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Abstract: The continuous circulation of West Nile virus (WNV) in Central, South and East Europe
and its recent detection in several dead birds and two horses in Germany highlights the need for
information on WNV vector competence of mosquitoes from Central Europe. Therefore, three common
Culex species (Culex pipiens biotype pipiens, Culex pipiens biotype molestus and Culex torrentium) from
Germany were orally infected with WNV and kept at 18 ◦C, 21 ◦C, 24 ◦C or 27 ◦C for 14 or 21 days
post infection (dpi). Thereafter viable WNV was present in the saliva in all tested taxa, but only at
incubation temperatures of 24 ◦C or 27 ◦C and predominantly at the extended incubation period
of 21 dpi. Highest transmission efficiency rates of 17 % (24 ◦C) and 24% (27 ◦C) were found for
Cx. torrentium. Culex p. pipiens and Cx. p. molestus showed low transmission efficiencies with a
maximum of only 3%. Consequently, temperatures above 21 ◦C support transmission of WNV, which
matches the predominant distribution of human WNV cases around the Mediterranean Sea and in
South-East Europe. Culex torrentium has been identified as a potent vector for WNV in Central and
Northern Europe, which highlights the need for surveillance of mosquito-borne viruses north of
the Alps.
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1. Introduction

West Nile virus (WNV) belongs to the genus Flavivirus within the family Flaviviridae [1]. WNV
is a zoonotic pathogen with an enzootic cycle between mosquitoes as vectors and birds as the
primary, amplifying host. Humans, equines and other vertebrates are incidental hosts [2,3]. Human
WNV infections can range from asymptomatic or mild clinical symptoms to severe outcomes due
to neuroinvasive manifestations [2]. At present, there is no specific treatment or licensed vaccine
for human use. WNV has a high epidemic potential as illustrated by its rapid spread after a single
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introduction to New York City (United States of America) in 1999 [4]. Subsequently, within the
following few years, WNV rapidly spread over the North American continent, resulting in more than
20,000 human cases of neuroinvasive diseases and more than 2000 deaths [5]. During recent years,
various outbreaks of WNV infections have been reported in central, southern and eastern countries of
Europe resulting in several thousand human cases and dozens of fatal outcomes [6].

Mosquito species of the genus Culex have a worldwide distribution [7]. They are of medical
importance as they can act as vectors for various zoonotic arboviruses from several virus families [8].
The most common Culex species in Europe are Culex torrentium Martini, 1925 and Culex pipiens
s.l. L., 1758 [9]. The latter comprises two different biotypes, namely, Culex pipiens biotype pipiens
(Cx. p. pipiens) and Culex pipiens biotype molestus (Cx. p. molestus). Species identification of the three
taxa is challenging [10,11]. Both biotypes of Cx. pipiens s.l. cannot be identified with absolute certainty
by morphological criteria and are traditionally classified by biotype-specific mating behaviours,
breeding site selection and hibernation habits. Culex. p. molestus is considered stenogamous,
autogenous, utilizes underground breeding sites and is non-diapausing, while Cx. p. pipiens is
eurygamous, anautogenous, breeds above the ground and overwinters in diapause. The picture gets
even more complex with the occurrence of the sibling species Cx. torrentium, because this species
resembles Cx. p. pipiens morphologically and by its breeding ecology and both species often occur in
sympatry [12,13]. Cx. torrentium males can be differentiated from Cx. pipiens s.l. by characters of the
hypopygium, but a reliable morphological differentiation of females is difficult because pre-alar scales
easily fall off and the use of morphometric wing characters is generally not established [9,14]. Therefore,
species differentiation of the different Culex species often relies on molecular identification [10,15].
In Europe, Cx. pipiens s.l. and Cx. torrentium usually occur together, with Cx. torrentium being the
dominant species in northern Europe and Cx. p. pipiens prevailing in regions south of the Alps [9,16].
In Central Europe such as Austria or Germany, both sister species can be found in sympatry [10–13].

Due to the wide distribution and high abundance of the three Culex taxa in Europe, several studies
were performed to analyse their vector capacity for various arboviruses. For many years, it has been
assumed, that both Cx. pipiens s.l and Cx. torrentium are primarily ornithophilic [17], hence they were
not classified as important vectors for zoonotic pathogens. However, recent studies demonstrated
substantial variability in host feeding patterns of Cx. p. pipiens s.l. and Cx. torrentium, comprising birds
and mammals including humans [10,18–20]. Accordingly, the two species have to be considered as
bridge vectors for the transmission of zoonotic pathogens from birds to humans. During nationwide
monitoring surveys in Germany, different mosquito-borne viruses have been detected in field-collected
specimens of the three Culex taxa, including Sindbis virus (SINV), Usutu virus (USUV) and Batai virus
(BATV) [8]. In addition, there is growing evidence that European populations of both Cx. pipiens
biotypes and their hybrids are competent vectors for WNV, USUV and SINV [18,21–23], but not for
Zika virus [24,25] or Chikungunya virus [26]. Concerning Cx. torrentium, there is considerably less
information about possible vector competences. In a single published study from Germany, it was
demonstrated that Cx. torrentium is susceptible to WNV infection, but the presence of infectious
virus particles in the saliva was not investigated [27]. Other studies from Sweden indicated that
Cx. torrentium has a higher vector competence for SINV compared to Cx. pipiens s.l. [18,28].

The ongoing circulation of WNV in southern and eastern Europe poses a significant risk for the
introduction and autochthonous human infections in central and northern Europe, in case suitable
vector species and appropriate climatic conditions are present [29,30]. Transmission risk for WNV in
Germany was recently demonstrated by the first detection of several WNV-positive birds in summer
2018 [31]. This highlights the need for a temperature-dependent risk assessment of the WNV vector
competence for native mosquito vectors in Central Europe. Here we report on experimental WNV
infection studies using Cx. p. pipiens, Cx. p. molestus and Cx. torrentium from Germany at different
temperature conditions ranging from 18 ◦C to 27 ◦C. The results indicate unexpected high WNV
transmission rates at 24 ◦C and 27 ◦C of 62% and 90%, respectively, but only for Cx. torrentium. For a
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spatial risk assessment, the results were put in relation to temperature data and the actual circulation
of WNV in Europe.

2. Materials and Methods

2.1. Collection and Rearing of Mosquitoes

F0 adults of Cx. torrentium and Cx. p. pipiens were obtained from egg rafts collected in
Langenlehsten, Germany (53◦30′ N 10◦44′ E) in 2016 and 2017. For Cx. p. molestus a labstrain was
used, which was established from egg rafts collected in Heidelberg, Germany (49◦11′ N 08◦39′ E)
in 2011. Adult mosquitoes were incubated at 26 ◦C, with a relative humidity of 80% and a 12:12
light:dark photoperiod. For differentiation of the three Culex taxa, DNA was extracted from 1–4 larvae
(DNeasy Blood & Tissue Kit, Qiagen, Hilden, Germany) and molecular identification was performed
by multiplex quantitative real-time PCR (qRT-PCR) as previously described [11,17].

2.2. Experimental Infection and Analysis

Four to 14 days-old female mosquitoes were starved 24 hours before challenged with infectious blood
meals containing WNV-1 (clade 1a, strain TOS-09, Genbank HM991273/HM641225, passage 5 from Vero
cells) [32] at a final concentration of 107 plaque forming units per milliliter (PFU/mL). This concentration is
recommended for artificial blood meals because it corresponds to natural bird viremia [21]. Composition
of blood meal was as follows: 50% expired human blood (blood preservation) from human blood bank
(not suitable for humans anymore, but useful for mosquitoes), 30% fructose (8% solution), 10% filtrated
bovine serum and 10% working solution of the virus stock. Artificial blood meals were provided overnight,
using cotton sticks soaked in infectious blood [26]. Subsequently, mosquitoes were anesthetized with CO2

and fully engorged females were sorted into a new vial. Mosquitoes were incubated at 80% humidity
at 18 ◦C, 21 ◦C, 24 ◦C or 27 ◦C, respectively. A cotton pad saturated with solution of 8% Fructose was
provided during incubation time of 14 or 21 days. 10 randomly selected adult mosquitoes per species were
tested by pan-Flavi-, pan-Alpha- and pan-Orthobunyavirus PCRs to test for natural virus infection [33–35].
All individuals revealed negative results.

Mosquitoes were analysed for infection rate (IR), transmission rate (TR) and transmission efficiency
(TE) 14 and 21 days post infection (dpi) as previously described [25,36]. Infection was investigated by
the analysis of extracted RNA (MagMax Pathogen RNA/DNA Kit, Thermo fisher scientific, Waltham,
MA, USA) from bodies (excluding legs and wings) according to a previously described qRT-PCR
protocol for WNV RNA [27]. The TR was determined by performing a salivation assay for the detection
of infectious virus particles as previously described [37]. TR was defined as the number of mosquitoes
with WNV-positive saliva per number of WNV-positive mosquito bodies [25,37,38]. TE was calculated
as the number of specimens with WNV-positive saliva per total number of fed females [36].

2.3. Comparison of the Study Results with Previous Vector Competence Studies and the Actual Circulation of
WNV in Europe

The effects of species, temperature and dpi as factors on the IR, TR or TE were tested with
generalized linear models with a binomial distribution and logit link function. Where necessary, multi
comparison tests between factors were applied depending on the model used with a Tukey matrix of
contrast. In addition, TRs in this study were evaluated against the results of previously published
studies, conducting WNV infection experiments with European Culex spp. mosquito populations.
These studies were previously reviewed by Vogels et al. [21] and further updated with a recent
study [39]. Furthermore, following the method of Fros et al. [40], temperature data were analyzed
to put the vector competence studies in relation to the actual spatial circulation of WNV in Europe.
Daily mean temperature data (European re-analysis and observations for monitoring, E-OBS v17.0,
available on a 0.25◦ regular latitude-longitude grid) were downloaded from http://www.ecad.eu [41].
The average daily temperature conditions in July/August for each year between 2011 and 2018 were

http://www.ecad.eu
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extracted for all European region on the NUTS 3-level (Nomenclature of Territorial Units for statistic,
third level) and visualized in a histogram. In a next step, the number of human WNV cases reported
by ECDC for the same statistical regions [6] was linked to the same underlying temperature data.
Thereby, the annual averaged July/August temperature data for each reported case were visualized as
an additional histogram. Following Fros et al. [40] in order to exclude imported cases, reports of single
WNV cases per country and year were eliminated from the analysis. The correlation between the
temperature data and human WNV cases was tested with a generalized linear model with a binomial
distribution and logit link function. All data analysis and visualizations were conducted with R [42]
using the packages cowplot [43], dplyr [44], ggplot2 [45], magrittr [46], maptools [47], raster [48] and
multcomp [49].

3. Results

All three investigated Culex taxa were susceptible to WNV (Table 1), i.e. viral titres of mosquito bodies
reached at least the detection limit of the qRT-PCR of 10,000 RNA copies per mosquito specimen. IRs were
statistically significant different between the three species (likelihood-ratio test (LR)-χ2 = 0.97662, df = 2,
p < 0.001). Culex torrentium had higher IRs compared to Cx. p. pipiens and Cx. p. molestus (Tukey’s post-hoc
tests, p < 0.05), while no differences were found between Cx. p. pipiens and Cx. p. molestus (Tukey’s
post-hoc test, p > 0.05). IRs increased with increasing temperature (LR-χ2 = 0.28262, df = 1, P < 0.01).
Highest IRs of 32% were found for Cx. torrentium at an incubation temperature of 27 ◦C over a period of
14 days dpi, followed by Cx. p. pipiens with an IR of 23% (24 ◦C; 21 dpi). Lowest IRs with a maximum of
only 6% were found for Cx. p. molestus (27 ◦C; 21 dpi). In general, IRs were considerably higher at 21 dpi
compared to 14 dpi (LR-χ2 = 0.46289, df = 1, P < 0.001). The only exception was Cx. torrentium incubated
at 27 ◦C with a slightly higher IR of 32% at 14 dpi compared to 26% at 21 dpi.
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Table 1. Infection (IR), transmission (TR) and transmission efficiency rates (TE) of three Culex species
experimentally infected with West Nile virus and kept at four different temperatures, June 2016 to July
2017 (n = 788). The experimental analytical sensitivity of the qRT-PCR was analysed according the
protocol of Caraguel et al. calculating the limit of detection via endpoint dilution [50]. The limit of
detection was defined as 100 copies/µL, corresponding to about 10,000 copies per mosquito specimen.
(NA: not analyzed; IR: number of positive saliva/positive bodies; TR: number of positive legs/positive
bodies; TE: number of positive saliva per mosquito).

14 Days Post Infection 21 Days Post Infection

Mosquito Taxa T in ◦C IR (%) TR (%) TE (%) IR (%) TR (%) TE (%)

Culex p. molestus 18 0/29
(0.0)

NA NA 1/29
(3.4)

0/1
(0.0)

NA

24 0/31
(0.0)

NA NA 1/31
(3.2)

0/1
(0.0)

NA

27 0/31
(0.0)

NA NA 4/62
(6.4)

1/4
(25.0)

1/62
(1.6)

Culex p. pipiens 18 1/32
(3.1)

0/1
(0.0)

NA 2/33
(6.1)

0/2
(0.0)

NA

21 1/30
(3.3)

0/1
(0.0)

NA 3/31
(9.7)

0/3
(0.0)

NA

24 1/30
(3.3)

0/1
(0.0)

NA 7/31
(22.6)

1/7
(14.3%)

1/31
(3.2)

27 0/35
(0.0)

NA NA 3/33
(9.1)

1/3
(33.3)

1/33
(3.0)

Culex torrentium 18 2/32
(6.2)

0/2
(0.0)

NA 5/33
(15.2)

0/5
(0.0)

NA

21 0/31
(0.0)

NA NA 4/32
(12.5)

0/4
(0.0)

NA

24 2/31
(6.4)

0/2
(0.0)

NA 8/29
(27.6)

5/8
(62.5)

5/29
(17.2)

27 11/34
(32.4)

1/11
(9.1)

1/34
(2.9)

10/38
(26.3)

9/10
(90.0)

9/38
(23.7)

All three Culex taxa tested were able to transmit infectious WNV particles, but only at elevated
incubation temperatures of 24 ◦C or 27 ◦C (LR-χ2 = 4.6129, df = 1, p < 0.001). In addition, except
for Cx. torrentium at 27 ◦C, transmission was only observed for an extended incubation period of
21 dpi compared to 14 dpi (LR-χ2 = 3.9147, df = 1, p < 0.001, Table 1). TRs differed between the three
taxa (LR-χ2 = 2.4958, df = 1, p < 0.001) with higher values for Cx. torrentium compared to the other
two species (Tukey’s post-hoc tests, p < 0.001). At 24 ◦C, TRs for Cx. p. molestus, Cx. p. pipiens
and Cx. torrentium were 0%, 14% and 62%, respectively, and at 27 ◦C TRs were 25%, 33% and 90%,
respectively. Accordingly, Cx. p. molestus and Cx. p. pipiens showed statistically lower TEs of up to a
maximum of only 3%, whereas Cx. torrentium revealed significant TEs of 17% at 24◦C and 24% at 27 ◦C
(LR-χ2 = 0.65335, df = 2, p < 0.001, Tukey’s post-hoc tests, p < 0.001, Table 1).

A distinct temperature dependence of WNV is in line with previous vector competence studies
and the distribution of human WNV cases in Europe (Figure 1). Noticeable, transmission rates were
only observed for incubation temperatures above 20 ◦C (Figure 1a). The probability for human WNV
cases statistically significant increased with increasing temperature (LR-χ2 = 9769.4, df = 1, p < 0.001).
WNV predominantly circulates in areas with average temperatures above 20 ◦C during July/August
(2011–2018) (Figure 1b).
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Figure 1. (a) Transmission rate of Culex pipiens s.l./torrentium experimentally infected with West Nile 
virus at different temperatures and days post infection (dpi) in comparison to previously published 
vector competence studies with European populations Culex pipiens s.l [21]. A small horizontal jitter 
was added to the points to prevent overlapping.; (b) Histograms of the average temperatures in 
July/August (2011–2018) for all European NUTS 3 (Nomenclature of Territorial Units for Statistics, 
third level) regions (=gray) and for each detected human WNV case (=red). Count data for the 
European NUTS 3 regions indicate the cumulative number of times the respective average 
temperature in July/August was observed over all European NUTS 3 regions for each year from 2011 
to 2018. Only the data for the temperatures between 17.5 °C and 28.5 °C are shown. 

Similarly, count data for the human WNV cases indicate the cumulative number of times the 
respective average temperature in July/August was observed for each human WNV case in the 
respective European NUTS 3 region and year. 

4. Discussion 

Six European mosquito species namely Aedes albopictus, Aedes detritus, Aedes japonicus, Culex 
modestus, Cx. p. pipiens and Cx. p. molestus are known to be susceptible to WNV infection and able to 
transmit infectious WNV particles at least under experimental laboratory conditions [21,39]. The 
study presented here confirms vector competences for Cx. p. pipiens and Cx. p. molestus, but with 
moderate transmission rates of 25% and 33%, respectively, and rather low transmission efficiencies 
up to a maximum of 3%. In addition, we have analyzed the WNV vector competence of Cx. torrentium, 

Figure 1. (a) Transmission rate of Culex pipiens s.l./torrentium experimentally infected with West Nile
virus at different temperatures and days post infection (dpi) in comparison to previously published
vector competence studies with European populations Culex pipiens s.l [21]. A small horizontal jitter was
added to the points to prevent overlapping.; (b) Histograms of the average temperatures in July/August
(2011–2018) for all European NUTS 3 (Nomenclature of Territorial Units for Statistics, third level)
regions (=gray) and for each detected human WNV case (=red). Count data for the European NUTS 3
regions indicate the cumulative number of times the respective average temperature in July/August
was observed over all European NUTS 3 regions for each year from 2011 to 2018. Only the data for the
temperatures between 17.5 ◦C and 28.5 ◦C are shown.

Similarly, count data for the human WNV cases indicate the cumulative number of times the
respective average temperature in July/August was observed for each human WNV case in the
respective European NUTS 3 region and year.

4. Discussion

Six European mosquito species namely Aedes albopictus, Aedes detritus, Aedes japonicus,
Culex modestus, Cx. p. pipiens and Cx. p. molestus are known to be susceptible to WNV infection and
able to transmit infectious WNV particles at least under experimental laboratory conditions [21,39].
The study presented here confirms vector competences for Cx. p. pipiens and Cx. p. molestus, but with
moderate transmission rates of 25% and 33%, respectively, and rather low transmission efficiencies up
to a maximum of 3%. In addition, we have analyzed the WNV vector competence of Cx. torrentium,
a further Culex species widely distributed and abundant in Central Europe and found unexpected
high WNV transmission rates of up to 90% with a calculated maximum transmission efficiency of 24%.
Studies specifically addressing WNV transmission of Cx. torrentium have not been reported so far.
Our findings concerning the two Cx. pipiens biotypes are in agreement with previous studies using
other European populations of the two biotypes. These studies revealed TRs for WNV of up to 10%
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for Cx. p. molestus and of up to 30% for Cx. p. pipiens. Higher TRs of 30%–75% were also reported but
in these studies Cx. pipiens s.l. mosquitoes were not further differentiated.

Questions remain concerning the mechanism responsible for the high WNV vector competence of
Cx. torrentium compared to the two Culex pipiens biotypes. One thing that is not considered in this
study is the number of infectious virus particles that were uptaken by each individual. The number of
infectious virus particles per µL will presumably decrease as longer as the blood meal is offered and
the time point when each mosquito soaked blood after starting the blood meal was not documented.
However, the amount of blood which is ingested by each mosquito varies and therefore the amount
of viral particles per fed mosquito varies anyway, which is why this point is not considered in this
study. To our knowledge, only one vector competence study has been reported targeting Cx. torrentium
specifically, indicating that the species is a potent vector of SINV. SINV is a mosquito-borne virus of
the genus alphavirus, with a similar ecology as WNV, i.e. enzootic cycle with birds and spill-overs to
mammalian species. Experimental infection of birds by either Cx. torrentium or Cx. pipiens s.l. revealed
a noticeable higher vector competence for Cx. torrentium [18]. In addition, field studies found highest
SINV infection rates for naturally infected Cx. torrentium in comparison to Cx. pipiens s.l. or Culiseta
morsitans [28]. Thus, Cx. torrentium appears to be a suitable vector for at least two arthropod-borne
viruses (arboviruses) from different virus families. Whether the lack of Wolbachia as recently reported
for Cx. torrentium [51] is responsible for this broad vector competence and whether other viruses
can be transmitted by Cx. torrentium as well, remains to be determined. Host-feeding patterns with
nearly equal detections of avian and mammalian hosts [19] indicate that Cx. torrentium have to be
considered as bridge vector for the transmission of zoonotic pathogens from birds to humans. Thus,
the species is considered as the main vector of SINV in Northern Europe and may play a major role in
WNV transmission in areas where the species is abundant and respectively favourable environmental
conditions are present, in particular, elevated temperatures for an extended time period [9]. The latter
may be responsible for the first emergence of WNV in Germany in 2018.

Although intensive surveillance has been conducted during previous years, no WNV circulation
was detected in Germany before 2018 [52]. Since the virus is sporadically circulating in neighbouring
countries (e.g. France, Czech Republic and Austria) introduction of WNV into Germany has been
long-awaited [6]. Nevertheless, intensive screening of birds and mammals in Germany only identified
WNV neutralizing antibodies in migratory birds, but none of the animals were positive for WNV
RNA [53,54]. Likewise, intensive surveillance of mosquitoes over the last decade confirmed the
circulation of various arboviruses in Germany including USUV, SINV and BATV, but did not detect
WNV [8]. In contrast, in late summer 2018, several bird specimens from various parts of Germany
were tested positive for WNV [31].

This first emergence of WNV in Germany during summer 2018 is clearly linked to temperature
anomalies, i.e. significant positive deviation from the long-term mean temperatures, which may have
shortened the extrinsic incubation period of WNV [31]. Temperature dependency of WNV replication
in the vector has already been discussed [55,56]. Tropical temperatures around 27–28 ◦C support
transmission of WNV, while moderate temperatures of 23–24 ◦C lead to considerably reduced TRs.
In concordance with the results of Culex vector competence presented here, other studies also revealed
a lack of WNV transmission at lower temperatures (≤21 ◦C). According to the distribution of human
WNV cases in Europe between 2011 and 2018 [6,22] most cases were observed in areas around the
Mediterranean Sea and south-eastern countries in Europe, comprising average temperatures between
21 ◦C and 26 ◦C in July/August. Thus, although Cx. torrentium is a highly competent vector for the
transmission of WNV, the main distribution of this species lies within areas of temperate climate
in Central and Northern Europe, which in general do not allow transmission of WNV north of the
Alps. Temperature conditions in exceptional years, however, may allow WNV circulation even in
Central Europe facilitated by the presence of Cx. torrentium. This risk may further increase with rising
temperatures in the course of climate change. In conclusion, due to the continuing circulation of WNV
in Europe and the prevalence of potent vectors for WNV, such as Cx. torrentium, a surveillance system



Viruses 2019, 11, 492 8 of 11

that includes birds, mosquitoes and humans should be established or maintained in all European
countries to enable early detection and subsequent interventions. This should include areas in Northern
and Central Europe, where Cx. torrentium is the predominant Culex species [9,11]. In addition, due
to the high vector competence of Cx. torrentium for WNV and SINV [18], further studies should be
conducted to evaluate the species’ susceptibility to other arboviruses, such as USUV, which is presently
killing thousands of birds in Central Europe [57,58].
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9. Hesson, J.C.; Rettich, F.; Merdić, E.; Vignjević, G.; Ostman, O.; Schäfer, M.; Schaffner, F.; Foussadier, R.;
Besnard, G.; Medlock, J.; et al. The arbovirus vector Culex torrentium is more prevalent than Culex pipiens in
northern and central Europe. Med. Vet. Entomol. 2014, 28, 179–186. [CrossRef]

10. Zittra, C.; Flechl, E.; Kothmayer, M.; Vitecek, S.; Rossiter, H.; Zechmeister, T.; Fuehrer, H.P. Ecological
characterization and molecular differentiation of Culex pipiens complex taxa and Culex torrentium in eastern
Austria. Parasit. Vector 2016, 9, 197. [CrossRef]

11. Rudolf, M.; Czajika, C.; Bürstler, J.; Melaun, C.; Jöst, H.; von Thien, H.; Badusche, M.; Becker, N.;
Schmidt-Chanasit, J.; Krüger, A.; et al. First nationwide surveillance of Culex pipiens complex and
Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in
Germany. PLoS ONE 2013, 8, e71832. [CrossRef] [PubMed]

12. Lühken, R.; Steinke, S.; Leggewie, M.; Tannich, E.; Krüger, A.; Becker, S.; Kiel, E. Physio-chemical characteristics
of Culex pipiens sensu lato and Culex torrentium (Diptera: Culicidae) breeding sites in Germany. J. Med. Entomol.
2015, 52, 932–936. [CrossRef] [PubMed]
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