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Hepatitis B virus (HBV) infection is regarded as the main etiological risk factor in the

process of hepatocellular carcinoma (HCC), as it promotes an immunosuppressive

microenvironment that is partially mediated by the programmed cell death protein

1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling pathway. The tumor

microenvironment (TME) of HBV–related HCC is indeed more immunosuppressive

than microenvironments not associated with viruses. And compared to TME in hepatitis

C virus (HCV) infected HCC, TME of HBV-related HCC is less vascularized and presents

different immune components resulting in similar immunosuppression. However, few

studies are focusing on the specific side effects and efficacy of PD-1/PD-L1 blockade

immunotherapy in HBV-related HCC patients, as well as on the underlying mechanism.

Herein, we reviewed the basic research focusing on potential TME alteration caused

by HBV infection, especially in HCC patients. Moreover, we reviewed PD-1/PD-L1

blockade immunotherapy clinical trials to clarify the safety and efficacy of this newly

developed treatment in the particular circumstances of HBV infection. We found that

patients with HBV-related HCC displayed an acceptable safety profile similar to those

of non-infected HCC patients. However, we could not determine the antiviral activity

of PD-1/PD-L1 blockade because standard anti-viral therapies were conducted in all

of the current clinical trials, which made it difficult to distinguish the potential influence

of PD-1/PD-L1 blockade on HBV infection. Generally, the objective response rates

(ORRs) of PD-1/PD-L1 blockade immunotherapy did not differ significantly between

virus-positive and virus-negative patients, except that disease control rates (DCRs) were

obviously lower in HBV-infected HCC patients.

Keywords: immunotherapy, hepatocellular carcinoma, hepatitis B virus, programmed cell death protein 1,

programmed death-ligand 1, tumor microenvironment

BACKGROUND

Liver cancer was predicted to be the sixth most commonly diagnosed cancer and the fourth-leading
cause of cancer death in 2018, with about 841,000 new cases and 782,000 deaths annually (1).
Among the various types of primary malignant hepatic tumors, hepatocellular carcinoma (HCC) is
the most common, accounting for roughly 75–85% of cases (1, 2).
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Chronic hepatitis B virus (HBV) infection is always regarded
as a primary risk factor for the development of HCC and accounts
for at least 50% of HCC cases worldwide (3, 4). The world is of
a high prevalence of HBsAg, especially eastern Asian. At least
120 million Chinese people carry HBsAg which makes China
a highly endemic area, and the second-greatest proportion of
cancer deaths is attributable to HBV (5–7). Notably, the potential
risk of developing HCC is dozens of times higher for chronic
HBV carriers compared with the uninfected population (8).

Programmed cell death protein 1 (PD-1), an
immunosuppressive molecule expressed in B cells, T cells,
dendritic cells and natural killer (NK) T cells to suppress
anticancer immunity, has been shown to be correlated with
the course of HCC and with HBV infection (9–12). Nowadays,
anti-PD-1/programmed death-ligand 1 (PD-L1) pathway
blockade has become a promising and favorable immunotherapy
for adjusting host immune responses and inhibiting the
development of various types of tumors (13–17). However,
HBV infection exerts complex biological effects on the tumor
microenvironment (TME), which probably affects the efficacy of
immunotherapy to a certain extent. Unless the safety and efficacy
of anti-PD-1/PD-L1 therapy in HBV-infected HCC patients can
be confirmed, the role that this immune-adjusted therapeutic
strategy could play in HBV infection related HCC might not
be clarified.

HBV INFECTION RELATED LIVER IMMUNE
MICROENVIRONMENT ALTERATION

Liver Tolerogenic Mechanisms: Natural
Status
In the human liver, normal biological processes involve a
large amount of antigen exposure. The existence of antigens
could lead to inactivation, tolerance, and apoptosis of T cells,
protecting the liver from autoimmune damage of continuous
immune stimulation (18). Previous studies have revealed several
tolerogenic mechanisms, including a porous layer established
to isolate hepatic tissue from the blood (19) and the release
of the immunosuppressive cytokines interleukin 10 (IL-10) or
transforming growth factor-beta (TGF-β) from liver dendritic
cells, liver sinusoidal endothelial cells (LSECs), and Kupffer
cells (20). Additionally, the liver could generate antigen-specific
Cluster of Differentiation 4 (CD4+)/forkhead box P3 (FOXP3+)
regulatory T cells (Tregs) (21) and downregulate the expression
of B7-1/B7-2 on the surfaces of LSECs, which would limit the
ability of antigen-presenting cells (APCs) to activate CD4+ T
cells (22). The immune checkpoint pathways, B7-CD28/cytotoxic
T lymphocyte–associated antigen-4 (CTLA-4) and PD-1/(PD-
L1, PD-L2), also contribute to natural liver immune tolerance
(19, 23). Furthermore, both harmless and harmful antigens could
protect the liver from autoimmune damage via inherent immune
tolerance or escape mechanisms (22).

HBV Infection–Based TME
HCC is regarded as a highly heterogeneous disease of varying
immune microenvironments between the tumor and adjacent

tissues (24). Chronic inflammation is generally considered to be
the ongoing expression of different cytokines and recruitment
of immune cells to troubled regions (22). HBV virus infection
induces immunosuppression, and then peripheral immune
tolerance as the chronic infection progresses; finally, it mediates
oncogenesis, due to impaired immune surveillance (25). In
chronic viral hepatitis, immune inhibitory checkpoints, including
PD-1/PD-L1, CTLA-4, and T-cell immunoglobulin and mucin
domain-3 (TIM-3), play essential roles in immunosuppression by
downregulating the responses of T cells (22).

Figure 1 illustrates the immune landscape for HBV-related
TME in HCC. CD8+ T cells provide a vital antitumor response
in the surrounding HCC microenvironment. The gradually
increasing frequencies of circulating CD8+ T cells expressing
PD-1 were reported to be relevant to the progression of HBV-
related cirrhosis to HCC. Apoptosis of CD8+ T cells was also
promoted by hepatoma cells via PD-L1 upregulation (26). Of
note, transcriptional analysis has discovered an extra cytotoxic
phenotype of CD8+ tumor-infiltrating lymphocytes in HCC
patients with undetectable serum levels of HBV (27). In addition,
HBV replication was also found to be associated with a higher
proportion of HBV-specific CD8+ T cells. TIM-3 inhibits Th1
responses and expresses effective cytokines such as tumor
necrosis factor (TNF) and interferon-gamma (INF-γ) (27, 28).
A recent study revealed an inverse association between TIM-3
expression levels and clinical outcomes in HBV-infected HCC
(29): The proportion of TIM-3+ CD8+ T cells in tumor tissues
from HBV+ patients was much higher than in those from
HBV− patients (CD8+: 15% vs. 2%), and the TIM-3/galectin-
9 signaling pathway could mediate T-cell functional exhaustion
in HBV-infected patients. Notably, higher expression of PD-
1 and lymphocyte-activation gene 3 (LAG3), as well as lower
expression of CD28 and CD127, were commonly found in
tumor-infiltrating CD8+ T cells of HBV-related HCC patients
(30–32).

In the TME, Tregs play an immunosuppressive role by
producing cytokines, such as IL-10, IL-35, and TGF-β, and
by inhibiting Th1 or Th2 cell activation (33). Frequencies of
Tregs were higher in HBV+ HCC than HBV− HCC patients.
Decreased PD-1 expression and increased IL-10/TGF-β secretion
of CD4+ CD25+ Tregs were found in HBV+ HCC patients (34).
However, researchers have also clarified that the increased PD-
1 expression in Tregs from HBV+ patients indicated a more
suppressive and exhausted immune condition (35). In the studies
mentioned above, Tregs had different levels of PD-1 expression
but resulted in similarly suppressive immune conditions in HBV-
based TMEs. A next-generation sequencing (NGS) analysis (35)
revealed that Tregs isolated fromHBV-infected HCC had distinct
transcriptomic signatures containing 289 differentially expressed
genes. For instance, upregulated expression of FOXP3, and other
genes involved in the IL-10 pathway including interleukin 1
receptor type 1 (IL1R1) and TNF receptor superfamily member
1B (TNFRSF1B) were found in Tregs from HBV-infected HCC.
And LAG3, essential for suppressive activity, was also enriched.
CTLA-4 is another immunosuppressive molecule, and an in
vitro experiment suggested that CD4+ CD25+ Tregs isolated
from peripheral-blood mononuclear cells could upregulate the
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FIGURE 1 | The immune landscape of the HBV-based tumor microenvironment. Under virus infection conditions, the immune status of an HCC-bearing host

becomes more immunosuppressive and is characterized by weakening of co-stimulatory signal, enhancement of co-inhibitory signals, functional impairment,

decreased quantity of tumor-killing T cells, such as CD8+ and enrichment of Tregs. Therein, the PD-1/PD-L1 pathway plays a suppressive role to produce cancer

immune escape, while the LAG3/MHC-II, Tim-3/galectin 9, and CTLA-4/(CD80, CD86) pathways also contribute to this process. This figure was drawn with Adobe

Illustrator CS5. TCR, T-cell receptor; MHC, major histocompatibility complex; APC, antigen-presenting cell; PD-1, programmed cell death protein 1; PD-L1,

programmed death-ligand 1; CTLA-4, cytotoxic T lymphocyte associated antigen-4; Tim-3, T-cell immunoglobulin and mucin domain-3; LAG3, lymphocyte activation

gene 3; TGF-β, transforming growth factor beta.

expression of CTLA-4 after being co-cultured with stably HBV-
transfected human hepatoma cell lines (36).

Resident memory T cells (Trms) were also enriched in the
TME of HBV-related HCC. In these cells, exhaustion markers,
such as PD-1, LAG3, TIM-3, and CTLA-4, were more highly
expressed, and expression ofmultiple pro-inflammatorymarkers,
including IFN-γ, IL-17a, granzyme B, and TNF-α, was lower
(35). Trms were more function-suppressive and exhausted in
virus-positive HCC than those in virus-free HCC. In addition,
the immunosuppressive status of insufficient TNF-α and IFN-
γ expression did not change in PD-1–expressing Trms from
HBV-related HCC patients after phorbol myristate acetate
(PMA)/ionomycin stimulation (35).

The percentages of myeloid-derived suppressor cells (MDSCs)
were found to be higher in HBV-infected HCC patients (37,
38). MDSCs promoted a continuous immune-suppressive effect,
along with persistent HBV infection and HCC progression (39).
These cells could regulate the immune response in chronic HBV–
infected patients via PD-1 induced IL-10 (40). They could also

induce CD4+ CD25+ FOXP3+ Tregs and exhausted CD8+ T
cells and inhibit NK cells in HCC (41, 42).

In the past, young patients were regarded as immunotolerant
for HBV infection. A study aiming to explore the T-cell tolerance
immune profile of young HBV-infected persons found that
effector/inflammatory cytokines produced by T cells, including
IFN-γ, TNF- α, IL-17A, and IL-22, were significantly higher in
such patients with chronic hepatitis B infection than in healthy
individuals (43). The frequency of PD-1+ CD127 low-CD8+ T
cells increased with age in patients infected with chronic hepatitis
B, and a less-compromised HBV-specific T-cell repertoire was
also increasingly detected in young patients compared with
adult patients with chronic infection (43). Therefore, the long
process of infection may lead to a progressive state of T-cell
exhaustion and excessive production of immunosuppression-
related cytokines.

Blocking the corresponding immunosuppressed signal could
recover the function of immune cells and improve immune
reaction. One study found that PD-L1 blockade yielded an
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∼2-fold increase in HBV-specific T cells, vs. incubation with
isotype control (12, 44). Not only was HBV-specific CD4+ and
CD8+ T-cell response improved upon incubation with anti–PD-
L1, but IL-2 and IFN-γ secretion and proliferation of HBV-
specific CD8+ cells were likewise recovered via PD-L1 blockade.
In addition, HBcAg-specific IFN-γ production was increased
after anti–PD-1 monoclonal antibody used in intrahepatic T
lymphocytes (45). Immunosuppression caused by PD-1+ Tregs
could be reversed with PD-1 blockade (35), and so could the
exhaustion of intrahepatic CD8+ T cells by combined PD-1 and
CTLA-4 inhibition (26).

Similar to HBV, HCV infection blocked or altered host
immune responses, and resulted in chronic inflammation status
(46). In HCV related HCC, tumor tissue was reported to be
more vascularized than those of HCC with HBV infection
(47, 48). A recent research revealed that different tumor-
infiltrating leukocytes composition in different subtypes of
HCC. M0 macrophage and neutrophil cells were found to
predominate in HCV+ tumor, and resting memory CD4+

T cells, activated memory CD4+ T cells, activated NK cells,
resting dendritic cells, and resting mast cells were significantly
higher in HBV+ tumor tissue contrast with non-tumor
samples (49). The significantly elevated MDSCs were found in
HCV+ HCC especially in advanced stage HCC, and positively
correlated with HCV viral load (50). Similarly, the proportion
of Treg cells, acting the immunosuppressed role, was also
significantly higher in HCV related HCC, especially in the
recurrence subset (51). CD4+ T cells and T-cell stimulatory
activity of dendritic cells were significantly decreased in HCV
related HCC patients (50, 52). The increased CD4+CD57+

T cells in peripheral blood lymphocytes were associated with
tumor progression and had a significant inverse correlation
with IFN-γ-producing capability (53). Additionally, HCV-
HCC patients generated significant higher values for both IL-
10, IL-18, and TGF-β (54, 55). HCV-HCC patients present
immunosuppressed status like HBV infected HCC, and future
researches should be carried out to explore the interplay and
specific function of immune cells in TME and have transcriptome
analyses of represented cell subsets using advanced single-cell
sequencing technology.

In summary, the TME of HBV-related HCC is considered to
be more immunosuppressive and exhausted than that of non
HBV-related HCC (35). As the hotspot of immunotherapy, the
PD-1/PD-L1 pathway has gradually become the most important
therapeutic target for rescuing immune cells and avoiding
tumor progression.

EFFICACY EVALUATION OF
ANTI–PD-1/PD-L1 THERAPY

Efficacy of PD-1/PD-L1 Inhibitors in
HBV-related HCC
Currently, clinical trials are ongoing to evaluate the efficacy of
PD-1/PD-L1 inhibitors as monotherapy or part of combined
therapeutic strategies in HCC patients (Table 1). In HCC
patients treated with anti–PD-1/PD-L1 monotherapy, objective

response rates (ORRs) ranged from 8 to 20%, and disease
control rates (DCRs) ranged from 33 to 73%, except one was
10% (Table 1). With PD-1/PD-L1 based combination therapy,
patients achieved higher ORRs and DCRs (ORR range, 20–50%;
DCR range, 49–100%).

Irrespective of line of therapy, ORRs of advanced HCC with
nivolumab were 15–20%, and a substantial reduction in tumors
from baseline was also observed (CheckMate 040) (57). The trial
suggested the ORRs of patients infected with HCV, HBV and
without viral hepatitis were 20, 14, and 22%, respectively, but
these acquired data were not powered for statistical comparisons.
In the dose-expansion phase, 6- and 9-month overall survival
rates were 84 and 70%, respectively, in HBV-infected patients
(57). As for the total study population, 6- and 9-month overall
survival rates were, respectively, 83 and 74%. Besides, a part of
researches supported the off-label use of nivolumab after failure
or intolerance of sorafenib treatment or disease progression
(73). A subsequent study of nivolumab as first-line therapy
(Checkmate 459) not only confirmed the findings observed with
second-line nivolumab, but also demonstrated improved quality
of life and reduced treatment burden in advanced HCC. As
a primary endpoint, consistent effect on overall survival was
also observed in advanced HCC with nivolumab and seemingly
profitted more in predefined subgroup of HBV infection (56).

Pembrolizumab (Keytruda; prescribing information at
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/
125514s015lbl.pdf), another anti-PD-1 monoclonal antibody,
was used in a phase 2 trial (KEYNOTE-224) involving advanced-
HCC patients who had previously been treated with sorafenib.
ORR, median progression-free survival rate, and 12-month
overall survival rate were 17%, 12.9 months and 54%,
respectively (60). Of note, in the subgroup analysis of viral
infection, comparable reductions of target lesions from baseline
were observed in patients with or without HBV or HCV infection
at the rates of 57 and 58%, respectively (60). In phase 3 study
(Keynote 240), ORR was 18% and 4% for pembrolizumab vs.
placebo at final analysis (one-sided P < 0.001), and in Asian
subgroup, ORR was 21% for pembrolizumab and 2% for placebo
(P < 0.001). Notably, HBV infection status was much higher in
Asian subgroup (Asian: 51% vs. overall: 25%) (61, 74).

In China, 217 HCC patients intolerant of first-line treatment
or with progressive disease were treated with SHR-1210
(camrelizumab, a fully humanized anti-PD-1 immunoglobulin
G4 [IgG4] monoclonal antibody) as second-line treatment (64).
Of all of the subjects, 32 (15%) achieved partial response, and
18 patients remained effective at the cutoff point. The 6-month
overall survival rate was 74%; the median overall survival was
not reached by the time of preliminary analysis. It is noteworthy
that 89% of patients were infected with HBV and most had
serious disease status, including extrahepatic metastasis and
alpha-fetoprotein (AFP) ≥ 400 ng/mL. SHR-1210 monotherapy
showed clinical efficacy similar to that of nivolumab and
pembrolizumab in this trial. In another open-label, dose-
escalation/expansion study from China, 94% of HCC patients
achieved a state of disease control and 51% of patients achieved
6-month progress-free survival using SHR-1210 combined with
apatinib (72). Interestingly, these enrolled HCC patients were all
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TABLE 1 | PD-1/PD-L1 blockade efficacy in HBV+ HCC and total HCC patients.

Objective response Disease control

Drug ClinicalTrials.gov

number

Line of therapy Target HBV+ HCC Total HCC HBV+ HCC Total HCC References

Nivolumab NCT02576509 1 PD-1 57 (15%) 187 (50%) (56)

Nivolumab NCT01658878

(escalation phase)

1/2 PD-1 1 (7%) 7 (15%) 28 (58%) (57)

Nivolumab NCT01658878

(expansion phase)

1/2 PD-1 7 (14%) 42 (20%) 28 (55%) 138 (64%) (57)

Nivolumab — — PD-1 — 6 (8%) — 30 (39%) (58)

Nivolumab — 2 PD-1 — 4 (12%) — 12 (35%) (59)

Pembrolizumab NCT02702414 2 PD-1 — 18 (17%) — 64 (62%) (60)

Pembrolizumab NCT02702401 2 PD-1 — 51 (18%) — — (61)

Cemiplimab NCT02383212 1 PD-1 — 5 (19%) — 19 (73%) (62)

BGB-A317 NCT02407990 — PD-1 — 1 (10%) — 7 (10%) (63)

SHR-1210 NCT02989922 ≥1 PD-1 — 32 (15%) — 96 (44%) (64)

Durvalumab NCT01693562 — PD-L1 0 (0%) 4 (10%) 1 (11%) 13 (33%) (65)

Durvalumab +

tremelimumab

NCT02519348 1/2 PD-L1 + CTLA-4 1 (9%) 10 (25%) 5 (45%) 23 (58%) (66)

Durvalumab +

tremelimumab

NCT02821754 ≥ 1 PD-L1 + CTLA-4 — 2 (20%) — 6 (60%) (67)

Nivolumab +

ipilimumab

NCT01658878 — PD-1 + CTLA-4 — 46 (31%) — 146 (49%) (68)

Atezolizumab +

bevacizumab

NCT02715531 1 PD-L1 + VEGF 11 (31%) 23 (32%) — 56 (77%) (69)

Atezolizumab +

bevacizumab

NCT03434379 1 PD-L1 + VEGF — 89 (27%) — 240 (74%) (70)

Pembrolizumab +

lenvatinib

NCT03006926 — PD-1 + VEGF 3 (50%) 11 (42%) 6 (100%) 26 (100%) (71)

SHR-1210 +

apatinib

NCT02942329 — PD-1 + VEGF 8 (50%) 8 (50%) 15 (94%) 15 (94%) (72)

Data are n (%). HBV+ HCC, HBV-infected HCC; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; CTLA-4, cytotoxic T lymphocyte associated antigen-4;

VEGF, vascular endothelial growth factor.

HBV-infected and with heavy tumor burdens, suggesting that the
combination therapy likely had greater efficacy than single-agent
immunotherapy (Table 1).

Despite these tremendous advances, tumor response to
immunotherapy in unselected HCC patients was not commonly
elicited, which led to the exploration of combination-based
strategies to enhance efficacy. Vascular endothelial growth factor
(VEGF) is related to inhibition of dendritic cells maturation
in vitro/vivo through the activation of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB), intratumoral
accumulation of immunosuppressive cells of Tregs/MDSCs and
inhibition of T-cell infiltration. Anti-VEGF treatment could help
tumor vascular normalization and promote immune responses
in the TME (75). In a phase Ib study of unresectable or advanced
HCC, 31% HBV-infected patients treated with atezolizumab +

bevacizumab achieved objective response, compared with 32% in
the overall study population. After observing a tolerable safety
profile and promising anti-tumor activity of this combination
in phase 1b study, researchers carried out IMbrave150, a
global, open-label, Phase 3, randomized study of atezolizumab
+ bevacizumab vs. sorafenib in unresectable HCC who had

not received prior systemic therapy. The study demonstrated
statistically significant and clinically meaningful improvement in
overall survial and progression-free survival. In corresponding
subgroup analysis, patients infected with HBV may profit more
than non-virus HCC. Of note, atezolizumab + bevacizumab
obviously prolonged median progression-free survival of HBV+

HCC comparing with sorafenib, but this phenomenon did not
appear in the population of non-virusHCC (median progression-
free survival, HBV+ HCC: 6.7m vs. 2.8m; non-virus HCC:
7.1m vs. 5.6m) (70). In another phase Ib study, focused on
lenvatinib + pembrolizumab, a large proportion of patients
with unresectable HCC experienced a long-lasting reduction
in tumor size, including the HBV-infected patients (71). The
combination of two powerful immunotherapy drugs was another
trend of HCC treatment. Simultaneously the strong effect of
blocking both PD-L1 and CTLA-4 pathway (durvalumab +

tremelimumab) was also observed in unresectable HCC but not
in HBV infected subgroup. Only 1 HBV infected patients (9%)
achieved partial response status while 25% had an objective
response in total population (66). The nivolumab + ipilimumab
(anti-CTLA-4) combination therapy also presented clinically
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FIGURE 2 | Forest plot of 6 studies evaluating the difference of PD-1/PD-L1 blockade efficacy between HBV+ HCC and HBV− HCC. (A) using ORR to evaluate drug

efficacy; (B) using DCR to evaluate drug efficacy. HCV+ HCC patients were excluded from the group of HBV− HCC. Statistical analyses were performed using Review

Manager (RevMan) software version 5.2 (Cochrane Collaboration). Pooled odds ratios (ORs) and 95% CIs were computed using the fixed-effects model.

meaningful responses: Overall, ORR: 31% (7 had a CR); DCR:
49%; 24-month overall survival rate: 40% (68).

We performed a pooled analysis to assess the different efficacy
of PD-1/PD-L1 inhibitor therapy, including mono- or combined
therapy, in both HBV+ HCC and HBV− HCC patients. Of note,
HCV+ HCC patients were excluded from the group of HBV−

HCC, and HBV− HCC could be considered as non-viral HCC.
We carried out a comprehensive systematic search for published
literature in the PubMed and EMBASE databases. Additionally,
we acquired partial data from posters, presentations, andmeeting
abstracts of the American Society of Clinical Oncology (ASCO)
and the European Society of Medical Oncology (ESMO). The
search strategy and selection criteria for our pooled analysis
are provided in “Supplemental Methods.” We extracted or
calculated odds ratios (ORs) to evaluate the strength of the
association between drug efficacy and HBV infection. The I2

statistic was applied to evaluate the heterogeneity of studies in
the pooled analysis and to help choose an appropriate model (I2

< 50%: fixed-effects model, I2 ≥ 50%: random-effects model).
As expected, HBV+ patients achieved ORRs comparable to those
of HBV− HCC patients (OR, 0.68; 95% confidence interval [CI],
0.37–1.25; P = 0.21; Figure 2), and similar results were obtained
in the monotherapy and combined-therapy subgroups (data not
shown). However, the DCRs of HBV+ patients were significantly
lower than those of HBV− ones with PD-1/PD-L1 inhibitor
therapy (OR, 0.49; 95% CI, 0.27–0.89; P = 0.02; Figure 2), and
we observed stable disease more in HBV− patients than in
HBV+ patients, although not significantly (42% vs. 38%). In the

subgroup of combined-therapy, theDCRs ofHBV+ patients were
also significantly lower than those of HBV− ones (OR, 0.52; 95%
CI, 0.27–0.99; P= 0.05). Additionally, we compared drug efficacy
of HCV+ HCC with those in HBV+ HCC and HBV− HCC. No
significant difference was found in ORRs and DCRs of HCV+

HCC compared to those in HBV+ HCC and HBV− HCC (all P
> 0.05, Supplemental Table 1).

Antiviral Effect of PD-1/PD-L1 Blockade
One study showed that adefovir monotherapy could control
HBV viremia but HBsAg seroconversion was not achieved
in patients with chronic hepatitis B, while the decreased but
remaining number of peripheral Tregs still expressed high levels
of PD-1 (76). In an animal model, viremia and antigenemia in
woodchucks infected with woodchuck hepatitis virus (WHV)
could be controlled via combination therapy containing anti-PD-
L1 antibody and entecavir (77). Moreover, this combined strategy
was better than antiviral treatment alone and incurred no liver
damage AEs. PD-1/PD-L1 blockade led to significant HBsAg
decline from baseline in virally suppressed chronic hepatitis B,
and existed anti-HBV effect of PD-1/PD-L1 blockade was proved
(78). There were some researches explored the antiviral effect
of PD-1 blockade in virally infected HCC patients (57, 58). To
achieve this goal, researchers assessed serumHBV surface antigen
(HBsAg) and anti-HBs from HBV infected patients at baseline
and after treatment. Existed but limited antiviral activity was
found after treatment with nivolumab. No HBV reactivation
was observed, and no patients infected with HBV achieved

Frontiers in Immunology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 1037

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Li et al. PD-1/PD-L1 Blockade in HBV Related HCC

anti-HBs seroconversion, either (57). Similar results were found
in HCV-infected patients, none of whom achieved a sustained
virological response such as a reduction in HCV RNA levels
lasting for 24 weeks (57). In these clinical studies, inclusion
criteria included limitation of viral load (e.g., <100 IU/mL) by
treatment of antiviral therapy. Thus, the anti-virus effects of
checkpoint inhibitors are still in doubt and must be identified.

Potential Signature for Predicting Drug
Response
HCC heterogeneity is an important influence factor on
immunotherapy effects; therefore, a potential predictive
biomarker could help select patients who will probably benefit
from the therapy.

PD-L1, a key check-point molecule, is generally expressed on
tumor cells and interact with PD-1 to cause immune tolerance
and evasion in TME (79). High PD-L1 expression in tumor cells,
peritumoral hepatocytes and peripheral blood are associated
with worse prognosis (80–82). And PD-L1 overexpression is
positively related to higher levels of AFP, vascular invasion
and poor tumor differentiation (81). Upregulating expression
of PD-1 and PD-L1 in tumor-infiltrating effector CD8+ T cells
is also relevant to disease progression and higher recurrence
rates (44, 83). In a sense, the PD-L1 expression of tumor could
be considered as an index to evaluate the immunosuppression
caused by PD-1/PD-L1 axis and predict the efficacy of anti-PD-
1/PD-L1 therapy. The predictive role of PD-L1 expression has
been identified in the treatment of non-small-cell lung cancer
(NSCLC) and gastric cancer with pembrolizumab (60). In HCC
treated nivolumab, higher ORR was observed in HCC patients
with PD-L1 expression on at least 1% of tumor cells, although
not significantly (26% vs. 19%) (57). A similar outcome occurred
in Keynote 224, response to anti-PD-1 therapy (pembrolizumab)
was not associated with PD-L1 expression on tumor cells assessed
retrospectively by immunohistochemistry. Of note, combined
positive score (CPS) used for assessing not only tumor cells’ PD-
L1 expression but also those in immune cells, was significantly
related to ORR and progression-free survival in this study (60).
In Checkmate 459, the consistent effect was observed in patients
with first-line nivolumab therapy compared to patients treated
with sorafenib. And there was a trend toward better overall
survial and ORR in patients with PD-L1 ≥ 1% (56). Thus, the
PD-L1 expression related score model has the potential to be a
reliable predictor of response to anti-PD-1 therapy.

Interestingly, another study showed that serum soluble PD-L1
(sPD-L1) concentration was several-fold higher in HBV-related
HCC than in healthy control, a significant difference, while sPD-
L1 was positively correlated with tumor PD-L1 expression (84).
In addition, higher pre-treatment serum sPD-L1 levels were
unfavorable predictors of worse disease-free and overall survival.
Zeng et al. suggested that higher PD-L1 levels in peripheral
blood was associated with a higher rate of tumor recurrence
and progression (85). Because the existing clinical trials of anti-
PD-1/PD-L1 immunotherapy did not provide enough data on
PD-L1 expression in HBV-related HCC subgroup, the potential
predictive role of PD-L1 should be further investigated in

future studies. Based on previous promising observations, we
hypothesize that PD-L1 is likely to serve as a predictor for drug
efficacy or prognosis in HBV-related HCC.

RELATED MECHANISMS OF DISRUPTING
PD-1/PD-L1 BLOCKADE EFFICACY IN
HBV+ HCC

HBV Induced Immune Cell Dysfunction and
a Decline in Immune Cell Quantity
Using intracellular cytokine staining, researchers observed an
inverse correlation between levels of T-cell response and viremia
levels, implying that decreasing the viremia levels may have a role
in enhancing immune responses of T cells (12). A recent study
suggested that patients with low HBV levels have a signature of
activated T-cell proliferation (27). Antiviral treatment could alter
T-cell function, as CD8+ tumor-infiltrating lymphocytes from
patients who received antiviral treatment (entecavir) did express
higher effector T-cell markers and lower T-cell exhaustion
markers. Antiviral drugs could activate T cells and strengthen
their immune function, resulting in a better prognosis and
decreased recurrence rates of HBV-related HCC (27, 86, 87).
Peripheral expansion of Treg levels was also negatively correlated
with HBV viral load, and the percentage of Tregs expressing
PD-1 was significantly decreased when HBV replication was
controlled (76). Thus, well-controlled HBV replication was of
great importance to restoring immune system function.

Altered Expression of Drug Targets:
PD-1/PD-L1
PD-1 or PD-L1 blockade was applied to break the interaction of
PD-1/PD-L1; therefore, sufficient enrichment of PD-L1 in tumor
and host cells or PD-1 in immune-related cells was necessary
for therapy to be efficacious. A single-nucleotide polymorphism
(SNP) based experiment suggested that PD-1 mRNA levels in
peripheral blood of HBV-infected patients were sequentially
increased from PD-1 rs10204525 genotypes GG and AG to AA
and that the levels in genotype GG were significantly lower
than in genotype AA; however, the results could not be found
in the virus-negative group (88). Immunohistochemical (IHC)
scores of PD-1 expression in tumor tissues and adjacent tissues
from HCC patients with PD-1+ rs10204525 genotype AA were
significantly higher than those from patients with genotypes
AG and GG. The same results were observed in liver tissues of
cirrhotic patients. PD-1mRNA levels in peripheral-blood nuclear
cells were found to be sequentially increased with the elevation
of HBV DNA levels (89). The genotype determination of PD-1
rs10204525 might become a potential biomarker of response to
anti-PD-1/PD-L1 therapies.

Tumor T-cell Receptor (TCR) Diversity
Virus-specific T cells were thought to be protective factors in the
process of HBV infection, as patients with chronic HBV infection
always had insufficient and dysfunctional HBV-specific T cells.
Therefore, researchers engineered T cells to express specificHBV-
specific TCRs through messenger RNA (mRNA) electroporation,
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enabling them to lyse HBV-producing hepatoma cells in vitro.
In vivo, HBV-specific T cells expressing either the HBV-specific
envelope or core TCR complex led to an 80–90% reduction of
progressive viremia in mice after injections 3 × /day for 12
days; longitudinal changes in viremia relative to baseline were
determined at days 4, 8, and 12 (90). That is to say, T cells with
specific TCRs were confirmed as targeting their corresponding
antigens. In HBV-related HCC, data from high-throughput
sequencing (HTS) technology showed that TCR diversity in
tumors was higher than in adjacent non-tumor tissues. Limited
overlap and rarely shared HCC clonal neo-antigens were found
between these two kinds of tissues (24). Recently, autologous
T cells were engineered to express TCR-specific epitopes from
integrated HBV DNA in order to achieve antitumor efficacy in
HBV-associated HCC. In addition, engineering HBV-specific T
cells based on HBV transcriptomes of HCC cells was thought to
be useful for personalized immunotherapy (91).

SIDE EFFECT EVALUATION OF
ANTI–PD-1/PD-L1 THERAPY

Identifying Treatment-related Adverse
Events (TRAEs)
When making treatment decisions for patients with advanced
cancer, the oncologists should take the drug-related side effect
and toxicity into consideration and adjust treatment strategy
to decease the occurrence of TRAEs and mortality risk. Anti–
PD-1/PD-L1 pathway therapy has been identified as safe in
several advanced cancers including melanoma and NSCLC, and
a systematic meta-analysis revealed that PD-1/PD-L1 inhibitor
was in lower risk and better tolerated by comparing incidences
of all and high-grade adverse events (AEs) between the PD-
1/PD-L1 inhibitors group and the chemotherapy group (92).
We assessed the safety of PD-1/PD-L1 inhibitor blockade based
on data from about a dozen clinical trials (Table 2) to show
that PD-1/PD-L1 blockade provided a similar and accepted
safety profile for advanced-HCC patients vs. those with other
malignant tumors. The most common TRAEs of PD-1/PD-L1
blockade monotherapy or combination therapy were fatigue,
rash, pruritus, diarrhea, nausea, and increased levels of aspartate
aminotransferase (AST) and alanine aminotransferase (ALT).
Similar to previous toxicity assessments in other malignant
tumors, TRAES were concentrically distributed across the
categories of fatigued physical function, dermatological signs
and elevated laboratory indices for liver function. Increased AST
and ALT levels occurred more frequently than other Grade
≥3 TRAEs.

Safety Assessment in Conditions of HBV
Infection
A study combining PD-L1 and CTLA-4 blockade showed that
most TRAEs in HBV+ HCC were dermatological signs and
elevated laboratory indices for liver function, including pruritus,
rash, increased ALT level, and increased AST level (66). Of
immune-related AEs induced by immune checkpoint blockade,
dermatological toxicity, including rash and pruritus were the

most common, representative and earliest-onset (93). Total
prior data for HCC (both HBV+ and HBV−) indicated that
dermatological toxicity was common but mild in anti–PD-1/PD-
L1 therapy (Table 2), and the symptoms could be controlled by
classical topical corticosteroid creams, peroral antipruritics or
intravenous corticosteroid in more-severe cases.

Unlike the usual treatment-related symptoms, hepatic safety
events should be emphasized in viral-infected subjects. Studies
show that changes in AST and ALT levels are not consistent with
typical radiographic liver findings; therefore, regular monitoring
of liver function is important (94). AST and ALT, sensitive
markers of acute hepatocyte damage, are frequently monitored
in HBV-infected HCC with PD-1/PD-L1 blockade. And previous
studies suggested that lack of prophylactic antiviral therapy
was the most critical risk factor which contributed to HBV
reactivation (95). To decrease the incidence of related AEs, HBV-
infected patients involved in cohort studies were required to
receive effective antiviral therapy to reach a low viral load, such
as <100 IU/mL (57, 60). Fortunately, in contrast with prior
CTLA-4 based research, HBV-infected patients who received
nivolumab treatment did not demonstrate any new or unique
safety signals (57). Because of controllable liver dysfunction
in HCC patients and regular supervision of transaminase
indicators, few patients suffered immune-mediated hepatitis
and no HBV or HCV viral flares were observed in patients
receiving anti-PD-1/PDL1 therapy (57, 60). Symptomatic TRAEs
comparable to those reported in existing studies were found
in patients with and without HCV or HBV infection. That
is to say, HCC patients with well-controlled HBV viral risk
factors could obtain safety profiles similar to those of non-
infected participants and their risk of fulminant hepatitis could be
lowered considerably.

CONCLUSIONS

The HBV infection–related HCC immunosuppressed tumor
microenvironment features upregulation of PD-1 in CD8+ T
cells; long-lasting inhibition of Tregs via higher levels of IL-
10 and TGF-β secretion; and the co-inhibitory signal of LAG3,
TIM-3, and CTLA-4. Along with the above immunosuppressive
factors, the PD-1/PD-L1 signaling pathway is thought to be the
most important and widely adopted mechanism in the diagnosis
and treatment of HCC patients with HBV infection.

In this study, we evaluated the safety and efficacy of PD-1/PD-
L1 blockade immunotherapy, and also summarized the general
differences between HBV related HCC and virus unrelated
HCC (Table 3). Similar to patients with other tumor types, we
observed acceptable toxicity and promising outcomes in HCC
patients treated with PD-1/PD-L1 antibodies. According to our
pooled analysis, ORRs of HBV+ HCC patients treated with
anti-PD-1/PD-L1 immunotherapy were comparable to those of
HBV− ones, whereas DCRs of HBV+ patients were significantly
lower. Based on our results, PD-1/PD-L1 blockade seemed to
achieve slightly worse efficacy in HBV+ HCC patients than
in HBV− HCC ones. Nevertheless, when they were receiving
a combination of anti–PD-1/PD-L1 and VEGF therapy, HBV-
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TABLE 2 | Safety and tolerability of PD-1/PD-L1 monotherapy or combination therapy in total HCC patients and HBV+ subgroup.

Drug ClinicalTrials.gov

number

Target HBV+ HCC (%) Safety evaluation in

HBV+ HCC

All-grade TRAEs Grade ≥3 TRAEs All-grade TRAES

(details)

Grade ≥3 TRAEs

(details)

References

Nivolumab NCT01658878

(escalation phase)

PD-1 15 (31%) Comparable

symptomatic TRAEs to

total HCC; No new

safety signals

40 (83%) 12 (25%) *Rash (23%), AST

increase (21%), lipase

increase (21%),

pruritus (19%),

amylase increase

(19%), ALT increase

(15%), diarrhea (10%),

decreased appetite

(10%)

Lipase increase

(13%), AST increase

(10%), ALT increase

(6%), amylase

increase (4%),

fatigue (1%), anemia

(1%)

(57)

Nivolumab NCT01658878

(expansion phase)

PD-1 51 (24%) Comparable

symptomatic TRAEs to

total HCC; No

reactivation of HBV; No

instances of anti-HBs

seroconversion; No

new safety signals

— 40 (19%) Comparable to that

observed in the

dose-escalation phase

— (57)

Nivolumab NCT02576509 PD-1 116 (31%) — — 81 (22%) *Skin (28%), hepatic

(17%), endocrine

(13%), Gastrointestinal

(9%),

Hypersensitivity/infusion

reaction (8%)

*Hepatic (10%), Skin

(2%),

Gastrointestinal (2%)

(56)

Nivolumab — PD-1 — — — 2 (6%) — Bullous lichenoid

drug eruption (3%),

hepatitis (3%)

(59)

Nivolumab — PD-1 56 (74%) No observed HBV

reactivation

— 2 (3%) Liver dysfunction

(21%), pruritus (16%),

anorexia (16%),

nausea (13%), fatigue

(8%)

liver dysfunction

(1%), diabetes (1%)

(58)

Pembrolizumab NCT02702414 PD-1 22 (21%) No cases of flares of

HBV; Few

immune-mediated

hepatitis

76 (73%) 27 (26%) *Fatigue (21%),

increased AST (13%),

pruritus (12%),

diarrhea (11%), rash

(10%)

Increased AST (7%),

fatigue (4%),

increased ALT (4%)

(60)

Pembrolizumab NCT02702401 PD-1 — No cases of HBV flare — — — — (61)

Camrelizumab

(SHR-1210)

NCT02989922 PD-1 181 (83%) High HBV infection rate

(84%); Similar safety

profile with total HCC

— 47 (22%) *RCEP (67%),

increased AST (25%),

increased ALT (24%),

proteinuria (23%),

increased Blood

bilirubin (17%)

*Increased AST

(5%), decreased

neutrophil count

(3%)

(64)

BGB-A317 NCT02407990 PD-1 — — 2 (18%) 0 (0%) Fatigue (9%), rash

(9%)

— (63)

(Continued)
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TABLE 2 | Continued

Drug ClinicalTrials.gov

number

Target HBV+ HCC (%) Safety evaluation in

HBV+ HCC

All-grade TRAEs Grade ≥3 TRAEs All-grade TRAES

(details)

Grade ≥3 TRAEs

(details)

References

Cemiplimab NCT02383212 PD-1 — — — — Fatigue (27%),

decreased appetite

(23%), increased AST

(23%), abdominal pain

(23%), pruritus (23%),

dyspnea (23%)

— (62)

Durvalumab NCT01693562 PD-L1 9 (23%) — 32 (80%) 8 (20%) *Fatigue (28%),

pruritus (25%),

increased AST (23%),

decreased appetite

(13%), increased ALT

(10%), diarrhea (10%),

nausea (10%)

*Increased AST

(8%), Increased ALT

(5%)

(65)

Atezolizumab

+

bevacizumab

NCT02715531 PD-L1 +

VEGF

51 (50%) No new safety signals 84 (82%) 30 (27%) Decreased appetite

(28%), fatigue (20%),

rash (20%), pyrexia

(20%)

Hypertension (10%) (69)

Atezolizumab

+

bevacizumab

NCT03434379 PD-L1 +

VEGF

164 (49%) — 276 (84%) 117 (36%) *Hypertension (nearly

30%); diarrhoea,

decreased appetite,

pyrexia, increased ALT

(all > 10%)

*Hypertension (10%) (70)

Pembrolizumab

+ lenvatinib

NCT03006926 PD-1 +

VEGF

8 (27%) No unexpected safety

signals

28 (93%) 18 (60%) Decreased appetite

(53%), hypertension

(53%), diarrhea (43%),

fatigue (40%),

dysphonia (30%),

proteinuria (30%)

*Hypertension

(17%), increased

AST (17%), WBC

count decreased

(13.3%),

hyponatremia (10%)

(71)

Nivolumab +

ipilimumab

NCT01658878 PD-1 +

CTLA-4

— — — 148 (37%) Pruritus, rash (data not

shown)

— (68)

Durvalumab +

tremelimumab

NCT02519348 PD-L1 +

CTLA-4

11 (28%) TRAEs: Pruritus (27%),

diarrhea (27%),

increased ALT (27%),

increased AST (27%),

increased lipase (18%),

rash (18%), increased

amylase (18%),

pancreatitis (9%)

No unexpected

safety signals

26 (65%) 10 (25%) Fatigue (28%), pruritus

(23%), increased ALT

(20%), increased AST

(18%), increased

lipase (15%)

Increased AST

(10%), increased

lipase (10%),

increased ALT (5%)

(66)

Durvalumab +

tremelimumab

NCT02821754 PD-L1 +

CTLA-4

— — — — — — (67)

Data are expressed as n (%) or event (%). TRAE, treatment-related adverse event; TRSAEs, treatment-related serious adverse event; AST, aspartate aminotransferase; ALT, alanine aminotransferase; RCEP, reactive cutaneous capillary

endothelial proliferation; DT, discontinued treatment. *partial AEs with highest incidence are displayed.
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TABLE 3 | General differences between HBV related HCC and virus unrelated

HCC.

Aspect HBV+ HCC’s characteristics

compared to virus unrelated ones

References

Disease state/feature

HBV itself Strong variability; Viral heterogeneity

accumulation; Hard to eradicate

(96)

HBV-induced

mechanism

Chronic inflammation;

Immune-mediated hepatocyte

damage; higher rate of chromosomal

alterations; p53 inactivation;

WNT/b-catenin pathway inactivation;

Oncogenic HBx protein; Insertional

mutagenesis; Genomic instability

(97, 98)

Tumor

microenvironment

Activated PD-1/PD-L1 signaling

pathway; Co-inhibitory signal of

LAG3, TIM-3, and CTLA-4;

Exhausted CD8+ T cells;

Immunosuppressive role of Tregs;

Function-suppressive Trms. Higher

levels of IL-10 and TGF-β secretion

(22, 26–36)

Performance when treated with PD-1/PD-L1 immunotherapy

Efficacy Comparable ORR and lower DCR

(pooled analysis)

Safety profile and

toxicity

Comparable symptomatic TRAEs to

total HCC; No reactivation of HBV; No

cases of flares of HBV; No instances

of anti-HBs seroconversion; Few

immune-mediated hepatitis

(57, 60, 61, 64)

New safety signal No new safety signals (consist with

virus unrelated HCC)

(57, 66, 69, 71)

Antiviral effect Existed anti-HBV effect of

PD-1/PD-L1 blockade in previous

study; No HBV reactivation in HBV+

HCC with low viral loads

(57, 58, 60, 78)

LAG3, lymphocyte-activation gene 3; TIM-3, T-cell immunoglobulin and mucin domain-

3; CTLA-4, cytotoxic T lymphocyte associated antigen-4; Tregs, regulatory T cells; Trms,

resident memory T cells; ORR, objective response rate; DCR, disease control rate; TRAE,

treatment-related adverse event.

related HCC patients achieved ORRs and DCRs as high as
those of HBV− patients. However, even the existing but limited
antivirus effect was found due to the HBV serological indicator.
Due to well-controlled viral loads and routine antivirus therapy
in current studies, the antiviral activity of anti–PD-1/PD-L1

therapy should be identified in a specially designed study in
the future. The predictive value of PD-L1 expression for PD-
1 blockade efficacy has been identified in not only melanoma
and NSCLC but also HCC (57, 60, 99). PD-L1 expression level
is commonly higher in HBV-related HCC, and the predictive
effect of PD-L1 expression requires investigation in HBV-
related cohorts.

Factors, including HCC heterogeneity, HBV replication,
and drug target, were related to disruption of PD-1/PD-L1
blockade efficacy in HBV+ HCC patients. Therefore, researchers
should consider adjusting the cure strategy when the underlying
mechanism is further clarified and explained. Finally, there
remains a lack of valuable predictive biomarkers to monitor
treatment effectiveness or choose the right patients to benefit

from anti-PD-1/PD-L1 blockade immunotherapy, and further
studies in these areas must be carried out in the future.
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