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Comprehensive analysis of
pyroptotic gene prognostic
signatures associated with
tumor immune
microenvironment and genomic
mutation in breast cancer

Hongfei Zhang †, Xiafei Yu †, Junzhe Yang †, Gao He,
Xiaoqiang Zhang, Xian Wu, Li Shen, Yi Zhou, Xuyu Cheng,
Xiaoan Liu* and Yanhui Zhu*

Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University,
Nanjing, China
Background: Breast cancer is becoming a tumor with the highest morbidity

rate, and inflammation-induced cell death namely pyroptosis reportedly plays

dual roles in cancers. However, the specific mechanism between pyroptosis

and the clinical prognosis of breast cancer patients is indistinct. Hence, novel

pyroptosis-related biomarkers and their contributing factors deserve further

exploration to predict the prognosis in breast cancer.

Methods: Pearson’s correlation analysis, and univariate and multivariate Cox

regression analysis were utilized to obtain six optimal pyroptosis-related gene

prognostic signatures (Pyro-GPS). The risk score of each breast cancer patient

was calculated. Next, a Pyro-GPS risk model was constructed and verified in

TCGA cohort (n=1,089) and GSE20711 cohort (n=88). Then analyses of

immune microenvironment, genomic variation, functional enrichment, drug

response and clinicopathologic feature stratification associated with the risk

score of Pyro-GPS were performed. Subsequently, a nomogram based on the

risk score and several significant clinicopathologic features was established.

Ultimately, we further investigated the role ofCCL5 in the biological behavior of

MDA-MB-231 cell line.

Results: The low-risk breast cancer patients have better survival outcomes

than the high-risk patients. The low-risk patients also show higher immune cell

infiltration levels and immune-oncology target expression levels. There is no

significant difference in genetic variation between the two risk groups, but the

frequency of gene mutations varies. Functional enrichment analysis shows that

the low-risk patients are prominently correlated with immune-related

pathways, whereas the high-risk patients are enriched in cell cycle,

ubiquitination, mismatch repair, homologous recombination and

biosynthesis-related pathways. Pyro-GPS is positively correlated with the
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IC50 of anti-tumor drugs. Furthermore, comprehensive analyses based on risk

score and clinicopathological features were performed to predict the

prognosis of breast cancer patients. Additionally, in vitro experiments

confirmed that breast cancer cells with high expression of CCL5 had weaker

proliferation, invasion and metastasis abilities as well as stronger apoptosis and

cell cycle arrest abilities.

Conclusions: The risk score of Pyro-GPS can serve as a promising hallmark to

predict the prognosis of BRCA patients. Risk score evaluation may assist to

acquire relevant information of tumor immune microenvironment, genomic

mutation status, functional pathways and drug sensitivity, and thus provide

more effective personalized strategies.
KEYWORDS

breast cancer, pyroptosis, pyroptotic gene prognostic signatures, tumor immune
microenvironment, genomic mutation, protein ubiquitination, drug sensitivity, in
vitro experiment targeted CCL5
Introduction

The latest data on the global burden of cancers in 2020

released by the World Health Organization show that the

number of new cases of breast cancer in 2020 reached 2.26

million, accounting for about 11.7% of all cancers and surpassing

the 2.2 million cases of lung cancer (11.4%) (1). Thus, breast

cancer is becoming the cancer with the highest incidence in the

world. At present, molecular subtype, tumor size, lymph node

status, and the existence of metastasis are used to evaluate the

survival outcome and select relevant treatment measures for

breast cancer patients. Surgical therapy, chemotherapy,

radiotherapy, Her-2 targeted therapy and endocrine therapy

are extensively applied in clinical practice (2). However,

traditional prediction methods and therapeutic strategies can

no longer meet our needs along with the increasing demand for

accuracy in prognosis prediction and individualized treatment as

well as the prominent heterogeneity for breast cancer whether in

primary sites or in metastatic sites (3–5). Therefore, the

identification of novel sensitive tumor prognostic biomarkers

deserves intensive investigation for more advanced diagnosis

and treatments.

Currently, cell pyroptosis and its dual anti-tumor and pro-

tumor effects have aroused wide concern (6, 7), prompting us to

focus on the significant associations of pyroptosis with the

treatment and prognosis of breast cancer. Pyroptosis, an

inflammatory form of programmed cell death (8), relies

strongly on the gasdermin protein family to form plasma
02
membrane pores, usually (but not always) resulting in

inflammatory caspase activation (9). Specifically, cell

pyroptosis occurs through four pathways: 1) classic pathway

(Caspase-1 mediated) (10), 2) non-classic pathway (Caspase-4/

5/11 mediated) (10, 11), 3) Caspase-3/8 mediated pathway (12,

13), and 4) granzyme-mediated pathway (13, 14). Among them,

the classic pathway relies on the assembly of inflammasomes

(15) composed of cytoplasmic pattern recognition receptors

(PRRs), apoptosis-associated speck-like protein containing a

CARD (ASC) and caspase-1. Firstly, PRRs including NLRP1,

NLRP3, NLRC4 (IPAF), AIM2 and Pyrin recognize foreign

pathogen-associated molecular patterns and endogenous

damage-associated molecular patterns, and then activate

precursor caspase-1 directly or indirectly through the adaptor

protein ASC. After that, mature caspase-1 can hydrolyze

GSDMD to generate N-GSDMD, resulting in plasma

membrane pore formation, cell swelling and even osmotic

lysis. Meanwhile, pro-IL-1b and pro-IL-18 can be processed by

caspase-1 to form mature IL-1b and IL-18, which are then

released to produce inflammatory response.

Much evidence shows that pyroptosis is closely associated

with diverse tumors (e.g. melanoma, breast cancer, and tumors of

digestive, respiratory, hematological and reproductive systems),

regulating the proliferation, invasion and metastasis of tumor cells

through some non-coding RNAs and other molecules (16).

Meanwhile, pyroptosis plays distinct and sometimes conflicting

roles in the occurrence and development of tumors (17). On the

one hand, inflammasome activation that forms an inflammation
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environment may suppress antitumor immunity and tumor cell

death, and even facilitate tumor cell proliferation and

angiogenesis. On the other hand, pyroptosis can inhibit

tumorigenesis and progression, inducing pyroptosis of tumor

cells, and can serve as a potential therapeutic strategy (18). For

instance, BRAF-MEK inhibition can activate GSDME-dependent

pyroptosis to enhance the immune recognition of melanoma cells,

including an increase in CD4+ T cell and CD8+ T cell infiltration

and a decrease in myeloid-derived suppressor cells (MDSCs) and

tumor-associated macrophages (19–21). Chimeric antigen

receptor (CAR) T cells can activate the caspase 3–GSDME

pathway via releasing perforin and granzyme B to trigger

pyroptosis in B leukemic cells (22). In addition, the

downregulation of GSDMD can activate ERK1/2, STAT3 and

PI3K/AKT signaling pathways, and increase the expression of cell

cycle-related proteins (Cyclin A2 and CDK2) to accelerate S/G2

phase cell transition in gastric cancer (23). Moreover, GSDMD

deficiency will alleviate the cytolytic ability of CD8+ T cells (24).

However, GSDMD as a pyroptosis executive protein is more

highly expressed in non-small cell lung cancer (NSCLC) than

para-cancer tissues, and knockdown of GSDMD can attenuate the

EGFR/Akt signaling pathway to restrict tumor growth in NSCLC

(25). Recently, most studies emphasize the tumor suppression

function and anti-tumor immune responses of pyroptosis.

Moreover, therapeutic regimens such as chemotherapy,

radiotherapy, targeted therapy and immune therapy can induce

cancer pyroptosis to exert local and systemic anti-tumor immune

response (26). Hence, pyroptosis may be intricately associated

with tumors through the alteration of the tumor immune

microenvironment (TIME). Then clinical modeling based on

pyroptosis-related biomarkers to predict the TIME and

immunotherapeutic efficacy of breast cancer deserves

further exploration.

In our work, the prognostic value of pyroptosis-related

genes was proved by a series of bioinformatic and statistical

analyses based on the data curated from The Cancer Genome

Atlas (TCGA) and Gene-Expression Omnibus (GEO). Then six

pyroptosis- related gene prognostic signatures (Pyro-GPS)

were identified to calculate the risk score for each breast

cancer patient. After that, the breast cancer patients were

stratified by the median risk score into a high-risk group and

a low-risk group. Patients in the low-risk group had more

favorable survival than those in the high-risk group. To

elucidate possible mechanism, we further explored the

variations of the risk score in the aspect of immune cell

infiltration, immune-oncology targets, genomic variations,

differentially expressed genes (DEGs), pathway enrichment

status and anti-tumor drug response. Eventually, a

nomogram model based on the risk score and other

clinicopathological features was constructed to predict the

overall survival (OS) of the breast cancer patients. What’s

more, one of Pyro-GPS, CCL5 as hub gene was screened out

to proceed in vitro validation.
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Materials and Methods

Data acquisition

Transcriptomic data (including RNA-seq, gene chip and

small RNA-seq), genomic data (somatic mutation and copy

number variation) and corresponding clinicopathological

features (e.g. survival time, prognosis, chemotherapy, age,

gender, tumor stage, T stage, M stage, N stage and PAM50

intrinsic subtypes) of 1089 breast cancer patients were derived

from TCGA (https://portal.gdc.cancer.gov/). Moreover, 21

pyroptosis genes were identified based on previous

publications, and the expression matrices of 6 optimal

prognosis-related genes (CD2, CCL5, KLRB1, CD74, NLRC4

and ZNF683) were extracted from TCGA. We obtained the

profiles for drug sensitivity data as half maximal inhibitory

concentration (IC50) from CellMiner (https://discover.nci.nih.

gov/cellminer/home.do). In addition, the RNA-seq data and

clinical information of the external validation cohort involving

88 breast cancer cases were downloaded from GEO (https://

www.ncbi.nlm.nih.gov/geo/, ID: GSE20711).
Analysis process

Firstly, gene expression and transcriptome data in the format

“FPKM” was downloaded from TCGA database. Secondly, a set of

genes strongly correlated with 21 pyroptosis genes were obtained

by Pearson’s correlation analysis then univariate and multivariate

Cox regression analysis produced six genes associated with

prognosis (Pyro-GPS). Next, a Pyro-GPS risk prognostic model

was constructed via TCGA training set and verified internally via

TCGA testing set. Then, we continued investigating the possible

causes of prognosis discrepancies in several aspects such as

immune microenvironment, genomic variation, functional

enrichment, drug response and clinicopathologic feature. In

addition, external validation was performed through data from

GEO database and nomogram was established to predict survival

time for breast cancer patients. Eventually, CCL5 as hub gene was

selected for in vitro validation, including EdU (5-Ethynyl-2’-

deoxyuridine), CCK8 (Cell Counting Kit-8), colony formation

assay, flow cytometry and transwell assay.
Construction and validation of the
pyroptosis-related prognostic model

The 1089 breast cancer patients from TCGA were randomly

separated into a training cohort and a testing cohort using the R

package Caret. Pearson’s correlation analysis based on the 21

pyroptosis genes above was performed to acquire 161

pyroptosis-related genes. Then 6 optimal pyroptotic genes
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correlated with prognosis were identified through univariate and

multivariate Cox regression analyses. The risk score of every

patient was calculated as: Risk score= o6
i Coef i ∗Xi (Coefi:

coefficient, Xi: expression level of each prognosis-related gene).

Thus, a Pyro-GPS model for the breast cancer patients was

constructed in the training cohort and preliminarily verified in

the testing cohort and an external validation cohort GSE20711.
Tumor immune microenvironment in
risk model

With the R package Gsva, single sample gene set enrichment

analysis (ssGSEA) was implemented to quantify the relative

abundance of 28 immune-cell types by using enrichment

scores based on the mRNA expression level of breast cancer

tissues. We also applied the package Estimate to calculate the

Stromal score, Immune score, ESTIMATE score, and Tumor

purity and to draw clustering heat maps based on the

transcriptome expression profiles of breast cancer. The data on

tumor- immune infiltration was obtained from Tumor Immune

Estimation Resource (TIMER 2.0) (http://timer.comp-genomics.

org/). Algorithms such as XCELL, CIBERSORT and MCP-

counter were used to evaluate the proportions of infiltrated

immune cells on TIMER 2.0.
Gene mutation status in risk model

We extracted somatic mutation data from the Genomic

Data Commons (GDC) data portal (https://portal.gdc.cancer.

g o v / ) a nd d r ew oncop l o t s w i t h t h e R pa ck a g e

ComplexHeatmap. The mutation annotation format of

somatic variants was downloaded, and multiple analysis

modules were visualized on the R package Maftools. Besides,

tumor mutation burden was identified as the number of

detected somatic mutations, including gene-coding errors,

base substitutions, and insertions or deletions per million

bases. Copy number variation (CNV) as a structural

variation of DNA represents amplification and deletion of

DNA fragments larger than 1 KB in length.
Differentially expressed genes and
function enrichment analysis

Based on RNA-seq data, DEGs were identified by the R

packages edgeR and limma with fold change (FC) =2 and false

discovery rate (FDR)<0.05. Function enrichment analyses

including gene set enrichment analysis (GSEA) and gene set

variation analysis (GSVA) were performed to explore the

differences in biofunctions and signaling pathways. The

package clusterProfiler was used for functional annotation and
Frontiers in Immunology 04
the gene set files were extracted from MsigDB (https://www.

gsea-msigdb.org). Besides, gene annotations were finished with

Gene Oncology (GO), hallmark, and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analyses. GO was further

divided into biological process (BP), cellular component (CC)

and molecular function (MF).
Pyro-GPS related drug sensitivity

Three Pyro-GPSs (CD2, ZNF683 and KLRB1) and

corresponding antitumor drug sensitivity in cancer cell lines

were available from Genomics of Drug Sensitivity in Cancer

(http://www.cancerrxgene.org/downloads). In addition, IC50,

namely the concentration of an antitumor drug that is

required to inhibit 50% cancer cells, was used to represent

drug sensitivity.
Validation the function of CCL5
in vitro experiments

Cell culture and transfection
MDA-MB-231 cells were cultured in 10% fetal bovine serum

in a humidified atmosphere of 5% CO2 at 37°C and cell

transfection was accomplished by using Lipofectamine® 3000.

Subsequently, the CCL5 protein expression level was detected by

western blot analysis to confirm whether the cell line was

constructed successfully.

Western blot analysis
Western blot was a multistep procedure including a) proteins

extracted from MDA-MB-231 cells via lysis buffer after PBS

washing, b) proteins separated by sodium dodecyl sulphate

(SDS) polyacrylamide (10%) gel electrophoresis and transferred

onto polyvinylidene fluoride (PVDF) membranes, c) proteins

immobilized and blocked on the membrane with 5% nonfat dry

milk, d) membranes incubated with primary antibody of rabbit

polyclonal anti-CCL5 (1:1,000), e) membranes washed and

incubated with secondary antibody (1:4,000) conjugated with

labelled fluorescent molecule, f) labeled proteins visualized by

the enhanced chemiluminescence kit; g) signal intensity of CCL5

protein bands collected by a digital imaging computer software.

Cell proliferation and colony forming assay
Cell viability was measured through Cell Counting Kit-8

(CCK8) and EdU (5-Ethynyl-2’-deoxyuridine) assays. Briefly, 10

µl CCK8 solution (DOJINDO) was respectively added to each

well/2×10^3 cells in a 96-well plate, and the plate was further

incubated at 37°C for 2 hours. The absorbance of each well was

measured at a wavelength of 450 nm(OD450) with a microplate

reader and proliferation rates were calculated. Additional, cells
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were re-cultured in 96-well plates, then 10 mM EdU

(BeyoClick™) was added into the medium and continued

two-hour incubation. Next these cells were stained with 4’,6-

diamidino-2-phenylindole (DAPI) and inverted fluorescence

microscope was used to acquire the images. As for cell colony

formation assay, 8×10^2 cells were planted and cultured in each

well of a 6-well plate, then they were fixed with 4%

paraformaldehyde for 15 min and stained with 0.1% crystal

violet for 20 min at room temperature. Lastly, the number of

clones was imaged with a light microscope at ×40 magnification.
Flow cytometry of cell cycle and apoptosis
As we all know, the DNA content of different cell cycle

phases is different (cells in G0/G1 phase is diploid (2N), cells in

G2/M phase is 4N, while cells in S phase is between diploid and

tetraploid). Thus, flow cytometry could directly reflect the

amount of DNA content in cells via detecting the fluorescence

intensity of propidium iodide (PI) bound to DNA. Firstly, the

cells were pretreated with ice-cold 70% ethanol and were washed

with PBS, then a cell cycle staining kit (LiankeBio) was used. 10

µl Rnase A was added to cell resuspension solution for 5 min at

room temperature to digest RNA, then 10 µl PI was added to

bind to DNA for 30 min at room temperature. Finally, flow

cytometer detected DNA content and the percentage of each

phase could be calculated by special software. In addition,

apoptotic analysis was performed through a Annexin V-FITC/

PI Apoptosis Assay kit and cells were double stained with

Annexin V-FITC and PI for 15 min at room temperature.

Since Annexin V-FITC could mark early apoptotic cells and

PI could label cells in the middle and late stage of apoptosis, then

cell apoptosis condition could be detected by flow cytometry.
Cell invasion and migration assay
Transwell assay was utilized to detect cell invasion and

migration ability. Firstly, eight-micrometer pore-size transwell

filters (Millipore) were put in 24-well plate and a concentration

of 1×10^4 cells/well were seeded onto the filters. Then 200 mL
FBS-free medium was added into the upper chamber while the

lower chamber was filled with 600 mL of medium with 10% FBS.

After cultivation of 48 hours at 37°C, these invasive and

metastatic cells in the lower side of the filter were determined

via crystal violet staining and were counted at ×400

magnification with a light microscope.
Statistical analyses

All the statistical analyses were performed on R Version

4.0.1. If not specifically mentioned, P< 0.05 was considered as a

statistical difference. R packages Survival and Survminer were

implemented for Kaplan-Meier survival analysis to visualize the

survival differences. Log-rank test and Gehan-Breslow-
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Wilcoxon test were carried out to estimate the statistical

significance of survival differences between groups. Univariate

and multivariate Cox regression analyses were performed to

assess the independent prognostic value of Pyro-GPS for breast

cancer patients. We calculated Pearson’s correlation coefficients

to confirm the correlation between two variables. We applied the

waterfall function of the package Maftools to visualize the

mutation landscape. The predictive accuracy of the risk score

and other clinicopathological features was estimated using

receiver’s operating characteristic (ROC) curves and the area

under the ROC curve (AUC). We established a nomogram

including clinical features and risk score via the package Rms,

and the calibration plots illustrated the prediction accuracy.
Results

Identification of pyroptosis-related genes
in breast cancer patients

The study procedure was illustrated in Figure 1. Firstly, a

total of 161 pyroptosis-related genes were extracted from

Pearson’s correlation analysis (| Pearson R| > 0.5 and p< 0.05)

based on 21 pyroptosis genes. According to the univariate and

multivariate Cox regression analyses, 6 optimal survival-related

genes (CD2, CCL5, KLRB1, CD74, NLRC4 and ZNF683) that met

the criterion of p< 0.2 were retained for further analysis

(Supplementary Figure 1A). Among them, CD2 and NLRC4

were considered as risky factors with hazard ratio (HR) >1,

whereas the other 4 genes were defined as protective factors with

HR<1. Afterward, 1,089 breast cancer patients identified from

TCGA were randomly assigned to the training cohort (n =545)

and the testing cohort (n =544) at a nearly 1:1 ratio.
Construction and validation of the Pyro-
GPS model in the TCGA cohort

The above 6 genes associated with overall survival (OS) were

defined as Pyro-GPS to construct a prognostic model. The risk

score of each patient based on the Pyro-GPS was calculated as

follows: risk score=(0.106* CD2 exp.)+(-0.0151* CCL5 exp.)+(-

0.482* KLRB1 exp.)+(-0.00124* CD74 exp.)+(0.898* NLRC4

exp.)+(-0.330* ZNF683 exp.). According this formula, 545

patients in the training cohort and 544 patients in the testing

cohort were divided into low-risk and high-risk groups

respectively. Besides, the distributions of risk scores and

survival time of the two cohorts were plotted in Figures 2A, B.

The heatmaps showed that the expression levels of the protective

Pyro-GPSs (CCL5 , KLRB1 , CD74 , and ZNF683) were

downregulated and the risky Pyro-GPSs (CD2, and NLRC4)

were upregulated with the increasing risk score. Then ROC

analysis was performed to assess the sensitivity and specificity of
frontiersin.org
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the prognostic model, and the AUC for the six Pyro-GPSs was

0.715 in the training cohort and 0.664 in the testing cohort.

Moreover, the Kaplan–Meier survival curves disclosed that

patients in the low-risk group had survival advantages and

patients in the high-risk group had poor prognosis (p< 0.01 in

both cohorts). Therefore, the significant difference in the survival

rate between the risk groups also confirmed the predictive value

of the model constructed by Pyro-GPS.
Association of Pyro-GPS with distinct
immune cell infiltration and immune-
oncology targets

To identify the relationship between Pyro-GPS and TIME of

BRCA, we investigated the immune infiltrate levels in the high-

and low-risk groups. The boxplot in Figure 2D compared the

proportions of 28 distinct immune cells in the two groups, where

the low-risk group had a higher infiltration level excluding

memory B cell compared with the high-risk group. Significant

differences were found in activated B cell, activated CD4 and
Frontiers in Immunology 06
CD8 T cells, central memory CD4 T cell, effector memory CD4 T

and CD8 T cells, gamma delta T cell, immature B cell, regulatory

T cell, T follicular helper cell, type 1 and type 17 T helper cells,

activated and plasmacytoid dendritic cells, CD56bright and

CD56dim natural killer cells, eosinophil, macrophage, mast

cell, MDSC, monocyte, natural killer cell, and natural killer T

cell (p<0.001). In addition, the heatmap in Figure 2C visualized

the expression levels of 28 diverse immune cells and displayed

the features of Risk score, ImmuneScore, StromalScore,

ESTIMATEScore and Tumor purity in both high-risk and

low-risk groups. Moreover, principal component analysis

(PCA) showed that risk score was significantly and negatively

correlated with 21 immune infiltrating cell types under the

qualifications of p< 0.001 and |Person R| > 0.2. Then we

selected and displayed a part in Figure 2F, and showed the

remaining part in Supplementary Figure 1B. Subsequently, we

compared the expression levels of immune-oncology targets

between the two groups to ascertain their relevance with Pyro-

GPS. Results indicated that the low-risk group highly expressed

CTLA4, CXCL10, TBX2, GZMB, CD8A, PRF1, HAVCR2,

IDO1, CD274, PDCD1, CXCL9, LAG3, TNF and GZMA than
FIGURE 1

Study flowchart.
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FIGURE 2

Distribution of risk scores and survival status, heatmap of six Pyro-GPS, and Kaplan–Meier curves of OS for BRCA patients in TCGA training
cohort (A) and testing cohort (B). (C) Heatmap of correlations between risk scores with ImmuneScore, StromalScore, ESTIMATEScore, Tumor
Purity and 28 immune cell types. (D) The infiltration levels of 28 immune cell types in high-/low-risk subtypes. *p < 0.05, **p < 0.01 and ***p <
0.001. (E) The expression levels of 14 immune-oncology targets in high-/low-risk subtypes. (F) The relevance between infiltration of activated
CD8 T cell, activated B cell, effector memory CD8 T cell, type 1 T helper cell, MDSC and central memory CD4 T cell with risk score. Pyro-GPS,
pyroptosis-related genes prognostic signatures; OS, overall survival; BRCA, breast cancer; TCGA, The Cancer Genome Atlas. ns, no significance.
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the high-risk group (with conspicuous significance, p<0.001)

(Figure 2E). Thereby, due to the abundant TIME in the low-risk

group, immunotherapy may respond better.
Risk score correlated with genomic
mutation status

Afterwards, the gene mutation status in the risk model was

further analyzed through mutation profiles of the breast cancer

patients obtained from TCGA. Gene alteration occurred in 399
Frontiers in Immunology 08
(85.26%) of 468 samples in the high risk group and in 377

(82.68%) of 456 samples in the low risk group (Figures 3A, C).

Mutation information of the 20 genes was visualized in waterfall

plots. Among them, TP53 possessed the highest mutation

frequency, accounting for 40% in the high-risk model, but

PIK3CA had the highest mutation frequency in the low-risk

model (38%). Meanwhile, the tumor mutational burden levels of

the two risk groups were exhibited in the upper bar plots.

Moreover, these mutations were further divided into diverse

categories (Figures 3B, D). Then similar results in the two groups

were discovered that missense mutation occupied the main
A B

D

E F

C

FIGURE 3

Landscape of mutation profiles in BRCA samples. Waterfall plots of 20 genes mutation information and bar plots of TMB in high-risk subtype
(A) and low-risk subtype (C). Summary of the mutation information with statistical calculations in high-risk subtype (B) and low-risk subtype
(D). (E, F) The difference of CNV for six Pyro-GPS in high- and low-risk subtypes. BRCA, breast cancer; TMB, tumor mutational burden; CNV,
copy number variation; Pyro-GPS, pyroptosis-related genes prognostic signature.
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portion, single-nucleotide polymorphism (SNP) occurred more

frequently than insertion (INS) or deletion (DEL), and C>T was

the most common type of single nucleotide variant (SNV).

Figure 3 also depicted the number of variants in each sample,

variant classification summary and the top 10 mutated genes in

the two groups. Figures 3E, F displayed the CNV status of the six

Pyro-GPSs. Among them, the frequency of CNV in NLRC4 was

slightly different between the high- and low-risk groups.
Interactions of risk score with DEGs and
functional enrichment analysis

Gene expression conditions in the high- and low-risk groups

were demonstrated in the heatmap (Supplementary Figure 2). The

volcano plot displayed 324 DEGs, including 300 up-regulated

genes (red dots) and 24 down-regulated genes (blue dots) with the

cut-off criteria of |logFC| >1 and FDR<0.05 (Figure 4D). After

that, GSEA was performed based on DEGs. Then we found

enrichment signaling pathways were significantly correlated

with protein ubiquitination, deubiquitination, TGF-b and Wnt

(Figure 4A). Moreover, GSVA proved that sixty-two KEGG

pathways were remarkably different between the two groups

(Figure 4B). Among them, the high-risk group was heavily

enriched in cell cycle, ubiquitination, mismatch repair,

homologous recombination and biosynthesis-related pathways.

The low-risk group was remarkably correlated with infection,

immune response, immune rejection, autoimmune disease,

apoptosis, immune globulin, cytokine, chemokine, complement

and other signaling pathways (e.g. T cell receptor, B cell receptor,

Toll-like receptor, JAK-STAT, PPAR, MAPK, VEGF pathways).

These analyses suggest that the risk score of the six Pyro-GPSs is

associated with TIME, gene variation and protein ubiquitination.

Besides, the Venn diagram in Figure 4C shows that 112 and 101

KEGG pathways are related with the risk score and survival time

respectively. Among them, 62 common pathways are associated

with both risk score and survival time. Details about the pathways

can be found in the Supplementary Data.
Potential therapeutic value of risk score

Moreover, to further estimate the influence of the risk score

on drug sensitivity, we explored the correlation between the

expression levels of Pyro-GPS and the response to

chemotherapeutic drugs (IC50) in cancer cell lines. Significant

positive correlations (p< 0.001) were observed in CD2 with

bendamustine, nelarabine, CNDAC, asparaginase, sapacitabine,

chelerythrine, XK-469, batracylin and melphalan, in ZNF683

with nelarabine, dexamethasone decadron, fluphenazine and

sapacitabine, and in KLRB1 with nelarabine, CNDAC and
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sapacitabine (Figure 5A). Then based on the median

expression levels of CD2, ZNF683 and KLRB1 separately, the

breast cancer patients were divided into high-expressed

subgroups and low-expressed subgroups. Significant

differences in IC50 were found in nelarabine (p< 0.001) and in

sapacitabine and CNDAC (p< 0.01) between the KLRB1

subgroups, in nelarabine between the ZNF683 subgroups (p<

0.01), and in bendamustine, nelarabine and batracylin between

the CD2 subgroups (p< 0.05) (Figure 5B). The remaining results

were shown in Supplementary Figure 3A. Moreover, the high-

expressed subgroups were more associated with the high IC50 of

drugs. Therefore, the risk score of Pyro-GPSs may be a potential

biomarker to assess the efficacy of anti-tumor drugs and to

choose appropriate treatment strategies.
Stratification analysis and independent
prognostic value of Pyro-GPS risk model

Time-dependent ROC analysis of the TCGA cohort showed

the prognostic model had high predictive efficiency (AUC=

0.670, 0.700, 0.684 for 1-, 1.5- and 2-year survival rates

respectively) (Figure 6A). Next, univariate and multivariable

Cox regression analyses demonstrated that the risk score derived

from the Pyro-GPS model can serve as an independent

prognostic factor for breast cancer patients in the TCGA

cohort. The univariate Cox regression analysis indicates that

the risk score is significantly associated with OS (HR: 1.092, 95%

CI: 1.063–1.122, p< 0.001, Figure 6B). The multivariate Cox

regression analysis proves that the risk score can independently

predict poor survival (HR: 1.068, 95%CI: 1.037–1.100, p< 0.001,

Figure 6C). Moreover, the ROC curve in Figure 6D illustrates

that the AUC for the risk model is 0.707, which means the risk

score has a satisfactory predictive efficacy. In addition, the

connections between the risk groups and clinicopathologic

features including age, gender, stage, T stage, M stage, N stage,

and PAM50 intrinsic subtypes are diversely distributed in

Figure 6E. Also, the heatmap demonstrates that the expression

levels of CD2, CCL5, KLRB1, CD74 and ZNF683 decrease with

the increasing risk score, while NLRC4 is highly expressed in the

high-risk group. Subsequently, the Kaplan–Meier curves in

Figure 6F displays that the breast cancer patients with the

following features possess survival advantage in the low-risk

group: age ≤65, female, Normal, LumA, stage I–II, stage III–IV,

T1–2, T3–4, N0, N1–3 and M0 subtypes. While patients with

male, Basal, Her2, LumB, and M1 are not distinctly different

between the low- and high-risk groups (Supplementary

Figure 3B). Furthermore, we compared different expressions of

risk score in diverse groups stratified by the above

clinicopathological features. In brief, patients with age>65 or

T1-2 stage or male have higher risk scores than patients with age
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≤65 or T3–4 stage or female (Figure 7A). With regard to PAM50

molecular subtyping, the risk score expressions of Basal and

LumB subtypes are distinctly upregulated compared with Her2,

LumA and Normal subtypes. The rest data were shown in

Supplementary Figure 3C.
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Construction of the Pyro-GPS-based
nomogram

Herein, a nomogram (including several significative

clinicopathological factors and risk score based on Pyro-GPS)
A

B

D

C

FIGURE 4

(A) Gene set enrichment analysis (GSEA) illustrated the functional enrichment and pathway enrichment in the high-risk subgroup. (B) Gene set
variation analysis (GSVA) enumerated difference of enriched pathways between high-/low-risk subtypes. (C) Venn diagram of quantity statistics
for KEGG pathways correlated with risk score and survival time. (D) Volcano plot depicted differential expression genes in high-/low-risk
subtypes (|logFC| >1 and FDR<0.05). KEGG, Kyoto Encyclopedia of Genes and Genomes.
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was constructed to predict the 7.5-, 10-, and 12.5-year survival

rates of the patients (Figure 7B). The predictive accuracy of the

nomogram was assessed using calibration curves. The actual 7.5-,

10-, and 12.5-year survival probabilities of the breast cancer

patients in the TCGA cohort are roughly consistent with the

nomogram- predicted ones in Figures 7D-F.
External validation of the Pyro-GPS in
the GSE20711

Ultimately, an external validation cohort GSE20711

comprising 88 samples was assayed to validate the prognostic
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value of the Pyro-GPS in the breast cancer patients. The Kaplan–

Meier survival curves in Figure 7C showed that patients in the

high-risk group had poor prognosis than the low-risk group

(p =0.050). This result is highly consistent with the findings of

the TCGA cohort.
Inhibition of MDA-MB-231 cells
progression with CCL5 upregulation

To begin with, hub gene CCL5 extracted from the protein

interaction network emerged as the research object of cell

experiments (Supplementary Figure 4). To investigate the
A

B

FIGURE 5

(A) The correlation analysis between expression levels of CD2, ZNF683 and KLRB1 with IC50 of anti-tumor drugs. (B) Boxplot showed IC50
difference of anti-tumor drugs in high-/low-expressed subgroups for CD2, ZNF683 and KLRB1. IC50, the half maximal inhibitory concentration
*p < 0.05, **p < 0.01, ***p < 0.001.
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effect of CCL5 on occurrence and development of breast cancer,

plasmid was transfected into MDA-MB-231 cell line to construct

CCL5 overexpression stable cell line, whose CCL5 protein level

was verified via western blot analysis in Figure 8A. In addition,

EdU assay observed that overexpression of CCL5 significantly
Frontiers in Immunology 12
reduced the EdU positive cells number of breast cancer cells (BC

cells) (Figure 8B). The growth curves detected by CCK8 assay

indicated that upregulation of CCL5 could distinctly inhibit the

proliferation of BC cells (Figure 8C). In accordance with the

results of EdU assay and CCK8 assay, colony formation assay
A B

D
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F

C

FIGURE 6

(A) Time-dependent ROC curve of 1, 1.5, and 2 years for survival prediction model. (B, C) Univariate and multivariate Cox regression analyses
proved risk score was deemed to be an independent prognostic predictor. (D) ROC curves for the risk score, age, gender, stage, T, M and N. (E)
Heatmap of the association between the expression levels of the six Pyro-GPS and clinicopathological features in TCGA dataset. (F) Stratification
analysis based on clinicopathological features to compare survival difference in high-/low-risk subtypes. ROC, receiver operating characteristic;
Pyro-GPS, pyroptosis-related genes prognostic signature; TCGA, The Cancer Genome Atlas; ***p < 0.001.
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presented CCL5-amplifying group had prominently less cell

clones number than control group in Figure 8D. Thus the

outcomes of the above three in vitro experiments confirmed

that overexpression of CCL5might restrain breast cancer growth

potential and clone formation capacity. Furthermore, PI staining

combining flow cytometry in Figure 8F displayed that

upregulation of CCL5 progressively increased the percentage of

cells in the G1 phase to the detriment of the S phase. Annexin V-

FITC/PI staining presented the proportion of apoptotic cells

were dramatically increased by upregulating CCL5 (Figure 8E).

To some extent, apoptosis rate augment and cell cycle G1-phase

arrest were two essential factors contributing to the growth

suppression of MDA-MB-231 cells in the context of CCL5

amplification. Subsequently, in order to assess the effect of

magnifying CCL5 on breast cancer metastatic ability, transwell
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assays with or without coating by matrigel were preformed to

acquire functional significance of CCL5 on MDA-MB-231 cells

invasion and migration. Obviously, the quantities of cells

arriving in lower chamber were much less in CCL5

overexpression group than the control (Figure 8G, H).

Consequently, our results of above cell experiments

demonstrated that high expression level of CCL5 might be

correlated with poor prognosis as well as early recurrence in

breast cancer patients.
Discussion

As we all know, breast cancer is accompanied with high

morbidity rate, and has become the first cause of cancer-
A

B
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C

FIGURE 7

(A) The difference of risk score in clinicopathological classification including age, gender, PAM50 intrinsic subtypes and T stage. (B) Nomogram
based on risk score, age, stage, T stage constructed to predict the 7.5-, 10-, and 12.5-year survival for BRCA patients. (C) Kaplan–Meier curves
for BRCA patients to validate predictive value of Pyro-GPS risk model in the GSE20711 cohort. (D-F) Calibration plots of the nomogram for
predicting the survival probability of OS at 7.5, 10, and 12.5 years. BRCA, breast cancer; Pyro-GPS, pyroptosis-related genes prognostic
signature; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.933779
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.933779
associated death among women in 2020 according to the latest

data (1). Breast cancer is a highly heterologous tumor

characterized as diverse histogenesis and molecular

pathogenesis (5, 27). Thus, gene expression, cell morphology,

tumor microenvironment, drug sensitivity, metabolism,

proliferation, migration and metastasis potential may all differ

among the molecular types of breast cancer (28, 29). Moreover,

triple negative breast cancer with poor prognosis has more

prominent genomic instability and more significant

immunogenicity (30, 31).

Pyroptosis is a novel form of programmed cell death

featured by the fragmentation of cell membranes and the

release of inflammatory factors (32). Increasing evidence

implicates that pyroptosis can affect the tumorigenesis and

progression of breast cancer, melanoma, colorectal cancer,
Frontiers in Immunology 14
gastric cancer, hepatocellular liver cancer, and lung cancer

(33–37). As for breast cancer, pyroptosis reportedly plays a

dual-role in tumor development and therapeutic mechanisms.

The pyroptosis-related inflammasome and cytokine IL-1b
contribute to angiogenesis and invasiveness of breast cancer,

and a high inflammatory environment may be significantly

associated with the high recurrence rate of breast cancer (38).

To the contrary, gasderminB-mediated pyroptosis executed by

natural killer cells and cytotoxic T lymphocytes enhances anti-

tumor immune response (14). Moreover, GSDME (DFNA5) can

be cleaved by granzyme B (GzmB) to activate pyroptosis and

stimulate tumor-associated macrophages, tumor-infiltrating

natural-killer and CD8+ T lymphocytes to evoke anti-tumor

immunity in breast cancer (13). In addition, GSDME expression

is suppressed in various cancers and its low level is correlated
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FIGURE 8

(A) Construction of CCL5 over-expressed stable MDA-MB-231 cell line and verification via western blot analysis. The proliferation and
clonogenic capacity of MDA-MB-231/oe-CCL5 cells and MDA-MB-231/Vector cells were examined via EdU assay (B), Cell Counting Kit-8 assay
(C) and Colony formation assay (D). Flow cytometric analysis combining with Annexin V-FITC/PI staining (E) and PI staining (F) were used to
assess cell apoptosis rate and cell cycle arrest state. The effect of up-regulated CCL5 on breast cancer cell invasion (G) and migration (H) based
on transwell assays. oe-CCL5 cells: CCL5 over-expressed cells; **p < 0.01, ***p < 0.001, ****p < 0.0001.
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with poor survival of breast cancer patients, indicating GSDME

may serve as a tumor suppressor (18). Therefore, there is an

urgent need to identify the pyroptosis-related prognostic

signatures to better help with accurate diagnosis and

individualized treatment.

An initial objective of our project was to identify sensitive

pyroptosis-related prognostic signatures and explore the

underlying mechanisms how these prognostic biomarkers

influence tumor progression through pyroptosis for breast

cancer. Thus, data on 1089 breast cancer patients derived from

TCGA were analyzed by a series of bioinformatics methods to

achieve the research objective. First, 161 pyroptosis-related

genes were extracted via literature search and Pearson’s

correlation analysis. Then six superior Pyro-GPS were

identified through univariate and multivariate Cox regression

analyses, including two positive genes (CD2 and NLRC4) and

other four genes (CCL5, KLRB1, CD74, and ZNF683), in which

the negative coefficients suggest higher expressions are

correlated with better prognosis. The risk score of each sample

was calculated via the expression levels of six Pyro-GPSs and

their coefficient. Additionally, the 1089 samples downloaded

from TCGA were randomly divided into a training cohort and a

testing cohort. Then the two cohorts were separately stratified

into a high-risk group and a low-risk group according to the

median risk score. Results revealed that the low-risk group had

survival advantage over the high-risk subgroup. The AUCs

further confirmed the prognostic ability of the risk score.

Moreover, the results of the external validation cohort

obtained from GEO match with those observed in the above

two cohorts on the predictive ability of these six signatures for

breast cancer. Furthermore, cell proliferation assays including

EdU, CCK8 and colony formation assay verified the essential

role of CCL5 in inhibiting breast cancer cell growth and activity.

Flow cytometry combined with special staining was utilized to

confirm amplification of CCL5 could increase cell apoptosis and

impede cells entering S phase. Cell invasion and migration

experiments suggested that CCL5 essentially restrained the

metastasis of breast cancer.

A significant negative correlation was observed between the

risk score and survival time for the breast cancer patients. The

greater absolute values of the coefficients with NLRC4, KLRB1

and ZNF683 represent a greater influence on risk scores than

other three biomarkers. With obesity as a risk factor and

associated with worse clinical outcomes for breast cancer,

Ryan Kolb put forward that activation of the obesity-

associated NLRC4 inflammasome/interleukin-1b signal

pathway drives disease progression via the adipocyte-mediated

vascular endothelial growth factor A expression and

angiogenesis (39). Moreover, angiopoietin-like 4 reportedly

plays a role in angiogenesis and breast cancer progression

(40). These studies further confirm that NLRC4 as a proto-

oncogene can promote the progression of breast cancer.
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Our study indicates that the low-risk patients with high

expressions of protective Pyro-GPSs show higher immune cell

infiltration and immune-oncology target expression,

accompanied with better survival. This result means pyroptosis

can enhance anti-tumor immune to prolong the survival time of

cancer patients. This conclusion is consistent with other studies.

A bioinformatics study reveals that the up-regulation of KLRB1

(a TME-associated and immune-related signature) is correlated

with favorable survival in breast cancer patients (41).

Addit ionally , KLRB1(CD161) is l inked to the pro-

inflammatory functions of natural killer cells (42). These

results raise the possibility that KLRB1 may react on breast

cancer through pyroptosis as a pro-inflammatory cell death. In

addition, a review summarizes that tissue-resident memory

(TRM) T cell as a subgroup of specific tumor-infiltrating

lymphocyte is critical in preventing the proliferation and

migration of solid tumors (43). A higher proportion of

ZNF683-overexpressed TRM (ZNF683/Hobit is a characteristic

gene of TRM) may become a better prognostic indicator and be

associated with better immunotherapeutic response in lung

cancer (44). Furthermore, high serum CCL5 level involved in

cancer immune reactions is remarkably associated with longer

disease-free survival and OS of patients with early breast cancer

(45). Vps34 kinase inhibitor (Vps34i) can induce a T cell-

inflamed tumor microenvironment construction (including

infiltration of NK, CD8+, and CD4+ T effector cells) featured

by high amplification of CCL5, CXCL10, and IFN-g, thereby
converting immune cold tumors (poorly infiltrated) into hot

ones (highly infiltrated) (46). Moreover, Vps34i can be

combined with anti-PD-L1/PD-1 immunotherapy to enhance

antitumor efficacy in melanoma and CRC tumors (46). Thus,

pyroptosis strongly related with TIME (including immune cell

infiltration, levels of pro-inflammatory chemokines and

cytokines) in tumorigenesis and development. After that, we

explored the possible discrepancy of genetic variations for breast

cancer patients in the two risk groups. Unique molecular

biological characteristics of breast cancer, including intra-

tumor heterogeneity, genomic instability and immunogenicity

(30, 31, 47), prompt us to explore the genetic backgrounds on

breast cancer. Results demonstrate that the high-risk patients

have high mutation frequency of TP53, while the low-risk

patients possess high mutation frequency of PIK3CA.

However, no significant difference in variant classification,

SNP/INS/DEL, SNV type and CNV exists between the two

risk groups. TP53 is a tumor suppressor involved in regulation

of cell cycle, DNA damage repair, apoptosis, inflammmation and

immune response (48). Much research points out that TP53

mutations play a negative role in anti-tumor immunity and

immunotherapy response, which is related to the poor prognosis

in cancer patients (49). The results of the above studies are

consistent with our result that the high-risk group gets poor

clinical outcome.
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Subsequently, GSEA and GSVA reveal that the low-risk

group is closely associated with TIME and immune response,

while the high-risk group is prominently associated with protein

ubiquitination and deubiquitination. Ubiquitination as a

reversible protein post-translational modification is a triple

enzyme cascade reaction, which involves ubiquitin activation

by E1 enzymes, ubiquitin conjugation to E2 enzymes, and

ubiquitin ligation to the substrate protein via E3 enzymes.

Studies prove that ubiquitination is involved in a plethora of

physiological processes (e.g. cell cycle, cell death, transcriptional

regulation, signal transmission, DNA damage repair and

immune signaling) through regulating protein stability,

localization, activity and interaction (50–54). A review in 2021

summarizes that ubiquitination can dynamically regulate

inflammation and programmed cell death, which is deemed as

the crucial components of TNF-stimulated cell death and

NLRP3 inflammasome–mediated signaling (55). Besides, a

distinct connection between TRAF3 (tumor necrosis factor

receptor-associated factor 3)-mediated ULK1 (Unc-51 like

autophagy activating kinase) ubiquitination in macrophages

and pyroptosis was found (56, 57). Reportedly, human

papillomavirus E7 can recruit E3 ligase TRIM21 to induce

degradation and ubiquitination of IFI16 inflammasome,

resulting in suppression of cell pyroptosis and occurrence of

immune escape (58). In addition, aberrant ubiquitin regulation

of inflammatory pathways can induce the onset and progression

of cancers and autoinflammatory diseases, and thus targeting

dysfunctional ubiquitination may be a promising treatment

strategy (55). For instance, downregulation of deubiquitinating

enzyme USP47 is associated with shorter disease-free survival of

colorectal cancer (CRC) patients, and USP47-mediated

deubiquitination of transcription elongation factor a3 can

inhibit pyroptosis and apoptosis of CRC cells treated with

chemotherapeutic doxorubicin, which may be a target for

therapeutic intervention in CRC (59).

Furthermore, the tumor functional patterns including the

Wnt and the TGF-b signaling pathways are enriched in the high-
risk group. A review in 2020 reveals that Wnt signaling plays a

crucial role in the proliferation, metastasis, TIME regulation,

therapeutic resistance, phenotype shaping and stemness

maintenance of breast cancer (60). Interestingly, most Wnt

signaling factors such as b-catenin, Axin, GSK3, and Dvl are

regulated by ubiquitination and deubiquitination, and the

inhibitors of deubiquitinating enzymes may be applied for

cancer therapeutic strategies (61). In addition, transforming

growth factor (TGF)-b was originally deemed to be a potent

proliferation inhibitor and apoptosis inducer in early breast

cancer, but was later proved to increase cancer progression in

the advanced stages (62). Notably, TGF-b can attenuate immune

response, including tumor immune evasion and poor responses

to cancer immunotherapy, via influencing diverse immune cells
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in the tumor microenvironment (63). Given the existing

findings, intricate connection may exist among pyroptosis,

ubiquitination and TIME to affect tumor proliferation,

invasion and migration.

Additionally, IC50 of the mentioned anti-cancer drugs,

especially Nelarabine, is highly positively correlated with the

expressions of CD2, ZNF683 and KLRB1, which means drug

resistance. These results point out that the expression levels of

these genes can affect drug response and may be potential

biomarkers for establishing appropriate treatment strategies.

After that, our univariate and multivariate Cox regression

analyses indicate risk score can serve as an independent

prognostic factor for breast cancer patients. Then a nomogram

model combining six pyroptosis-related genes and other

clinicopathological features was constructed and used as an

applicable quantitative tool to predict the survival of breast

cancer patients. Undeniably, several limitations still exist in

our study. Firstly, due to the lack of available clinical data in

our center, no further external verification of Pyro-GPS can be

performed. Secondly, how pyroptosis-related genes affect the

prognosis of breast cancer patients via regulating the TIME is

still indistinct and needs further exploration. Next, the

association between high risk score and protein ubiquitination

lacks experimental validation. In addition, only three Pyro-GPSs

were included to analyze their connections with anti-tumor

drugs response for breast cancer because of insufficient

database information.

On the whole, we established a pyroptosis-related gene

prognostic model and assessed the discrepancy in tumor

immune microenvironment, gene mutation landscape and

enrichment pathways between the two risk groups for breast

cancer. Meanwhile, we verified that the hub gene CCL5 could

inhibit the proliferation, invasion and migration of BC cells as

well as promote BC cells apoptosis. These signatures may serve

as potential targets to predict survival and develop treatment

strategies for breast cancer patients.
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