer cells which are enriched in
integrins avβ3 and a5β1 showed greater uptake in tumor cells
over either empty liposomes or liposomes with a different and
inactive scrambled peptide.101 This process was temperature-
dependent and was blocked by recombinant integrin avβ3
supporting that the activity is physiological. These data support
the concept that C16Y peptide could be used in a drug or gene
delivery carrier to target tumors and endothelial cells for cancer
therapy.

Summary

Laminin-111 is a large trimeric basement membrane glycopro-
tein with many active sites. In particular, four peptides active in
tumor malignancy studies have been identified in laminin-111
using a systematic peptide screening method followed by

various assays. Two of the peptides (IKVAV and AG73) are
found on the a1 chain, one (YIGSR) on the β1 chain and one
(C16) on the c1 chain. The four peptides have distinct activities
and receptors. Since three of the peptides (IKVAV, AG73 and
C16) strongly promote tumor growth, this may explain the
potent effects laminin-111 has on malignant cells. The peptide,
YIGSR, decreases tumor growth and experimental metastasis via
a 32/67 kD receptor while IKVAV increases tumor growth,
angiogenesis and increases protease activity via integrin
receptors. AG73 increases tumor growth and metastases via
syndecan receptors. C16 increases tumor growth and angiogen-
esis via integrins. Identification of such sites on laminin-111
will have use in defining strategies to develop therapeutics for
cancer.
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